geom_object.h 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648
  1. /*
  2. * Licensed under the Apache License, Version 2.0 (the "License");
  3. * you may not use this file except in compliance with the License.
  4. * You may obtain a copy of the License at
  5. *
  6. * http://www.apache.org/licenses/LICENSE-2.0
  7. *
  8. * Unless required by applicable law or agreed to in writing, software
  9. * distributed under the License is distributed on an "AS IS" BASIS,
  10. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. * See the License for the specific language governing permissions and
  12. * limitations under the License.
  13. */
  14. /* Object Primitive
  15. *
  16. * All mesh and curve primitives are part of an object. The same mesh and curves
  17. * may be instanced multiple times by different objects.
  18. *
  19. * If the mesh is not instanced multiple times, the object will not be explicitly
  20. * stored as a primitive in the BVH, rather the bare triangles are curved are
  21. * directly primitives in the BVH with world space locations applied, and the object
  22. * ID is looked up afterwards. */
  23. CCL_NAMESPACE_BEGIN
  24. /* Object attributes, for now a fixed size and contents */
  25. enum ObjectTransform {
  26. OBJECT_TRANSFORM = 0,
  27. OBJECT_INVERSE_TRANSFORM = 1,
  28. };
  29. enum ObjectVectorTransform { OBJECT_PASS_MOTION_PRE = 0, OBJECT_PASS_MOTION_POST = 1 };
  30. /* Object to world space transformation */
  31. ccl_device_inline Transform object_fetch_transform(KernelGlobals *kg,
  32. int object,
  33. enum ObjectTransform type)
  34. {
  35. if (type == OBJECT_INVERSE_TRANSFORM) {
  36. return kernel_tex_fetch(__objects, object).itfm;
  37. }
  38. else {
  39. return kernel_tex_fetch(__objects, object).tfm;
  40. }
  41. }
  42. /* Lamp to world space transformation */
  43. ccl_device_inline Transform lamp_fetch_transform(KernelGlobals *kg, int lamp, bool inverse)
  44. {
  45. if (inverse) {
  46. return kernel_tex_fetch(__lights, lamp).itfm;
  47. }
  48. else {
  49. return kernel_tex_fetch(__lights, lamp).tfm;
  50. }
  51. }
  52. /* Object to world space transformation for motion vectors */
  53. ccl_device_inline Transform object_fetch_motion_pass_transform(KernelGlobals *kg,
  54. int object,
  55. enum ObjectVectorTransform type)
  56. {
  57. int offset = object * OBJECT_MOTION_PASS_SIZE + (int)type;
  58. return kernel_tex_fetch(__object_motion_pass, offset);
  59. }
  60. /* Motion blurred object transformations */
  61. #ifdef __OBJECT_MOTION__
  62. ccl_device_inline Transform object_fetch_transform_motion(KernelGlobals *kg,
  63. int object,
  64. float time)
  65. {
  66. const uint motion_offset = kernel_tex_fetch(__objects, object).motion_offset;
  67. const ccl_global DecomposedTransform *motion = &kernel_tex_fetch(__object_motion, motion_offset);
  68. const uint num_steps = kernel_tex_fetch(__objects, object).numsteps * 2 + 1;
  69. Transform tfm;
  70. # ifdef __EMBREE__
  71. if (kernel_data.bvh.scene) {
  72. transform_motion_array_interpolate_straight(&tfm, motion, num_steps, time);
  73. }
  74. else
  75. # endif
  76. transform_motion_array_interpolate(&tfm, motion, num_steps, time);
  77. return tfm;
  78. }
  79. ccl_device_inline Transform object_fetch_transform_motion_test(KernelGlobals *kg,
  80. int object,
  81. float time,
  82. Transform *itfm)
  83. {
  84. int object_flag = kernel_tex_fetch(__object_flag, object);
  85. if (object_flag & SD_OBJECT_MOTION) {
  86. /* if we do motion blur */
  87. Transform tfm = object_fetch_transform_motion(kg, object, time);
  88. if (itfm)
  89. *itfm = transform_quick_inverse(tfm);
  90. return tfm;
  91. }
  92. else {
  93. Transform tfm = object_fetch_transform(kg, object, OBJECT_TRANSFORM);
  94. if (itfm)
  95. *itfm = object_fetch_transform(kg, object, OBJECT_INVERSE_TRANSFORM);
  96. return tfm;
  97. }
  98. }
  99. #endif
  100. /* Transform position from object to world space */
  101. ccl_device_inline void object_position_transform(KernelGlobals *kg,
  102. const ShaderData *sd,
  103. float3 *P)
  104. {
  105. #ifdef __OBJECT_MOTION__
  106. *P = transform_point_auto(&sd->ob_tfm, *P);
  107. #else
  108. Transform tfm = object_fetch_transform(kg, sd->object, OBJECT_TRANSFORM);
  109. *P = transform_point(&tfm, *P);
  110. #endif
  111. }
  112. /* Transform position from world to object space */
  113. ccl_device_inline void object_inverse_position_transform(KernelGlobals *kg,
  114. const ShaderData *sd,
  115. float3 *P)
  116. {
  117. #ifdef __OBJECT_MOTION__
  118. *P = transform_point_auto(&sd->ob_itfm, *P);
  119. #else
  120. Transform tfm = object_fetch_transform(kg, sd->object, OBJECT_INVERSE_TRANSFORM);
  121. *P = transform_point(&tfm, *P);
  122. #endif
  123. }
  124. /* Transform normal from world to object space */
  125. ccl_device_inline void object_inverse_normal_transform(KernelGlobals *kg,
  126. const ShaderData *sd,
  127. float3 *N)
  128. {
  129. #ifdef __OBJECT_MOTION__
  130. if ((sd->object != OBJECT_NONE) || (sd->type == PRIMITIVE_LAMP)) {
  131. *N = normalize(transform_direction_transposed_auto(&sd->ob_tfm, *N));
  132. }
  133. #else
  134. if (sd->object != OBJECT_NONE) {
  135. Transform tfm = object_fetch_transform(kg, sd->object, OBJECT_TRANSFORM);
  136. *N = normalize(transform_direction_transposed(&tfm, *N));
  137. }
  138. else if (sd->type == PRIMITIVE_LAMP) {
  139. Transform tfm = lamp_fetch_transform(kg, sd->lamp, false);
  140. *N = normalize(transform_direction_transposed(&tfm, *N));
  141. }
  142. #endif
  143. }
  144. /* Transform normal from object to world space */
  145. ccl_device_inline void object_normal_transform(KernelGlobals *kg, const ShaderData *sd, float3 *N)
  146. {
  147. #ifdef __OBJECT_MOTION__
  148. *N = normalize(transform_direction_transposed_auto(&sd->ob_itfm, *N));
  149. #else
  150. Transform tfm = object_fetch_transform(kg, sd->object, OBJECT_INVERSE_TRANSFORM);
  151. *N = normalize(transform_direction_transposed(&tfm, *N));
  152. #endif
  153. }
  154. /* Transform direction vector from object to world space */
  155. ccl_device_inline void object_dir_transform(KernelGlobals *kg, const ShaderData *sd, float3 *D)
  156. {
  157. #ifdef __OBJECT_MOTION__
  158. *D = transform_direction_auto(&sd->ob_tfm, *D);
  159. #else
  160. Transform tfm = object_fetch_transform(kg, sd->object, OBJECT_TRANSFORM);
  161. *D = transform_direction(&tfm, *D);
  162. #endif
  163. }
  164. /* Transform direction vector from world to object space */
  165. ccl_device_inline void object_inverse_dir_transform(KernelGlobals *kg,
  166. const ShaderData *sd,
  167. float3 *D)
  168. {
  169. #ifdef __OBJECT_MOTION__
  170. *D = transform_direction_auto(&sd->ob_itfm, *D);
  171. #else
  172. Transform tfm = object_fetch_transform(kg, sd->object, OBJECT_INVERSE_TRANSFORM);
  173. *D = transform_direction(&tfm, *D);
  174. #endif
  175. }
  176. /* Object center position */
  177. ccl_device_inline float3 object_location(KernelGlobals *kg, const ShaderData *sd)
  178. {
  179. if (sd->object == OBJECT_NONE)
  180. return make_float3(0.0f, 0.0f, 0.0f);
  181. #ifdef __OBJECT_MOTION__
  182. return make_float3(sd->ob_tfm.x.w, sd->ob_tfm.y.w, sd->ob_tfm.z.w);
  183. #else
  184. Transform tfm = object_fetch_transform(kg, sd->object, OBJECT_TRANSFORM);
  185. return make_float3(tfm.x.w, tfm.y.w, tfm.z.w);
  186. #endif
  187. }
  188. /* Total surface area of object */
  189. ccl_device_inline float object_surface_area(KernelGlobals *kg, int object)
  190. {
  191. return kernel_tex_fetch(__objects, object).surface_area;
  192. }
  193. /* Pass ID number of object */
  194. ccl_device_inline float object_pass_id(KernelGlobals *kg, int object)
  195. {
  196. if (object == OBJECT_NONE)
  197. return 0.0f;
  198. return kernel_tex_fetch(__objects, object).pass_id;
  199. }
  200. /* Per lamp random number for shader variation */
  201. ccl_device_inline float lamp_random_number(KernelGlobals *kg, int lamp)
  202. {
  203. if (lamp == LAMP_NONE)
  204. return 0.0f;
  205. return kernel_tex_fetch(__lights, lamp).random;
  206. }
  207. /* Per object random number for shader variation */
  208. ccl_device_inline float object_random_number(KernelGlobals *kg, int object)
  209. {
  210. if (object == OBJECT_NONE)
  211. return 0.0f;
  212. return kernel_tex_fetch(__objects, object).random_number;
  213. }
  214. /* Particle ID from which this object was generated */
  215. ccl_device_inline int object_particle_id(KernelGlobals *kg, int object)
  216. {
  217. if (object == OBJECT_NONE)
  218. return 0;
  219. return kernel_tex_fetch(__objects, object).particle_index;
  220. }
  221. /* Generated texture coordinate on surface from where object was instanced */
  222. ccl_device_inline float3 object_dupli_generated(KernelGlobals *kg, int object)
  223. {
  224. if (object == OBJECT_NONE)
  225. return make_float3(0.0f, 0.0f, 0.0f);
  226. const ccl_global KernelObject *kobject = &kernel_tex_fetch(__objects, object);
  227. return make_float3(
  228. kobject->dupli_generated[0], kobject->dupli_generated[1], kobject->dupli_generated[2]);
  229. }
  230. /* UV texture coordinate on surface from where object was instanced */
  231. ccl_device_inline float3 object_dupli_uv(KernelGlobals *kg, int object)
  232. {
  233. if (object == OBJECT_NONE)
  234. return make_float3(0.0f, 0.0f, 0.0f);
  235. const ccl_global KernelObject *kobject = &kernel_tex_fetch(__objects, object);
  236. return make_float3(kobject->dupli_uv[0], kobject->dupli_uv[1], 0.0f);
  237. }
  238. /* Information about mesh for motion blurred triangles and curves */
  239. ccl_device_inline void object_motion_info(
  240. KernelGlobals *kg, int object, int *numsteps, int *numverts, int *numkeys)
  241. {
  242. if (numkeys) {
  243. *numkeys = kernel_tex_fetch(__objects, object).numkeys;
  244. }
  245. if (numsteps)
  246. *numsteps = kernel_tex_fetch(__objects, object).numsteps;
  247. if (numverts)
  248. *numverts = kernel_tex_fetch(__objects, object).numverts;
  249. }
  250. /* Offset to an objects patch map */
  251. ccl_device_inline uint object_patch_map_offset(KernelGlobals *kg, int object)
  252. {
  253. if (object == OBJECT_NONE)
  254. return 0;
  255. return kernel_tex_fetch(__objects, object).patch_map_offset;
  256. }
  257. /* Pass ID for shader */
  258. ccl_device int shader_pass_id(KernelGlobals *kg, const ShaderData *sd)
  259. {
  260. return kernel_tex_fetch(__shaders, (sd->shader & SHADER_MASK)).pass_id;
  261. }
  262. /* Cryptomatte ID */
  263. ccl_device_inline float object_cryptomatte_id(KernelGlobals *kg, int object)
  264. {
  265. if (object == OBJECT_NONE)
  266. return 0.0f;
  267. return kernel_tex_fetch(__objects, object).cryptomatte_object;
  268. }
  269. ccl_device_inline float object_cryptomatte_asset_id(KernelGlobals *kg, int object)
  270. {
  271. if (object == OBJECT_NONE)
  272. return 0;
  273. return kernel_tex_fetch(__objects, object).cryptomatte_asset;
  274. }
  275. /* Particle data from which object was instanced */
  276. ccl_device_inline uint particle_index(KernelGlobals *kg, int particle)
  277. {
  278. return kernel_tex_fetch(__particles, particle).index;
  279. }
  280. ccl_device float particle_age(KernelGlobals *kg, int particle)
  281. {
  282. return kernel_tex_fetch(__particles, particle).age;
  283. }
  284. ccl_device float particle_lifetime(KernelGlobals *kg, int particle)
  285. {
  286. return kernel_tex_fetch(__particles, particle).lifetime;
  287. }
  288. ccl_device float particle_size(KernelGlobals *kg, int particle)
  289. {
  290. return kernel_tex_fetch(__particles, particle).size;
  291. }
  292. ccl_device float4 particle_rotation(KernelGlobals *kg, int particle)
  293. {
  294. return kernel_tex_fetch(__particles, particle).rotation;
  295. }
  296. ccl_device float3 particle_location(KernelGlobals *kg, int particle)
  297. {
  298. return float4_to_float3(kernel_tex_fetch(__particles, particle).location);
  299. }
  300. ccl_device float3 particle_velocity(KernelGlobals *kg, int particle)
  301. {
  302. return float4_to_float3(kernel_tex_fetch(__particles, particle).velocity);
  303. }
  304. ccl_device float3 particle_angular_velocity(KernelGlobals *kg, int particle)
  305. {
  306. return float4_to_float3(kernel_tex_fetch(__particles, particle).angular_velocity);
  307. }
  308. /* Object intersection in BVH */
  309. ccl_device_inline float3 bvh_clamp_direction(float3 dir)
  310. {
  311. /* clamp absolute values by exp2f(-80.0f) to avoid division by zero when calculating inverse
  312. * direction */
  313. #if defined(__KERNEL_SSE__) && defined(__KERNEL_SSE2__)
  314. const ssef oopes(8.271806E-25f, 8.271806E-25f, 8.271806E-25f, 0.0f);
  315. const ssef mask = _mm_cmpgt_ps(fabs(dir), oopes);
  316. const ssef signdir = signmsk(dir.m128) | oopes;
  317. # ifndef __KERNEL_AVX__
  318. ssef res = mask & ssef(dir);
  319. res = _mm_or_ps(res, _mm_andnot_ps(mask, signdir));
  320. # else
  321. ssef res = _mm_blendv_ps(signdir, dir, mask);
  322. # endif
  323. return float3(res);
  324. #else /* __KERNEL_SSE__ && __KERNEL_SSE2__ */
  325. const float ooeps = 8.271806E-25f;
  326. return make_float3((fabsf(dir.x) > ooeps) ? dir.x : copysignf(ooeps, dir.x),
  327. (fabsf(dir.y) > ooeps) ? dir.y : copysignf(ooeps, dir.y),
  328. (fabsf(dir.z) > ooeps) ? dir.z : copysignf(ooeps, dir.z));
  329. #endif /* __KERNEL_SSE__ && __KERNEL_SSE2__ */
  330. }
  331. ccl_device_inline float3 bvh_inverse_direction(float3 dir)
  332. {
  333. return rcp(dir);
  334. }
  335. /* Transform ray into object space to enter static object in BVH */
  336. ccl_device_inline float bvh_instance_push(
  337. KernelGlobals *kg, int object, const Ray *ray, float3 *P, float3 *dir, float3 *idir, float t)
  338. {
  339. Transform tfm = object_fetch_transform(kg, object, OBJECT_INVERSE_TRANSFORM);
  340. *P = transform_point(&tfm, ray->P);
  341. float len;
  342. *dir = bvh_clamp_direction(normalize_len(transform_direction(&tfm, ray->D), &len));
  343. *idir = bvh_inverse_direction(*dir);
  344. if (t != FLT_MAX) {
  345. t *= len;
  346. }
  347. return t;
  348. }
  349. #ifdef __QBVH__
  350. /* Same as above, but optimized for QBVH scene intersection,
  351. * which needs to modify two max distances.
  352. *
  353. * TODO(sergey): Investigate if passing NULL instead of t1 gets optimized
  354. * so we can avoid having this duplication.
  355. */
  356. ccl_device_inline void qbvh_instance_push(KernelGlobals *kg,
  357. int object,
  358. const Ray *ray,
  359. float3 *P,
  360. float3 *dir,
  361. float3 *idir,
  362. float *t,
  363. float *t1)
  364. {
  365. Transform tfm = object_fetch_transform(kg, object, OBJECT_INVERSE_TRANSFORM);
  366. *P = transform_point(&tfm, ray->P);
  367. float len;
  368. *dir = bvh_clamp_direction(normalize_len(transform_direction(&tfm, ray->D), &len));
  369. *idir = bvh_inverse_direction(*dir);
  370. if (*t != FLT_MAX)
  371. *t *= len;
  372. if (*t1 != -FLT_MAX)
  373. *t1 *= len;
  374. }
  375. #endif
  376. /* Transorm ray to exit static object in BVH */
  377. ccl_device_inline float bvh_instance_pop(
  378. KernelGlobals *kg, int object, const Ray *ray, float3 *P, float3 *dir, float3 *idir, float t)
  379. {
  380. if (t != FLT_MAX) {
  381. Transform tfm = object_fetch_transform(kg, object, OBJECT_INVERSE_TRANSFORM);
  382. t /= len(transform_direction(&tfm, ray->D));
  383. }
  384. *P = ray->P;
  385. *dir = bvh_clamp_direction(ray->D);
  386. *idir = bvh_inverse_direction(*dir);
  387. return t;
  388. }
  389. /* Same as above, but returns scale factor to apply to multiple intersection distances */
  390. ccl_device_inline void bvh_instance_pop_factor(KernelGlobals *kg,
  391. int object,
  392. const Ray *ray,
  393. float3 *P,
  394. float3 *dir,
  395. float3 *idir,
  396. float *t_fac)
  397. {
  398. Transform tfm = object_fetch_transform(kg, object, OBJECT_INVERSE_TRANSFORM);
  399. *t_fac = 1.0f / len(transform_direction(&tfm, ray->D));
  400. *P = ray->P;
  401. *dir = bvh_clamp_direction(ray->D);
  402. *idir = bvh_inverse_direction(*dir);
  403. }
  404. #ifdef __OBJECT_MOTION__
  405. /* Transform ray into object space to enter motion blurred object in BVH */
  406. ccl_device_inline float bvh_instance_motion_push(KernelGlobals *kg,
  407. int object,
  408. const Ray *ray,
  409. float3 *P,
  410. float3 *dir,
  411. float3 *idir,
  412. float t,
  413. Transform *itfm)
  414. {
  415. object_fetch_transform_motion_test(kg, object, ray->time, itfm);
  416. *P = transform_point(itfm, ray->P);
  417. float len;
  418. *dir = bvh_clamp_direction(normalize_len(transform_direction(itfm, ray->D), &len));
  419. *idir = bvh_inverse_direction(*dir);
  420. if (t != FLT_MAX) {
  421. t *= len;
  422. }
  423. return t;
  424. }
  425. # ifdef __QBVH__
  426. /* Same as above, but optimized for QBVH scene intersection,
  427. * which needs to modify two max distances.
  428. *
  429. * TODO(sergey): Investigate if passing NULL instead of t1 gets optimized
  430. * so we can avoid having this duplication.
  431. */
  432. ccl_device_inline void qbvh_instance_motion_push(KernelGlobals *kg,
  433. int object,
  434. const Ray *ray,
  435. float3 *P,
  436. float3 *dir,
  437. float3 *idir,
  438. float *t,
  439. float *t1,
  440. Transform *itfm)
  441. {
  442. object_fetch_transform_motion_test(kg, object, ray->time, itfm);
  443. *P = transform_point(itfm, ray->P);
  444. float len;
  445. *dir = bvh_clamp_direction(normalize_len(transform_direction(itfm, ray->D), &len));
  446. *idir = bvh_inverse_direction(*dir);
  447. if (*t != FLT_MAX)
  448. *t *= len;
  449. if (*t1 != -FLT_MAX)
  450. *t1 *= len;
  451. }
  452. # endif
  453. /* Transorm ray to exit motion blurred object in BVH */
  454. ccl_device_inline float bvh_instance_motion_pop(KernelGlobals *kg,
  455. int object,
  456. const Ray *ray,
  457. float3 *P,
  458. float3 *dir,
  459. float3 *idir,
  460. float t,
  461. Transform *itfm)
  462. {
  463. if (t != FLT_MAX) {
  464. t /= len(transform_direction(itfm, ray->D));
  465. }
  466. *P = ray->P;
  467. *dir = bvh_clamp_direction(ray->D);
  468. *idir = bvh_inverse_direction(*dir);
  469. return t;
  470. }
  471. /* Same as above, but returns scale factor to apply to multiple intersection distances */
  472. ccl_device_inline void bvh_instance_motion_pop_factor(KernelGlobals *kg,
  473. int object,
  474. const Ray *ray,
  475. float3 *P,
  476. float3 *dir,
  477. float3 *idir,
  478. float *t_fac,
  479. Transform *itfm)
  480. {
  481. *t_fac = 1.0f / len(transform_direction(itfm, ray->D));
  482. *P = ray->P;
  483. *dir = bvh_clamp_direction(ray->D);
  484. *idir = bvh_inverse_direction(*dir);
  485. }
  486. #endif
  487. /* TODO(sergey): This is only for until we've got OpenCL 2.0
  488. * on all devices we consider supported. It'll be replaced with
  489. * generic address space.
  490. */
  491. #ifdef __KERNEL_OPENCL__
  492. ccl_device_inline void object_position_transform_addrspace(KernelGlobals *kg,
  493. const ShaderData *sd,
  494. ccl_addr_space float3 *P)
  495. {
  496. float3 private_P = *P;
  497. object_position_transform(kg, sd, &private_P);
  498. *P = private_P;
  499. }
  500. ccl_device_inline void object_dir_transform_addrspace(KernelGlobals *kg,
  501. const ShaderData *sd,
  502. ccl_addr_space float3 *D)
  503. {
  504. float3 private_D = *D;
  505. object_dir_transform(kg, sd, &private_D);
  506. *D = private_D;
  507. }
  508. ccl_device_inline void object_normal_transform_addrspace(KernelGlobals *kg,
  509. const ShaderData *sd,
  510. ccl_addr_space float3 *N)
  511. {
  512. float3 private_N = *N;
  513. object_normal_transform(kg, sd, &private_N);
  514. *N = private_N;
  515. }
  516. #endif
  517. #ifndef __KERNEL_OPENCL__
  518. # define object_position_transform_auto object_position_transform
  519. # define object_dir_transform_auto object_dir_transform
  520. # define object_normal_transform_auto object_normal_transform
  521. #else
  522. # define object_position_transform_auto object_position_transform_addrspace
  523. # define object_dir_transform_auto object_dir_transform_addrspace
  524. # define object_normal_transform_auto object_normal_transform_addrspace
  525. #endif
  526. CCL_NAMESPACE_END