123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771 |
- /*
- * Copyright 2011-2016 Blender Foundation
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- CCL_NAMESPACE_BEGIN
- /* Most of the code is based on the supplemental implementations from
- * https://eheitzresearch.wordpress.com/240-2/. */
- /* === GGX Microfacet distribution functions === */
- /* Isotropic GGX microfacet distribution */
- ccl_device_forceinline float D_ggx(float3 wm, float alpha)
- {
- wm.z *= wm.z;
- alpha *= alpha;
- float tmp = (1.0f - wm.z) + alpha * wm.z;
- return alpha / max(M_PI_F * tmp * tmp, 1e-7f);
- }
- /* Anisotropic GGX microfacet distribution */
- ccl_device_forceinline float D_ggx_aniso(const float3 wm, const float2 alpha)
- {
- float slope_x = -wm.x / alpha.x;
- float slope_y = -wm.y / alpha.y;
- float tmp = wm.z * wm.z + slope_x * slope_x + slope_y * slope_y;
- return 1.0f / max(M_PI_F * tmp * tmp * alpha.x * alpha.y, 1e-7f);
- }
- /* Sample slope distribution (based on page 14 of the supplemental implementation). */
- ccl_device_forceinline float2 mf_sampleP22_11(const float cosI,
- const float randx,
- const float randy)
- {
- if (cosI > 0.9999f || fabsf(cosI) < 1e-6f) {
- const float r = sqrtf(randx / max(1.0f - randx, 1e-7f));
- const float phi = M_2PI_F * randy;
- return make_float2(r * cosf(phi), r * sinf(phi));
- }
- const float sinI = safe_sqrtf(1.0f - cosI * cosI);
- const float tanI = sinI / cosI;
- const float projA = 0.5f * (cosI + 1.0f);
- if (projA < 0.0001f)
- return make_float2(0.0f, 0.0f);
- const float A = 2.0f * randx * projA / cosI - 1.0f;
- float tmp = A * A - 1.0f;
- if (fabsf(tmp) < 1e-7f)
- return make_float2(0.0f, 0.0f);
- tmp = 1.0f / tmp;
- const float D = safe_sqrtf(tanI * tanI * tmp * tmp - (A * A - tanI * tanI) * tmp);
- const float slopeX2 = tanI * tmp + D;
- const float slopeX = (A < 0.0f || slopeX2 > 1.0f / tanI) ? (tanI * tmp - D) : slopeX2;
- float U2;
- if (randy >= 0.5f)
- U2 = 2.0f * (randy - 0.5f);
- else
- U2 = 2.0f * (0.5f - randy);
- const float z = (U2 * (U2 * (U2 * 0.27385f - 0.73369f) + 0.46341f)) /
- (U2 * (U2 * (U2 * 0.093073f + 0.309420f) - 1.0f) + 0.597999f);
- const float slopeY = z * sqrtf(1.0f + slopeX * slopeX);
- if (randy >= 0.5f)
- return make_float2(slopeX, slopeY);
- else
- return make_float2(slopeX, -slopeY);
- }
- /* Visible normal sampling for the GGX distribution
- * (based on page 7 of the supplemental implementation). */
- ccl_device_forceinline float3 mf_sample_vndf(const float3 wi,
- const float2 alpha,
- const float randx,
- const float randy)
- {
- const float3 wi_11 = normalize(make_float3(alpha.x * wi.x, alpha.y * wi.y, wi.z));
- const float2 slope_11 = mf_sampleP22_11(wi_11.z, randx, randy);
- const float3 cossin_phi = safe_normalize(make_float3(wi_11.x, wi_11.y, 0.0f));
- const float slope_x = alpha.x * (cossin_phi.x * slope_11.x - cossin_phi.y * slope_11.y);
- const float slope_y = alpha.y * (cossin_phi.y * slope_11.x + cossin_phi.x * slope_11.y);
- kernel_assert(isfinite(slope_x));
- return normalize(make_float3(-slope_x, -slope_y, 1.0f));
- }
- /* === Phase functions: Glossy and Glass === */
- /* Phase function for reflective materials. */
- ccl_device_forceinline float3 mf_sample_phase_glossy(const float3 wi,
- float3 *weight,
- const float3 wm)
- {
- return -wi + 2.0f * wm * dot(wi, wm);
- }
- ccl_device_forceinline float3 mf_eval_phase_glossy(const float3 w,
- const float lambda,
- const float3 wo,
- const float2 alpha)
- {
- if (w.z > 0.9999f)
- return make_float3(0.0f, 0.0f, 0.0f);
- const float3 wh = normalize(wo - w);
- if (wh.z < 0.0f)
- return make_float3(0.0f, 0.0f, 0.0f);
- float pArea = (w.z < -0.9999f) ? 1.0f : lambda * w.z;
- const float dotW_WH = dot(-w, wh);
- if (dotW_WH < 0.0f)
- return make_float3(0.0f, 0.0f, 0.0f);
- float phase = max(0.0f, dotW_WH) * 0.25f / max(pArea * dotW_WH, 1e-7f);
- if (alpha.x == alpha.y)
- phase *= D_ggx(wh, alpha.x);
- else
- phase *= D_ggx_aniso(wh, alpha);
- return make_float3(phase, phase, phase);
- }
- /* Phase function for dielectric transmissive materials, including both reflection and refraction
- * according to the dielectric fresnel term. */
- ccl_device_forceinline float3 mf_sample_phase_glass(
- const float3 wi, const float eta, const float3 wm, const float randV, bool *outside)
- {
- float cosI = dot(wi, wm);
- float f = fresnel_dielectric_cos(cosI, eta);
- if (randV < f) {
- *outside = true;
- return -wi + 2.0f * wm * cosI;
- }
- *outside = false;
- float inv_eta = 1.0f / eta;
- float cosT = -safe_sqrtf(1.0f - (1.0f - cosI * cosI) * inv_eta * inv_eta);
- return normalize(wm * (cosI * inv_eta + cosT) - wi * inv_eta);
- }
- ccl_device_forceinline float3 mf_eval_phase_glass(const float3 w,
- const float lambda,
- const float3 wo,
- const bool wo_outside,
- const float2 alpha,
- const float eta)
- {
- if (w.z > 0.9999f)
- return make_float3(0.0f, 0.0f, 0.0f);
- float pArea = (w.z < -0.9999f) ? 1.0f : lambda * w.z;
- float v;
- if (wo_outside) {
- const float3 wh = normalize(wo - w);
- if (wh.z < 0.0f)
- return make_float3(0.0f, 0.0f, 0.0f);
- const float dotW_WH = dot(-w, wh);
- v = fresnel_dielectric_cos(dotW_WH, eta) * max(0.0f, dotW_WH) * D_ggx(wh, alpha.x) * 0.25f /
- (pArea * dotW_WH);
- }
- else {
- float3 wh = normalize(wo * eta - w);
- if (wh.z < 0.0f)
- wh = -wh;
- const float dotW_WH = dot(-w, wh), dotWO_WH = dot(wo, wh);
- if (dotW_WH < 0.0f)
- return make_float3(0.0f, 0.0f, 0.0f);
- float temp = dotW_WH + eta * dotWO_WH;
- v = (1.0f - fresnel_dielectric_cos(dotW_WH, eta)) * max(0.0f, dotW_WH) * max(0.0f, -dotWO_WH) *
- D_ggx(wh, alpha.x) / (pArea * temp * temp);
- }
- return make_float3(v, v, v);
- }
- /* === Utility functions for the random walks === */
- /* Smith Lambda function for GGX (based on page 12 of the supplemental implementation). */
- ccl_device_forceinline float mf_lambda(const float3 w, const float2 alpha)
- {
- if (w.z > 0.9999f)
- return 0.0f;
- else if (w.z < -0.9999f)
- return -0.9999f;
- const float inv_wz2 = 1.0f / max(w.z * w.z, 1e-7f);
- const float2 wa = make_float2(w.x, w.y) * alpha;
- float v = sqrtf(1.0f + dot(wa, wa) * inv_wz2);
- if (w.z <= 0.0f)
- v = -v;
- return 0.5f * (v - 1.0f);
- }
- /* Height distribution CDF (based on page 4 of the supplemental implementation). */
- ccl_device_forceinline float mf_invC1(const float h)
- {
- return 2.0f * saturate(h) - 1.0f;
- }
- ccl_device_forceinline float mf_C1(const float h)
- {
- return saturate(0.5f * (h + 1.0f));
- }
- /* Masking function (based on page 16 of the supplemental implementation). */
- ccl_device_forceinline float mf_G1(const float3 w, const float C1, const float lambda)
- {
- if (w.z > 0.9999f)
- return 1.0f;
- if (w.z < 1e-5f)
- return 0.0f;
- return powf(C1, lambda);
- }
- /* Sampling from the visible height distribution (based on page 17 of the supplemental
- * implementation). */
- ccl_device_forceinline bool mf_sample_height(
- const float3 w, float *h, float *C1, float *G1, float *lambda, const float U)
- {
- if (w.z > 0.9999f)
- return false;
- if (w.z < -0.9999f) {
- *C1 *= U;
- *h = mf_invC1(*C1);
- *G1 = mf_G1(w, *C1, *lambda);
- }
- else if (fabsf(w.z) >= 0.0001f) {
- if (U > 1.0f - *G1)
- return false;
- if (*lambda >= 0.0f) {
- *C1 = 1.0f;
- }
- else {
- *C1 *= powf(1.0f - U, -1.0f / *lambda);
- }
- *h = mf_invC1(*C1);
- *G1 = mf_G1(w, *C1, *lambda);
- }
- return true;
- }
- /* === PDF approximations for the different phase functions. ===
- * As explained in bsdf_microfacet_multi_impl.h, using approximations with MIS still produces an
- * unbiased result. */
- /* Approximation for the albedo of the single-scattering GGX distribution,
- * the missing energy is then approximated as a diffuse reflection for the PDF. */
- ccl_device_forceinline float mf_ggx_albedo(float r)
- {
- float albedo = 0.806495f * expf(-1.98712f * r * r) + 0.199531f;
- albedo -= ((((((1.76741f * r - 8.43891f) * r + 15.784f) * r - 14.398f) * r + 6.45221f) * r -
- 1.19722f) *
- r +
- 0.027803f) *
- r +
- 0.00568739f;
- return saturate(albedo);
- }
- ccl_device_inline float mf_ggx_transmission_albedo(float a, float ior)
- {
- if (ior < 1.0f) {
- ior = 1.0f / ior;
- }
- a = saturate(a);
- ior = clamp(ior, 1.0f, 3.0f);
- float I_1 = 0.0476898f * expf(-0.978352f * (ior - 0.65657f) * (ior - 0.65657f)) -
- 0.033756f * ior + 0.993261f;
- float R_1 = (((0.116991f * a - 0.270369f) * a + 0.0501366f) * a - 0.00411511f) * a + 1.00008f;
- float I_2 = (((-2.08704f * ior + 26.3298f) * ior - 127.906f) * ior + 292.958f) * ior - 287.946f +
- 199.803f / (ior * ior) - 101.668f / (ior * ior * ior);
- float R_2 = ((((5.3725f * a - 24.9307f) * a + 22.7437f) * a - 3.40751f) * a + 0.0986325f) * a +
- 0.00493504f;
- return saturate(1.0f + I_2 * R_2 * 0.0019127f - (1.0f - I_1) * (1.0f - R_1) * 9.3205f);
- }
- ccl_device_forceinline float mf_ggx_pdf(const float3 wi, const float3 wo, const float alpha)
- {
- float D = D_ggx(normalize(wi + wo), alpha);
- float lambda = mf_lambda(wi, make_float2(alpha, alpha));
- float singlescatter = 0.25f * D / max((1.0f + lambda) * wi.z, 1e-7f);
- float multiscatter = wo.z * M_1_PI_F;
- float albedo = mf_ggx_albedo(alpha);
- return albedo * singlescatter + (1.0f - albedo) * multiscatter;
- }
- ccl_device_forceinline float mf_ggx_aniso_pdf(const float3 wi, const float3 wo, const float2 alpha)
- {
- float D = D_ggx_aniso(normalize(wi + wo), alpha);
- float lambda = mf_lambda(wi, alpha);
- float singlescatter = 0.25f * D / max((1.0f + lambda) * wi.z, 1e-7f);
- float multiscatter = wo.z * M_1_PI_F;
- float albedo = mf_ggx_albedo(sqrtf(alpha.x * alpha.y));
- return albedo * singlescatter + (1.0f - albedo) * multiscatter;
- }
- ccl_device_forceinline float mf_glass_pdf(const float3 wi,
- const float3 wo,
- const float alpha,
- const float eta)
- {
- bool reflective = (wi.z * wo.z > 0.0f);
- float wh_len;
- float3 wh = normalize_len(wi + (reflective ? wo : (wo * eta)), &wh_len);
- if (wh.z < 0.0f)
- wh = -wh;
- float3 r_wi = (wi.z < 0.0f) ? -wi : wi;
- float lambda = mf_lambda(r_wi, make_float2(alpha, alpha));
- float D = D_ggx(wh, alpha);
- float fresnel = fresnel_dielectric_cos(dot(r_wi, wh), eta);
- float multiscatter = fabsf(wo.z * M_1_PI_F);
- if (reflective) {
- float singlescatter = 0.25f * D / max((1.0f + lambda) * r_wi.z, 1e-7f);
- float albedo = mf_ggx_albedo(alpha);
- return fresnel * (albedo * singlescatter + (1.0f - albedo) * multiscatter);
- }
- else {
- float singlescatter = fabsf(dot(r_wi, wh) * dot(wo, wh) * D * eta * eta /
- max((1.0f + lambda) * r_wi.z * wh_len * wh_len, 1e-7f));
- float albedo = mf_ggx_transmission_albedo(alpha, eta);
- return (1.0f - fresnel) * (albedo * singlescatter + (1.0f - albedo) * multiscatter);
- }
- }
- /* === Actual random walk implementations === */
- /* One version of mf_eval and mf_sample per phase function. */
- #define MF_NAME_JOIN(x, y) x##_##y
- #define MF_NAME_EVAL(x, y) MF_NAME_JOIN(x, y)
- #define MF_FUNCTION_FULL_NAME(prefix) MF_NAME_EVAL(prefix, MF_PHASE_FUNCTION)
- #define MF_PHASE_FUNCTION glass
- #define MF_MULTI_GLASS
- #include "kernel/closure/bsdf_microfacet_multi_impl.h"
- #define MF_PHASE_FUNCTION glossy
- #define MF_MULTI_GLOSSY
- #include "kernel/closure/bsdf_microfacet_multi_impl.h"
- ccl_device void bsdf_microfacet_multi_ggx_blur(ShaderClosure *sc, float roughness)
- {
- MicrofacetBsdf *bsdf = (MicrofacetBsdf *)sc;
- bsdf->alpha_x = fmaxf(roughness, bsdf->alpha_x);
- bsdf->alpha_y = fmaxf(roughness, bsdf->alpha_y);
- }
- /* === Closure implementations === */
- /* Multiscattering GGX Glossy closure */
- ccl_device int bsdf_microfacet_multi_ggx_common_setup(MicrofacetBsdf *bsdf)
- {
- bsdf->alpha_x = clamp(bsdf->alpha_x, 1e-4f, 1.0f);
- bsdf->alpha_y = clamp(bsdf->alpha_y, 1e-4f, 1.0f);
- bsdf->extra->color.x = saturate(bsdf->extra->color.x);
- bsdf->extra->color.y = saturate(bsdf->extra->color.y);
- bsdf->extra->color.z = saturate(bsdf->extra->color.z);
- bsdf->extra->cspec0.x = saturate(bsdf->extra->cspec0.x);
- bsdf->extra->cspec0.y = saturate(bsdf->extra->cspec0.y);
- bsdf->extra->cspec0.z = saturate(bsdf->extra->cspec0.z);
- return SD_BSDF | SD_BSDF_HAS_EVAL | SD_BSDF_NEEDS_LCG;
- }
- ccl_device int bsdf_microfacet_multi_ggx_aniso_setup(MicrofacetBsdf *bsdf)
- {
- if (is_zero(bsdf->T))
- bsdf->T = make_float3(1.0f, 0.0f, 0.0f);
- bsdf->type = CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID;
- return bsdf_microfacet_multi_ggx_common_setup(bsdf);
- }
- ccl_device int bsdf_microfacet_multi_ggx_aniso_fresnel_setup(MicrofacetBsdf *bsdf,
- const ShaderData *sd)
- {
- if (is_zero(bsdf->T))
- bsdf->T = make_float3(1.0f, 0.0f, 0.0f);
- bsdf->type = CLOSURE_BSDF_MICROFACET_MULTI_GGX_FRESNEL_ID;
- float F0 = fresnel_dielectric_cos(1.0f, bsdf->ior);
- float F = average(interpolate_fresnel_color(sd->I, bsdf->N, bsdf->ior, F0, bsdf->extra->cspec0));
- bsdf->sample_weight *= F;
- return bsdf_microfacet_multi_ggx_common_setup(bsdf);
- }
- ccl_device int bsdf_microfacet_multi_ggx_setup(MicrofacetBsdf *bsdf)
- {
- bsdf->alpha_y = bsdf->alpha_x;
- bsdf->type = CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID;
- return bsdf_microfacet_multi_ggx_common_setup(bsdf);
- }
- ccl_device int bsdf_microfacet_multi_ggx_fresnel_setup(MicrofacetBsdf *bsdf, const ShaderData *sd)
- {
- bsdf->alpha_y = bsdf->alpha_x;
- bsdf->type = CLOSURE_BSDF_MICROFACET_MULTI_GGX_FRESNEL_ID;
- float F0 = fresnel_dielectric_cos(1.0f, bsdf->ior);
- float F = average(interpolate_fresnel_color(sd->I, bsdf->N, bsdf->ior, F0, bsdf->extra->cspec0));
- bsdf->sample_weight *= F;
- return bsdf_microfacet_multi_ggx_common_setup(bsdf);
- }
- ccl_device int bsdf_microfacet_multi_ggx_refraction_setup(MicrofacetBsdf *bsdf)
- {
- bsdf->alpha_y = bsdf->alpha_x;
- bsdf->type = CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID;
- return bsdf_microfacet_multi_ggx_common_setup(bsdf);
- }
- ccl_device float3 bsdf_microfacet_multi_ggx_eval_transmit(const ShaderClosure *sc,
- const float3 I,
- const float3 omega_in,
- float *pdf,
- ccl_addr_space uint *lcg_state)
- {
- *pdf = 0.0f;
- return make_float3(0.0f, 0.0f, 0.0f);
- }
- ccl_device float3 bsdf_microfacet_multi_ggx_eval_reflect(const ShaderClosure *sc,
- const float3 I,
- const float3 omega_in,
- float *pdf,
- ccl_addr_space uint *lcg_state)
- {
- const MicrofacetBsdf *bsdf = (const MicrofacetBsdf *)sc;
- if (bsdf->alpha_x * bsdf->alpha_y < 1e-7f) {
- return make_float3(0.0f, 0.0f, 0.0f);
- }
- bool use_fresnel = (bsdf->type == CLOSURE_BSDF_MICROFACET_MULTI_GGX_FRESNEL_ID);
- bool is_aniso = (bsdf->alpha_x != bsdf->alpha_y);
- float3 X, Y, Z;
- Z = bsdf->N;
- if (is_aniso)
- make_orthonormals_tangent(Z, bsdf->T, &X, &Y);
- else
- make_orthonormals(Z, &X, &Y);
- float3 localI = make_float3(dot(I, X), dot(I, Y), dot(I, Z));
- float3 localO = make_float3(dot(omega_in, X), dot(omega_in, Y), dot(omega_in, Z));
- if (is_aniso)
- *pdf = mf_ggx_aniso_pdf(localI, localO, make_float2(bsdf->alpha_x, bsdf->alpha_y));
- else
- *pdf = mf_ggx_pdf(localI, localO, bsdf->alpha_x);
- return mf_eval_glossy(localI,
- localO,
- true,
- bsdf->extra->color,
- bsdf->alpha_x,
- bsdf->alpha_y,
- lcg_state,
- bsdf->ior,
- use_fresnel,
- bsdf->extra->cspec0);
- }
- ccl_device int bsdf_microfacet_multi_ggx_sample(KernelGlobals *kg,
- const ShaderClosure *sc,
- float3 Ng,
- float3 I,
- float3 dIdx,
- float3 dIdy,
- float randu,
- float randv,
- float3 *eval,
- float3 *omega_in,
- float3 *domega_in_dx,
- float3 *domega_in_dy,
- float *pdf,
- ccl_addr_space uint *lcg_state)
- {
- const MicrofacetBsdf *bsdf = (const MicrofacetBsdf *)sc;
- float3 X, Y, Z;
- Z = bsdf->N;
- if (bsdf->alpha_x * bsdf->alpha_y < 1e-7f) {
- *omega_in = 2 * dot(Z, I) * Z - I;
- *pdf = 1e6f;
- *eval = make_float3(1e6f, 1e6f, 1e6f);
- #ifdef __RAY_DIFFERENTIALS__
- *domega_in_dx = (2 * dot(Z, dIdx)) * Z - dIdx;
- *domega_in_dy = (2 * dot(Z, dIdy)) * Z - dIdy;
- #endif
- return LABEL_REFLECT | LABEL_SINGULAR;
- }
- bool use_fresnel = (bsdf->type == CLOSURE_BSDF_MICROFACET_MULTI_GGX_FRESNEL_ID);
- bool is_aniso = (bsdf->alpha_x != bsdf->alpha_y);
- if (is_aniso)
- make_orthonormals_tangent(Z, bsdf->T, &X, &Y);
- else
- make_orthonormals(Z, &X, &Y);
- float3 localI = make_float3(dot(I, X), dot(I, Y), dot(I, Z));
- float3 localO;
- *eval = mf_sample_glossy(localI,
- &localO,
- bsdf->extra->color,
- bsdf->alpha_x,
- bsdf->alpha_y,
- lcg_state,
- bsdf->ior,
- use_fresnel,
- bsdf->extra->cspec0);
- if (is_aniso)
- *pdf = mf_ggx_aniso_pdf(localI, localO, make_float2(bsdf->alpha_x, bsdf->alpha_y));
- else
- *pdf = mf_ggx_pdf(localI, localO, bsdf->alpha_x);
- *eval *= *pdf;
- *omega_in = X * localO.x + Y * localO.y + Z * localO.z;
- #ifdef __RAY_DIFFERENTIALS__
- *domega_in_dx = (2 * dot(Z, dIdx)) * Z - dIdx;
- *domega_in_dy = (2 * dot(Z, dIdy)) * Z - dIdy;
- #endif
- return LABEL_REFLECT | LABEL_GLOSSY;
- }
- /* Multiscattering GGX Glass closure */
- ccl_device int bsdf_microfacet_multi_ggx_glass_setup(MicrofacetBsdf *bsdf)
- {
- bsdf->alpha_x = clamp(bsdf->alpha_x, 1e-4f, 1.0f);
- bsdf->alpha_y = bsdf->alpha_x;
- bsdf->ior = max(0.0f, bsdf->ior);
- bsdf->extra->color.x = saturate(bsdf->extra->color.x);
- bsdf->extra->color.y = saturate(bsdf->extra->color.y);
- bsdf->extra->color.z = saturate(bsdf->extra->color.z);
- bsdf->type = CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID;
- return SD_BSDF | SD_BSDF_HAS_EVAL | SD_BSDF_NEEDS_LCG;
- }
- ccl_device int bsdf_microfacet_multi_ggx_glass_fresnel_setup(MicrofacetBsdf *bsdf,
- const ShaderData *sd)
- {
- bsdf->alpha_x = clamp(bsdf->alpha_x, 1e-4f, 1.0f);
- bsdf->alpha_y = bsdf->alpha_x;
- bsdf->ior = max(0.0f, bsdf->ior);
- bsdf->extra->color.x = saturate(bsdf->extra->color.x);
- bsdf->extra->color.y = saturate(bsdf->extra->color.y);
- bsdf->extra->color.z = saturate(bsdf->extra->color.z);
- bsdf->extra->cspec0.x = saturate(bsdf->extra->cspec0.x);
- bsdf->extra->cspec0.y = saturate(bsdf->extra->cspec0.y);
- bsdf->extra->cspec0.z = saturate(bsdf->extra->cspec0.z);
- bsdf->type = CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_FRESNEL_ID;
- float F0 = fresnel_dielectric_cos(1.0f, bsdf->ior);
- float F = average(interpolate_fresnel_color(sd->I, bsdf->N, bsdf->ior, F0, bsdf->extra->cspec0));
- bsdf->sample_weight *= F;
- return SD_BSDF | SD_BSDF_HAS_EVAL | SD_BSDF_NEEDS_LCG;
- }
- ccl_device float3 bsdf_microfacet_multi_ggx_glass_eval_transmit(const ShaderClosure *sc,
- const float3 I,
- const float3 omega_in,
- float *pdf,
- ccl_addr_space uint *lcg_state)
- {
- const MicrofacetBsdf *bsdf = (const MicrofacetBsdf *)sc;
- if (bsdf->alpha_x * bsdf->alpha_y < 1e-7f) {
- return make_float3(0.0f, 0.0f, 0.0f);
- }
- float3 X, Y, Z;
- Z = bsdf->N;
- make_orthonormals(Z, &X, &Y);
- float3 localI = make_float3(dot(I, X), dot(I, Y), dot(I, Z));
- float3 localO = make_float3(dot(omega_in, X), dot(omega_in, Y), dot(omega_in, Z));
- *pdf = mf_glass_pdf(localI, localO, bsdf->alpha_x, bsdf->ior);
- return mf_eval_glass(localI,
- localO,
- false,
- bsdf->extra->color,
- bsdf->alpha_x,
- bsdf->alpha_y,
- lcg_state,
- bsdf->ior,
- false,
- bsdf->extra->color);
- }
- ccl_device float3 bsdf_microfacet_multi_ggx_glass_eval_reflect(const ShaderClosure *sc,
- const float3 I,
- const float3 omega_in,
- float *pdf,
- ccl_addr_space uint *lcg_state)
- {
- const MicrofacetBsdf *bsdf = (const MicrofacetBsdf *)sc;
- if (bsdf->alpha_x * bsdf->alpha_y < 1e-7f) {
- return make_float3(0.0f, 0.0f, 0.0f);
- }
- bool use_fresnel = (bsdf->type == CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_FRESNEL_ID);
- float3 X, Y, Z;
- Z = bsdf->N;
- make_orthonormals(Z, &X, &Y);
- float3 localI = make_float3(dot(I, X), dot(I, Y), dot(I, Z));
- float3 localO = make_float3(dot(omega_in, X), dot(omega_in, Y), dot(omega_in, Z));
- *pdf = mf_glass_pdf(localI, localO, bsdf->alpha_x, bsdf->ior);
- return mf_eval_glass(localI,
- localO,
- true,
- bsdf->extra->color,
- bsdf->alpha_x,
- bsdf->alpha_y,
- lcg_state,
- bsdf->ior,
- use_fresnel,
- bsdf->extra->cspec0);
- }
- ccl_device int bsdf_microfacet_multi_ggx_glass_sample(KernelGlobals *kg,
- const ShaderClosure *sc,
- float3 Ng,
- float3 I,
- float3 dIdx,
- float3 dIdy,
- float randu,
- float randv,
- float3 *eval,
- float3 *omega_in,
- float3 *domega_in_dx,
- float3 *domega_in_dy,
- float *pdf,
- ccl_addr_space uint *lcg_state)
- {
- const MicrofacetBsdf *bsdf = (const MicrofacetBsdf *)sc;
- float3 X, Y, Z;
- Z = bsdf->N;
- if (bsdf->alpha_x * bsdf->alpha_y < 1e-7f) {
- float3 R, T;
- #ifdef __RAY_DIFFERENTIALS__
- float3 dRdx, dRdy, dTdx, dTdy;
- #endif
- bool inside;
- float fresnel = fresnel_dielectric(bsdf->ior,
- Z,
- I,
- &R,
- &T,
- #ifdef __RAY_DIFFERENTIALS__
- dIdx,
- dIdy,
- &dRdx,
- &dRdy,
- &dTdx,
- &dTdy,
- #endif
- &inside);
- *pdf = 1e6f;
- *eval = make_float3(1e6f, 1e6f, 1e6f);
- if (randu < fresnel) {
- *omega_in = R;
- #ifdef __RAY_DIFFERENTIALS__
- *domega_in_dx = dRdx;
- *domega_in_dy = dRdy;
- #endif
- return LABEL_REFLECT | LABEL_SINGULAR;
- }
- else {
- *omega_in = T;
- #ifdef __RAY_DIFFERENTIALS__
- *domega_in_dx = dTdx;
- *domega_in_dy = dTdy;
- #endif
- return LABEL_TRANSMIT | LABEL_SINGULAR;
- }
- }
- bool use_fresnel = (bsdf->type == CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_FRESNEL_ID);
- make_orthonormals(Z, &X, &Y);
- float3 localI = make_float3(dot(I, X), dot(I, Y), dot(I, Z));
- float3 localO;
- *eval = mf_sample_glass(localI,
- &localO,
- bsdf->extra->color,
- bsdf->alpha_x,
- bsdf->alpha_y,
- lcg_state,
- bsdf->ior,
- use_fresnel,
- bsdf->extra->cspec0);
- *pdf = mf_glass_pdf(localI, localO, bsdf->alpha_x, bsdf->ior);
- *eval *= *pdf;
- *omega_in = X * localO.x + Y * localO.y + Z * localO.z;
- if (localO.z * localI.z > 0.0f) {
- #ifdef __RAY_DIFFERENTIALS__
- *domega_in_dx = (2 * dot(Z, dIdx)) * Z - dIdx;
- *domega_in_dy = (2 * dot(Z, dIdy)) * Z - dIdy;
- #endif
- return LABEL_REFLECT | LABEL_GLOSSY;
- }
- else {
- #ifdef __RAY_DIFFERENTIALS__
- float cosI = dot(Z, I);
- float dnp = max(sqrtf(1.0f - (bsdf->ior * bsdf->ior * (1.0f - cosI * cosI))), 1e-7f);
- *domega_in_dx = -(bsdf->ior * dIdx) +
- ((bsdf->ior - bsdf->ior * bsdf->ior * cosI / dnp) * dot(dIdx, Z)) * Z;
- *domega_in_dy = -(bsdf->ior * dIdy) +
- ((bsdf->ior - bsdf->ior * bsdf->ior * cosI / dnp) * dot(dIdy, Z)) * Z;
- #endif
- return LABEL_TRANSMIT | LABEL_GLOSSY;
- }
- }
- CCL_NAMESPACE_END
|