123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498 |
- /*
- * Copyright 2011-2013 Blender Foundation
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #ifndef __KERNEL_BSSRDF_H__
- #define __KERNEL_BSSRDF_H__
- CCL_NAMESPACE_BEGIN
- typedef ccl_addr_space struct Bssrdf {
- SHADER_CLOSURE_BASE;
- float3 radius;
- float3 albedo;
- float sharpness;
- float texture_blur;
- float roughness;
- float channels;
- } Bssrdf;
- static_assert(sizeof(ShaderClosure) >= sizeof(Bssrdf), "Bssrdf is too large!");
- /* Planar Truncated Gaussian
- *
- * Note how this is different from the typical gaussian, this one integrates
- * to 1 over the plane (where you get an extra 2*pi*x factor). We are lucky
- * that integrating x*exp(-x) gives a nice closed form solution. */
- /* paper suggests 1/12.46 which is much too small, suspect it's *12.46 */
- #define GAUSS_TRUNCATE 12.46f
- ccl_device float bssrdf_gaussian_eval(const float radius, float r)
- {
- /* integrate (2*pi*r * exp(-r*r/(2*v)))/(2*pi*v)) from 0 to Rm
- * = 1 - exp(-Rm*Rm/(2*v)) */
- const float v = radius * radius * (0.25f * 0.25f);
- const float Rm = sqrtf(v * GAUSS_TRUNCATE);
- if (r >= Rm)
- return 0.0f;
- return expf(-r * r / (2.0f * v)) / (2.0f * M_PI_F * v);
- }
- ccl_device float bssrdf_gaussian_pdf(const float radius, float r)
- {
- /* 1.0 - expf(-Rm*Rm/(2*v)) simplified */
- const float area_truncated = 1.0f - expf(-0.5f * GAUSS_TRUNCATE);
- return bssrdf_gaussian_eval(radius, r) * (1.0f / (area_truncated));
- }
- ccl_device void bssrdf_gaussian_sample(const float radius, float xi, float *r, float *h)
- {
- /* xi = integrate (2*pi*r * exp(-r*r/(2*v)))/(2*pi*v)) = -exp(-r^2/(2*v))
- * r = sqrt(-2*v*logf(xi)) */
- const float v = radius * radius * (0.25f * 0.25f);
- const float Rm = sqrtf(v * GAUSS_TRUNCATE);
- /* 1.0 - expf(-Rm*Rm/(2*v)) simplified */
- const float area_truncated = 1.0f - expf(-0.5f * GAUSS_TRUNCATE);
- /* r(xi) */
- const float r_squared = -2.0f * v * logf(1.0f - xi * area_truncated);
- *r = sqrtf(r_squared);
- /* h^2 + r^2 = Rm^2 */
- *h = safe_sqrtf(Rm * Rm - r_squared);
- }
- /* Planar Cubic BSSRDF falloff
- *
- * This is basically (Rm - x)^3, with some factors to normalize it. For sampling
- * we integrate 2*pi*x * (Rm - x)^3, which gives us a quintic equation that as
- * far as I can tell has no closed form solution. So we get an iterative solution
- * instead with newton-raphson. */
- ccl_device float bssrdf_cubic_eval(const float radius, const float sharpness, float r)
- {
- if (sharpness == 0.0f) {
- const float Rm = radius;
- if (r >= Rm)
- return 0.0f;
- /* integrate (2*pi*r * 10*(R - r)^3)/(pi * R^5) from 0 to R = 1 */
- const float Rm5 = (Rm * Rm) * (Rm * Rm) * Rm;
- const float f = Rm - r;
- const float num = f * f * f;
- return (10.0f * num) / (Rm5 * M_PI_F);
- }
- else {
- float Rm = radius * (1.0f + sharpness);
- if (r >= Rm)
- return 0.0f;
- /* custom variation with extra sharpness, to match the previous code */
- const float y = 1.0f / (1.0f + sharpness);
- float Rmy, ry, ryinv;
- if (sharpness == 1.0f) {
- Rmy = sqrtf(Rm);
- ry = sqrtf(r);
- ryinv = (ry > 0.0f) ? 1.0f / ry : 0.0f;
- }
- else {
- Rmy = powf(Rm, y);
- ry = powf(r, y);
- ryinv = (r > 0.0f) ? powf(r, y - 1.0f) : 0.0f;
- }
- const float Rmy5 = (Rmy * Rmy) * (Rmy * Rmy) * Rmy;
- const float f = Rmy - ry;
- const float num = f * (f * f) * (y * ryinv);
- return (10.0f * num) / (Rmy5 * M_PI_F);
- }
- }
- ccl_device float bssrdf_cubic_pdf(const float radius, const float sharpness, float r)
- {
- return bssrdf_cubic_eval(radius, sharpness, r);
- }
- /* solve 10x^2 - 20x^3 + 15x^4 - 4x^5 - xi == 0 */
- ccl_device_forceinline float bssrdf_cubic_quintic_root_find(float xi)
- {
- /* newton-raphson iteration, usually succeeds in 2-4 iterations, except
- * outside 0.02 ... 0.98 where it can go up to 10, so overall performance
- * should not be too bad */
- const float tolerance = 1e-6f;
- const int max_iteration_count = 10;
- float x = 0.25f;
- int i;
- for (i = 0; i < max_iteration_count; i++) {
- float x2 = x * x;
- float x3 = x2 * x;
- float nx = (1.0f - x);
- float f = 10.0f * x2 - 20.0f * x3 + 15.0f * x2 * x2 - 4.0f * x2 * x3 - xi;
- float f_ = 20.0f * (x * nx) * (nx * nx);
- if (fabsf(f) < tolerance || f_ == 0.0f)
- break;
- x = saturate(x - f / f_);
- }
- return x;
- }
- ccl_device void bssrdf_cubic_sample(
- const float radius, const float sharpness, float xi, float *r, float *h)
- {
- float Rm = radius;
- float r_ = bssrdf_cubic_quintic_root_find(xi);
- if (sharpness != 0.0f) {
- r_ = powf(r_, 1.0f + sharpness);
- Rm *= (1.0f + sharpness);
- }
- r_ *= Rm;
- *r = r_;
- /* h^2 + r^2 = Rm^2 */
- *h = safe_sqrtf(Rm * Rm - r_ * r_);
- }
- /* Approximate Reflectance Profiles
- * http://graphics.pixar.com/library/ApproxBSSRDF/paper.pdf
- */
- /* This is a bit arbitrary, just need big enough radius so it matches
- * the mean free length, but still not too big so sampling is still
- * effective. Might need some further tweaks.
- */
- #define BURLEY_TRUNCATE 16.0f
- #define BURLEY_TRUNCATE_CDF 0.9963790093708328f // cdf(BURLEY_TRUNCATE)
- ccl_device_inline float bssrdf_burley_fitting(float A)
- {
- /* Diffuse surface transmission, equation (6). */
- return 1.9f - A + 3.5f * (A - 0.8f) * (A - 0.8f);
- }
- /* Scale mean free path length so it gives similar looking result
- * to Cubic and Gaussian models.
- */
- ccl_device_inline float3 bssrdf_burley_compatible_mfp(float3 r)
- {
- return 0.25f * M_1_PI_F * r;
- }
- ccl_device void bssrdf_burley_setup(Bssrdf *bssrdf)
- {
- /* Mean free path length. */
- const float3 l = bssrdf_burley_compatible_mfp(bssrdf->radius);
- /* Surface albedo. */
- const float3 A = bssrdf->albedo;
- const float3 s = make_float3(
- bssrdf_burley_fitting(A.x), bssrdf_burley_fitting(A.y), bssrdf_burley_fitting(A.z));
- bssrdf->radius = l / s;
- }
- ccl_device float bssrdf_burley_eval(const float d, float r)
- {
- const float Rm = BURLEY_TRUNCATE * d;
- if (r >= Rm)
- return 0.0f;
- /* Burley reflectance profile, equation (3).
- *
- * NOTES:
- * - Surface albedo is already included into sc->weight, no need to
- * multiply by this term here.
- * - This is normalized diffuse model, so the equation is mutliplied
- * by 2*pi, which also matches cdf().
- */
- float exp_r_3_d = expf(-r / (3.0f * d));
- float exp_r_d = exp_r_3_d * exp_r_3_d * exp_r_3_d;
- return (exp_r_d + exp_r_3_d) / (4.0f * d);
- }
- ccl_device float bssrdf_burley_pdf(const float d, float r)
- {
- return bssrdf_burley_eval(d, r) * (1.0f / BURLEY_TRUNCATE_CDF);
- }
- /* Find the radius for desired CDF value.
- * Returns scaled radius, meaning the result is to be scaled up by d.
- * Since there's no closed form solution we do Newton-Raphson method to find it.
- */
- ccl_device_forceinline float bssrdf_burley_root_find(float xi)
- {
- const float tolerance = 1e-6f;
- const int max_iteration_count = 10;
- /* Do initial guess based on manual curve fitting, this allows us to reduce
- * number of iterations to maximum 4 across the [0..1] range. We keep maximum
- * number of iteration higher just to be sure we didn't miss root in some
- * corner case.
- */
- float r;
- if (xi <= 0.9f) {
- r = expf(xi * xi * 2.4f) - 1.0f;
- }
- else {
- /* TODO(sergey): Some nicer curve fit is possible here. */
- r = 15.0f;
- }
- /* Solve against scaled radius. */
- for (int i = 0; i < max_iteration_count; i++) {
- float exp_r_3 = expf(-r / 3.0f);
- float exp_r = exp_r_3 * exp_r_3 * exp_r_3;
- float f = 1.0f - 0.25f * exp_r - 0.75f * exp_r_3 - xi;
- float f_ = 0.25f * exp_r + 0.25f * exp_r_3;
- if (fabsf(f) < tolerance || f_ == 0.0f) {
- break;
- }
- r = r - f / f_;
- if (r < 0.0f) {
- r = 0.0f;
- }
- }
- return r;
- }
- ccl_device void bssrdf_burley_sample(const float d, float xi, float *r, float *h)
- {
- const float Rm = BURLEY_TRUNCATE * d;
- const float r_ = bssrdf_burley_root_find(xi * BURLEY_TRUNCATE_CDF) * d;
- *r = r_;
- /* h^2 + r^2 = Rm^2 */
- *h = safe_sqrtf(Rm * Rm - r_ * r_);
- }
- /* None BSSRDF falloff
- *
- * Samples distributed over disk with no falloff, for reference. */
- ccl_device float bssrdf_none_eval(const float radius, float r)
- {
- const float Rm = radius;
- return (r < Rm) ? 1.0f : 0.0f;
- }
- ccl_device float bssrdf_none_pdf(const float radius, float r)
- {
- /* integrate (2*pi*r)/(pi*Rm*Rm) from 0 to Rm = 1 */
- const float Rm = radius;
- const float area = (M_PI_F * Rm * Rm);
- return bssrdf_none_eval(radius, r) / area;
- }
- ccl_device void bssrdf_none_sample(const float radius, float xi, float *r, float *h)
- {
- /* xi = integrate (2*pi*r)/(pi*Rm*Rm) = r^2/Rm^2
- * r = sqrt(xi)*Rm */
- const float Rm = radius;
- const float r_ = sqrtf(xi) * Rm;
- *r = r_;
- /* h^2 + r^2 = Rm^2 */
- *h = safe_sqrtf(Rm * Rm - r_ * r_);
- }
- /* Generic */
- ccl_device_inline Bssrdf *bssrdf_alloc(ShaderData *sd, float3 weight)
- {
- Bssrdf *bssrdf = (Bssrdf *)closure_alloc(sd, sizeof(Bssrdf), CLOSURE_NONE_ID, weight);
- if (bssrdf == NULL) {
- return NULL;
- }
- float sample_weight = fabsf(average(weight));
- bssrdf->sample_weight = sample_weight;
- return (sample_weight >= CLOSURE_WEIGHT_CUTOFF) ? bssrdf : NULL;
- }
- ccl_device int bssrdf_setup(ShaderData *sd, Bssrdf *bssrdf, ClosureType type)
- {
- int flag = 0;
- int bssrdf_channels = 3;
- float3 diffuse_weight = make_float3(0.0f, 0.0f, 0.0f);
- /* Verify if the radii are large enough to sample without precision issues. */
- if (bssrdf->radius.x < BSSRDF_MIN_RADIUS) {
- diffuse_weight.x = bssrdf->weight.x;
- bssrdf->weight.x = 0.0f;
- bssrdf->radius.x = 0.0f;
- bssrdf_channels--;
- }
- if (bssrdf->radius.y < BSSRDF_MIN_RADIUS) {
- diffuse_weight.y = bssrdf->weight.y;
- bssrdf->weight.y = 0.0f;
- bssrdf->radius.y = 0.0f;
- bssrdf_channels--;
- }
- if (bssrdf->radius.z < BSSRDF_MIN_RADIUS) {
- diffuse_weight.z = bssrdf->weight.z;
- bssrdf->weight.z = 0.0f;
- bssrdf->radius.z = 0.0f;
- bssrdf_channels--;
- }
- if (bssrdf_channels < 3) {
- /* Add diffuse BSDF if any radius too small. */
- #ifdef __PRINCIPLED__
- if (type == CLOSURE_BSSRDF_PRINCIPLED_ID || type == CLOSURE_BSSRDF_PRINCIPLED_RANDOM_WALK_ID) {
- float roughness = bssrdf->roughness;
- float3 N = bssrdf->N;
- PrincipledDiffuseBsdf *bsdf = (PrincipledDiffuseBsdf *)bsdf_alloc(
- sd, sizeof(PrincipledDiffuseBsdf), diffuse_weight);
- if (bsdf) {
- bsdf->type = CLOSURE_BSDF_BSSRDF_PRINCIPLED_ID;
- bsdf->N = N;
- bsdf->roughness = roughness;
- flag |= bsdf_principled_diffuse_setup(bsdf);
- }
- }
- else
- #endif /* __PRINCIPLED__ */
- {
- DiffuseBsdf *bsdf = (DiffuseBsdf *)bsdf_alloc(sd, sizeof(DiffuseBsdf), diffuse_weight);
- if (bsdf) {
- bsdf->type = CLOSURE_BSDF_BSSRDF_ID;
- bsdf->N = bssrdf->N;
- flag |= bsdf_diffuse_setup(bsdf);
- }
- }
- }
- /* Setup BSSRDF if radius is large enough. */
- if (bssrdf_channels > 0) {
- bssrdf->type = type;
- bssrdf->channels = bssrdf_channels;
- bssrdf->sample_weight = fabsf(average(bssrdf->weight)) * bssrdf->channels;
- bssrdf->texture_blur = saturate(bssrdf->texture_blur);
- bssrdf->sharpness = saturate(bssrdf->sharpness);
- if (type == CLOSURE_BSSRDF_BURLEY_ID || type == CLOSURE_BSSRDF_PRINCIPLED_ID ||
- type == CLOSURE_BSSRDF_RANDOM_WALK_ID ||
- type == CLOSURE_BSSRDF_PRINCIPLED_RANDOM_WALK_ID) {
- bssrdf_burley_setup(bssrdf);
- }
- flag |= SD_BSSRDF;
- }
- else {
- bssrdf->type = type;
- bssrdf->sample_weight = 0.0f;
- }
- return flag;
- }
- ccl_device void bssrdf_sample(const ShaderClosure *sc, float xi, float *r, float *h)
- {
- const Bssrdf *bssrdf = (const Bssrdf *)sc;
- float radius;
- /* Sample color channel and reuse random number. Only a subset of channels
- * may be used if their radius was too small to handle as BSSRDF. */
- xi *= bssrdf->channels;
- if (xi < 1.0f) {
- radius = (bssrdf->radius.x > 0.0f) ?
- bssrdf->radius.x :
- (bssrdf->radius.y > 0.0f) ? bssrdf->radius.y : bssrdf->radius.z;
- }
- else if (xi < 2.0f) {
- xi -= 1.0f;
- radius = (bssrdf->radius.x > 0.0f) ? bssrdf->radius.y : bssrdf->radius.z;
- }
- else {
- xi -= 2.0f;
- radius = bssrdf->radius.z;
- }
- /* Sample BSSRDF. */
- if (bssrdf->type == CLOSURE_BSSRDF_CUBIC_ID) {
- bssrdf_cubic_sample(radius, bssrdf->sharpness, xi, r, h);
- }
- else if (bssrdf->type == CLOSURE_BSSRDF_GAUSSIAN_ID) {
- bssrdf_gaussian_sample(radius, xi, r, h);
- }
- else { /* if (bssrdf->type == CLOSURE_BSSRDF_BURLEY_ID ||
- * bssrdf->type == CLOSURE_BSSRDF_PRINCIPLED_ID) */
- bssrdf_burley_sample(radius, xi, r, h);
- }
- }
- ccl_device float bssrdf_channel_pdf(const Bssrdf *bssrdf, float radius, float r)
- {
- if (radius == 0.0f) {
- return 0.0f;
- }
- else if (bssrdf->type == CLOSURE_BSSRDF_CUBIC_ID) {
- return bssrdf_cubic_pdf(radius, bssrdf->sharpness, r);
- }
- else if (bssrdf->type == CLOSURE_BSSRDF_GAUSSIAN_ID) {
- return bssrdf_gaussian_pdf(radius, r);
- }
- else { /* if (bssrdf->type == CLOSURE_BSSRDF_BURLEY_ID ||
- * bssrdf->type == CLOSURE_BSSRDF_PRINCIPLED_ID)*/
- return bssrdf_burley_pdf(radius, r);
- }
- }
- ccl_device_forceinline float3 bssrdf_eval(const ShaderClosure *sc, float r)
- {
- const Bssrdf *bssrdf = (const Bssrdf *)sc;
- return make_float3(bssrdf_channel_pdf(bssrdf, bssrdf->radius.x, r),
- bssrdf_channel_pdf(bssrdf, bssrdf->radius.y, r),
- bssrdf_channel_pdf(bssrdf, bssrdf->radius.z, r));
- }
- ccl_device_forceinline float bssrdf_pdf(const ShaderClosure *sc, float r)
- {
- const Bssrdf *bssrdf = (const Bssrdf *)sc;
- float3 pdf = bssrdf_eval(sc, r);
- return (pdf.x + pdf.y + pdf.z) / bssrdf->channels;
- }
- CCL_NAMESPACE_END
- #endif /* __KERNEL_BSSRDF_H__ */
|