123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665 |
- /*
- * Copyright 2011-2013 Blender Foundation
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /* This is a template BVH traversal function, where various features can be
- * enabled/disabled. This way we can compile optimized versions for each case
- * without new features slowing things down.
- *
- * BVH_INSTANCING: object instancing
- * BVH_HAIR: hair curve rendering
- * BVH_MOTION: motion blur rendering
- */
- #if BVH_FEATURE(BVH_HAIR)
- # define NODE_INTERSECT obvh_node_intersect
- #else
- # define NODE_INTERSECT obvh_aligned_node_intersect
- #endif
- ccl_device bool BVH_FUNCTION_FULL_NAME(OBVH)(KernelGlobals *kg,
- const Ray *ray,
- Intersection *isect_array,
- const int skip_object,
- const uint max_hits,
- uint *num_hits)
- {
- /* TODO(sergey):
- * - Test if pushing distance on the stack helps.
- * - Likely and unlikely for if() statements.
- * - Test restrict attribute for pointers.
- */
- /* Traversal stack in CUDA thread-local memory. */
- OBVHStackItem traversal_stack[BVH_OSTACK_SIZE];
- traversal_stack[0].addr = ENTRYPOINT_SENTINEL;
- /* Traversal variables in registers. */
- int stack_ptr = 0;
- int node_addr = kernel_data.bvh.root;
- /* Ray parameters in registers. */
- const float tmax = ray->t;
- float3 P = ray->P;
- float3 dir = bvh_clamp_direction(ray->D);
- float3 idir = bvh_inverse_direction(dir);
- int object = OBJECT_NONE;
- float isect_t = tmax;
- #if BVH_FEATURE(BVH_MOTION)
- Transform ob_itfm;
- #endif
- *num_hits = 0;
- isect_array->t = tmax;
- #if BVH_FEATURE(BVH_INSTANCING)
- int num_hits_in_instance = 0;
- #endif
- avxf tnear(0.0f), tfar(isect_t);
- #if BVH_FEATURE(BVH_HAIR)
- avx3f dir4(avxf(dir.x), avxf(dir.y), avxf(dir.z));
- #endif
- avx3f idir4(avxf(idir.x), avxf(idir.y), avxf(idir.z));
- #ifdef __KERNEL_AVX2__
- float3 P_idir = P * idir;
- avx3f P_idir4(P_idir.x, P_idir.y, P_idir.z);
- #endif
- #if BVH_FEATURE(BVH_HAIR) || !defined(__KERNEL_AVX2__)
- avx3f org4(avxf(P.x), avxf(P.y), avxf(P.z));
- #endif
- /* Offsets to select the side that becomes the lower or upper bound. */
- int near_x, near_y, near_z;
- int far_x, far_y, far_z;
- obvh_near_far_idx_calc(idir, &near_x, &near_y, &near_z, &far_x, &far_y, &far_z);
- /* Traversal loop. */
- do {
- do {
- /* Traverse internal nodes. */
- while (node_addr >= 0 && node_addr != ENTRYPOINT_SENTINEL) {
- float4 inodes = kernel_tex_fetch(__bvh_nodes, node_addr + 0);
- (void)inodes;
- if (false
- #ifdef __VISIBILITY_FLAG__
- || ((__float_as_uint(inodes.x) & PATH_RAY_SHADOW) == 0)
- #endif
- #if BVH_FEATURE(BVH_MOTION)
- || UNLIKELY(ray->time < inodes.y) || UNLIKELY(ray->time > inodes.z)
- #endif
- ) {
- /* Pop. */
- node_addr = traversal_stack[stack_ptr].addr;
- --stack_ptr;
- continue;
- }
- avxf dist;
- int child_mask = NODE_INTERSECT(kg,
- tnear,
- tfar,
- #ifdef __KERNEL_AVX2__
- P_idir4,
- #endif
- #if BVH_FEATURE(BVH_HAIR) || !defined(__KERNEL_AVX2__)
- //#if !defined(__KERNEL_AVX2__)
- org4,
- #endif
- #if BVH_FEATURE(BVH_HAIR)
- dir4,
- #endif
- idir4,
- near_x,
- near_y,
- near_z,
- far_x,
- far_y,
- far_z,
- node_addr,
- &dist);
- if (child_mask != 0) {
- avxf cnodes;
- #if BVH_FEATURE(BVH_HAIR)
- if (__float_as_uint(inodes.x) & PATH_RAY_NODE_UNALIGNED) {
- cnodes = kernel_tex_fetch_avxf(__bvh_nodes, node_addr + 26);
- }
- else
- #endif
- {
- cnodes = kernel_tex_fetch_avxf(__bvh_nodes, node_addr + 14);
- }
- /* One child is hit, continue with that child. */
- int r = __bscf(child_mask);
- if (child_mask == 0) {
- node_addr = __float_as_int(cnodes[r]);
- continue;
- }
- /* Two children are hit, push far child, and continue with
- * closer child.
- */
- int c0 = __float_as_int(cnodes[r]);
- float d0 = ((float *)&dist)[r];
- r = __bscf(child_mask);
- int c1 = __float_as_int(cnodes[r]);
- float d1 = ((float *)&dist)[r];
- if (child_mask == 0) {
- if (d1 < d0) {
- node_addr = c1;
- ++stack_ptr;
- kernel_assert(stack_ptr < BVH_OSTACK_SIZE);
- traversal_stack[stack_ptr].addr = c0;
- traversal_stack[stack_ptr].dist = d0;
- continue;
- }
- else {
- node_addr = c0;
- ++stack_ptr;
- kernel_assert(stack_ptr < BVH_OSTACK_SIZE);
- traversal_stack[stack_ptr].addr = c1;
- traversal_stack[stack_ptr].dist = d1;
- continue;
- }
- }
- /* Here starts the slow path for 3 or 4 hit children. We push
- * all nodes onto the stack to sort them there.
- */
- ++stack_ptr;
- kernel_assert(stack_ptr < BVH_OSTACK_SIZE);
- traversal_stack[stack_ptr].addr = c1;
- traversal_stack[stack_ptr].dist = d1;
- ++stack_ptr;
- kernel_assert(stack_ptr < BVH_OSTACK_SIZE);
- traversal_stack[stack_ptr].addr = c0;
- traversal_stack[stack_ptr].dist = d0;
- /* Three children are hit, push all onto stack and sort 3
- * stack items, continue with closest child.
- */
- r = __bscf(child_mask);
- int c2 = __float_as_int(cnodes[r]);
- float d2 = ((float *)&dist)[r];
- if (child_mask == 0) {
- ++stack_ptr;
- kernel_assert(stack_ptr < BVH_OSTACK_SIZE);
- traversal_stack[stack_ptr].addr = c2;
- traversal_stack[stack_ptr].dist = d2;
- obvh_stack_sort(&traversal_stack[stack_ptr],
- &traversal_stack[stack_ptr - 1],
- &traversal_stack[stack_ptr - 2]);
- node_addr = traversal_stack[stack_ptr].addr;
- --stack_ptr;
- continue;
- }
- /* Four children are hit, push all onto stack and sort 4
- * stack items, continue with closest child.
- */
- r = __bscf(child_mask);
- int c3 = __float_as_int(cnodes[r]);
- float d3 = ((float *)&dist)[r];
- if (child_mask == 0) {
- ++stack_ptr;
- kernel_assert(stack_ptr < BVH_OSTACK_SIZE);
- traversal_stack[stack_ptr].addr = c3;
- traversal_stack[stack_ptr].dist = d3;
- ++stack_ptr;
- kernel_assert(stack_ptr < BVH_OSTACK_SIZE);
- traversal_stack[stack_ptr].addr = c2;
- traversal_stack[stack_ptr].dist = d2;
- obvh_stack_sort(&traversal_stack[stack_ptr],
- &traversal_stack[stack_ptr - 1],
- &traversal_stack[stack_ptr - 2],
- &traversal_stack[stack_ptr - 3]);
- node_addr = traversal_stack[stack_ptr].addr;
- --stack_ptr;
- continue;
- }
- ++stack_ptr;
- kernel_assert(stack_ptr < BVH_OSTACK_SIZE);
- traversal_stack[stack_ptr].addr = c3;
- traversal_stack[stack_ptr].dist = d3;
- ++stack_ptr;
- kernel_assert(stack_ptr < BVH_OSTACK_SIZE);
- traversal_stack[stack_ptr].addr = c2;
- traversal_stack[stack_ptr].dist = d2;
- /* Five children are hit, push all onto stack and sort 5
- * stack items, continue with closest child
- */
- r = __bscf(child_mask);
- int c4 = __float_as_int(cnodes[r]);
- float d4 = ((float *)&dist)[r];
- if (child_mask == 0) {
- ++stack_ptr;
- kernel_assert(stack_ptr < BVH_OSTACK_SIZE);
- traversal_stack[stack_ptr].addr = c4;
- traversal_stack[stack_ptr].dist = d4;
- obvh_stack_sort(&traversal_stack[stack_ptr],
- &traversal_stack[stack_ptr - 1],
- &traversal_stack[stack_ptr - 2],
- &traversal_stack[stack_ptr - 3],
- &traversal_stack[stack_ptr - 4]);
- node_addr = traversal_stack[stack_ptr].addr;
- --stack_ptr;
- continue;
- }
- /* Six children are hit, push all onto stack and sort 6
- * stack items, continue with closest child.
- */
- r = __bscf(child_mask);
- int c5 = __float_as_int(cnodes[r]);
- float d5 = ((float *)&dist)[r];
- if (child_mask == 0) {
- ++stack_ptr;
- kernel_assert(stack_ptr < BVH_OSTACK_SIZE);
- traversal_stack[stack_ptr].addr = c5;
- traversal_stack[stack_ptr].dist = d5;
- ++stack_ptr;
- kernel_assert(stack_ptr < BVH_OSTACK_SIZE);
- traversal_stack[stack_ptr].addr = c4;
- traversal_stack[stack_ptr].dist = d4;
- obvh_stack_sort(&traversal_stack[stack_ptr],
- &traversal_stack[stack_ptr - 1],
- &traversal_stack[stack_ptr - 2],
- &traversal_stack[stack_ptr - 3],
- &traversal_stack[stack_ptr - 4],
- &traversal_stack[stack_ptr - 5]);
- node_addr = traversal_stack[stack_ptr].addr;
- --stack_ptr;
- continue;
- }
- ++stack_ptr;
- kernel_assert(stack_ptr < BVH_OSTACK_SIZE);
- traversal_stack[stack_ptr].addr = c5;
- traversal_stack[stack_ptr].dist = d5;
- ++stack_ptr;
- kernel_assert(stack_ptr < BVH_OSTACK_SIZE);
- traversal_stack[stack_ptr].addr = c4;
- traversal_stack[stack_ptr].dist = d4;
- /* Seven children are hit, push all onto stack and sort 7
- * stack items, continue with closest child.
- */
- r = __bscf(child_mask);
- int c6 = __float_as_int(cnodes[r]);
- float d6 = ((float *)&dist)[r];
- if (child_mask == 0) {
- ++stack_ptr;
- kernel_assert(stack_ptr < BVH_OSTACK_SIZE);
- traversal_stack[stack_ptr].addr = c6;
- traversal_stack[stack_ptr].dist = d6;
- obvh_stack_sort(&traversal_stack[stack_ptr],
- &traversal_stack[stack_ptr - 1],
- &traversal_stack[stack_ptr - 2],
- &traversal_stack[stack_ptr - 3],
- &traversal_stack[stack_ptr - 4],
- &traversal_stack[stack_ptr - 5],
- &traversal_stack[stack_ptr - 6]);
- node_addr = traversal_stack[stack_ptr].addr;
- --stack_ptr;
- continue;
- }
- /* Eight children are hit, push all onto stack and sort 8
- * stack items, continue with closest child.
- */
- r = __bscf(child_mask);
- int c7 = __float_as_int(cnodes[r]);
- float d7 = ((float *)&dist)[r];
- ++stack_ptr;
- kernel_assert(stack_ptr < BVH_OSTACK_SIZE);
- traversal_stack[stack_ptr].addr = c7;
- traversal_stack[stack_ptr].dist = d7;
- ++stack_ptr;
- kernel_assert(stack_ptr < BVH_OSTACK_SIZE);
- traversal_stack[stack_ptr].addr = c6;
- traversal_stack[stack_ptr].dist = d6;
- obvh_stack_sort(&traversal_stack[stack_ptr],
- &traversal_stack[stack_ptr - 1],
- &traversal_stack[stack_ptr - 2],
- &traversal_stack[stack_ptr - 3],
- &traversal_stack[stack_ptr - 4],
- &traversal_stack[stack_ptr - 5],
- &traversal_stack[stack_ptr - 6],
- &traversal_stack[stack_ptr - 7]);
- node_addr = traversal_stack[stack_ptr].addr;
- --stack_ptr;
- continue;
- }
- node_addr = traversal_stack[stack_ptr].addr;
- --stack_ptr;
- }
- /* If node is leaf, fetch triangle list. */
- if (node_addr < 0) {
- float4 leaf = kernel_tex_fetch(__bvh_leaf_nodes, (-node_addr - 1));
- #ifdef __VISIBILITY_FLAG__
- if ((__float_as_uint(leaf.z) & PATH_RAY_SHADOW) == 0) {
- /* Pop. */
- node_addr = traversal_stack[stack_ptr].addr;
- --stack_ptr;
- continue;
- }
- #endif
- int prim_addr = __float_as_int(leaf.x);
- #if BVH_FEATURE(BVH_INSTANCING)
- if (prim_addr >= 0) {
- #endif
- int prim_addr2 = __float_as_int(leaf.y);
- const uint type = __float_as_int(leaf.w);
- const uint p_type = type & PRIMITIVE_ALL;
- /* Pop. */
- node_addr = traversal_stack[stack_ptr].addr;
- --stack_ptr;
- /* Primitive intersection. */
- if (p_type == PRIMITIVE_TRIANGLE) {
- int prim_count = prim_addr2 - prim_addr;
- if (prim_count < 3) {
- while (prim_addr < prim_addr2) {
- kernel_assert((kernel_tex_fetch(__prim_type, prim_addr) & PRIMITIVE_ALL) ==
- p_type);
- int hit = triangle_intersect(
- kg, isect_array, P, dir, PATH_RAY_SHADOW, object, prim_addr);
- /* Shadow ray early termination. */
- if (hit) {
- /* detect if this surface has a shader with transparent shadows */
- /* todo: optimize so primitive visibility flag indicates if
- * the primitive has a transparent shadow shader? */
- int prim = kernel_tex_fetch(__prim_index, isect_array->prim);
- int shader = 0;
- #ifdef __HAIR__
- if (kernel_tex_fetch(__prim_type, isect_array->prim) & PRIMITIVE_ALL_TRIANGLE)
- #endif
- {
- shader = kernel_tex_fetch(__tri_shader, prim);
- }
- #ifdef __HAIR__
- else {
- float4 str = kernel_tex_fetch(__curves, prim);
- shader = __float_as_int(str.z);
- }
- #endif
- int flag = kernel_tex_fetch(__shaders, (shader & SHADER_MASK)).flags;
- /* if no transparent shadows, all light is blocked */
- if (!(flag & SD_HAS_TRANSPARENT_SHADOW)) {
- return true;
- }
- /* if maximum number of hits reached, block all light */
- else if (*num_hits == max_hits) {
- return true;
- }
- /* move on to next entry in intersections array */
- isect_array++;
- (*num_hits)++;
- #if BVH_FEATURE(BVH_INSTANCING)
- num_hits_in_instance++;
- #endif
- isect_array->t = isect_t;
- }
- prim_addr++;
- } // while
- }
- else {
- kernel_assert((kernel_tex_fetch(__prim_type, (prim_addr)) & PRIMITIVE_ALL) ==
- p_type);
- #if BVH_FEATURE(BVH_INSTANCING)
- int *nhiptr = &num_hits_in_instance;
- #else
- int nhi = 0;
- int *nhiptr = &nhi;
- #endif
- int result = triangle_intersect8(kg,
- &isect_array,
- P,
- dir,
- PATH_RAY_SHADOW,
- object,
- prim_addr,
- prim_count,
- num_hits,
- max_hits,
- nhiptr,
- isect_t);
- if (result == 2) {
- return true;
- }
- } // prim_count
- } // PRIMITIVE_TRIANGLE
- else {
- while (prim_addr < prim_addr2) {
- kernel_assert((kernel_tex_fetch(__prim_type, prim_addr) & PRIMITIVE_ALL) == p_type);
- #ifdef __SHADOW_TRICKS__
- uint tri_object = (object == OBJECT_NONE) ?
- kernel_tex_fetch(__prim_object, prim_addr) :
- object;
- if (tri_object == skip_object) {
- ++prim_addr;
- continue;
- }
- #endif
- bool hit;
- /* todo: specialized intersect functions which don't fill in
- * isect unless needed and check SD_HAS_TRANSPARENT_SHADOW?
- * might give a few % performance improvement */
- switch (p_type) {
- #if BVH_FEATURE(BVH_MOTION)
- case PRIMITIVE_MOTION_TRIANGLE: {
- hit = motion_triangle_intersect(
- kg, isect_array, P, dir, ray->time, PATH_RAY_SHADOW, object, prim_addr);
- break;
- }
- #endif
- #if BVH_FEATURE(BVH_HAIR)
- case PRIMITIVE_CURVE:
- case PRIMITIVE_MOTION_CURVE: {
- const uint curve_type = kernel_tex_fetch(__prim_type, prim_addr);
- if (kernel_data.curve.curveflags & CURVE_KN_INTERPOLATE) {
- hit = cardinal_curve_intersect(kg,
- isect_array,
- P,
- dir,
- PATH_RAY_SHADOW,
- object,
- prim_addr,
- ray->time,
- curve_type);
- }
- else {
- hit = curve_intersect(kg,
- isect_array,
- P,
- dir,
- PATH_RAY_SHADOW,
- object,
- prim_addr,
- ray->time,
- curve_type);
- }
- break;
- }
- #endif
- default: {
- hit = false;
- break;
- }
- }
- /* Shadow ray early termination. */
- if (hit) {
- /* detect if this surface has a shader with transparent shadows */
- /* todo: optimize so primitive visibility flag indicates if
- * the primitive has a transparent shadow shader? */
- int prim = kernel_tex_fetch(__prim_index, isect_array->prim);
- int shader = 0;
- #ifdef __HAIR__
- if (kernel_tex_fetch(__prim_type, isect_array->prim) & PRIMITIVE_ALL_TRIANGLE)
- #endif
- {
- shader = kernel_tex_fetch(__tri_shader, prim);
- }
- #ifdef __HAIR__
- else {
- float4 str = kernel_tex_fetch(__curves, prim);
- shader = __float_as_int(str.z);
- }
- #endif
- int flag = kernel_tex_fetch(__shaders, (shader & SHADER_MASK)).flags;
- /* if no transparent shadows, all light is blocked */
- if (!(flag & SD_HAS_TRANSPARENT_SHADOW)) {
- return true;
- }
- /* if maximum number of hits reached, block all light */
- else if (*num_hits == max_hits) {
- return true;
- }
- /* move on to next entry in intersections array */
- isect_array++;
- (*num_hits)++;
- #if BVH_FEATURE(BVH_INSTANCING)
- num_hits_in_instance++;
- #endif
- isect_array->t = isect_t;
- }
- prim_addr++;
- } // while prim
- }
- }
- #if BVH_FEATURE(BVH_INSTANCING)
- else {
- /* Instance push. */
- object = kernel_tex_fetch(__prim_object, -prim_addr - 1);
- # if BVH_FEATURE(BVH_MOTION)
- isect_t = bvh_instance_motion_push(kg, object, ray, &P, &dir, &idir, isect_t, &ob_itfm);
- # else
- isect_t = bvh_instance_push(kg, object, ray, &P, &dir, &idir, isect_t);
- # endif
- num_hits_in_instance = 0;
- isect_array->t = isect_t;
- obvh_near_far_idx_calc(idir, &near_x, &near_y, &near_z, &far_x, &far_y, &far_z);
- tfar = avxf(isect_t);
- # if BVH_FEATURE(BVH_HAIR)
- dir4 = avx3f(avxf(dir.x), avxf(dir.y), avxf(dir.z));
- # endif
- idir4 = avx3f(avxf(idir.x), avxf(idir.y), avxf(idir.z));
- # ifdef __KERNEL_AVX2__
- P_idir = P * idir;
- P_idir4 = avx3f(P_idir.x, P_idir.y, P_idir.z);
- # endif
- # if BVH_FEATURE(BVH_HAIR) || !defined(__KERNEL_AVX2__)
- org4 = avx3f(avxf(P.x), avxf(P.y), avxf(P.z));
- # endif
- ++stack_ptr;
- kernel_assert(stack_ptr < BVH_OSTACK_SIZE);
- traversal_stack[stack_ptr].addr = ENTRYPOINT_SENTINEL;
- node_addr = kernel_tex_fetch(__object_node, object);
- }
- }
- #endif /* FEATURE(BVH_INSTANCING) */
- } while (node_addr != ENTRYPOINT_SENTINEL);
- #if BVH_FEATURE(BVH_INSTANCING)
- if (stack_ptr >= 0) {
- kernel_assert(object != OBJECT_NONE);
- /* Instance pop. */
- if (num_hits_in_instance) {
- float t_fac;
- # if BVH_FEATURE(BVH_MOTION)
- bvh_instance_motion_pop_factor(kg, object, ray, &P, &dir, &idir, &t_fac, &ob_itfm);
- # else
- bvh_instance_pop_factor(kg, object, ray, &P, &dir, &idir, &t_fac);
- # endif
- /* Scale isect->t to adjust for instancing. */
- for (int i = 0; i < num_hits_in_instance; i++) {
- (isect_array - i - 1)->t *= t_fac;
- }
- }
- else {
- # if BVH_FEATURE(BVH_MOTION)
- bvh_instance_motion_pop(kg, object, ray, &P, &dir, &idir, FLT_MAX, &ob_itfm);
- # else
- bvh_instance_pop(kg, object, ray, &P, &dir, &idir, FLT_MAX);
- # endif
- }
- isect_t = tmax;
- isect_array->t = isect_t;
- obvh_near_far_idx_calc(idir, &near_x, &near_y, &near_z, &far_x, &far_y, &far_z);
- tfar = avxf(isect_t);
- # if BVH_FEATURE(BVH_HAIR)
- dir4 = avx3f(avxf(dir.x), avxf(dir.y), avxf(dir.z));
- # endif
- idir4 = avx3f(avxf(idir.x), avxf(idir.y), avxf(idir.z));
- # ifdef __KERNEL_AVX2__
- P_idir = P * idir;
- P_idir4 = avx3f(P_idir.x, P_idir.y, P_idir.z);
- # endif
- # if BVH_FEATURE(BVH_HAIR) || !defined(__KERNEL_AVX2__)
- org4 = avx3f(avxf(P.x), avxf(P.y), avxf(P.z));
- # endif
- object = OBJECT_NONE;
- node_addr = traversal_stack[stack_ptr].addr;
- --stack_ptr;
- }
- #endif /* FEATURE(BVH_INSTANCING) */
- } while (node_addr != ENTRYPOINT_SENTINEL);
- return false;
- }
- #undef NODE_INTERSECT
|