wcwidth.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312
  1. /*
  2. * This is an implementation of wcwidth() and wcswidth() (defined in
  3. * IEEE Std 1002.1-2001) for Unicode.
  4. *
  5. * http://www.opengroup.org/onlinepubs/007904975/functions/wcwidth.html
  6. * http://www.opengroup.org/onlinepubs/007904975/functions/wcswidth.html
  7. *
  8. * In fixed-width output devices, Latin characters all occupy a single
  9. * "cell" position of equal width, whereas ideographic CJK characters
  10. * occupy two such cells. Interoperability between terminal-line
  11. * applications and (teletype-style) character terminals using the
  12. * UTF-8 encoding requires agreement on which character should advance
  13. * the cursor by how many cell positions. No established formal
  14. * standards exist at present on which Unicode character shall occupy
  15. * how many cell positions on character terminals. These routines are
  16. * a first attempt of defining such behavior based on simple rules
  17. * applied to data provided by the Unicode Consortium.
  18. *
  19. * For some graphical characters, the Unicode standard explicitly
  20. * defines a character-cell width via the definition of the East Asian
  21. * FullWidth (F), Wide (W), Half-width (H), and Narrow (Na) classes.
  22. * In all these cases, there is no ambiguity about which width a
  23. * terminal shall use. For characters in the East Asian Ambiguous (A)
  24. * class, the width choice depends purely on a preference of backward
  25. * compatibility with either historic CJK or Western practice.
  26. * Choosing single-width for these characters is easy to justify as
  27. * the appropriate long-term solution, as the CJK practice of
  28. * displaying these characters as double-width comes from historic
  29. * implementation simplicity (8-bit encoded characters were displayed
  30. * single-width and 16-bit ones double-width, even for Greek,
  31. * Cyrillic, etc.) and not any typographic considerations.
  32. *
  33. * Much less clear is the choice of width for the Not East Asian
  34. * (Neutral) class. Existing practice does not dictate a width for any
  35. * of these characters. It would nevertheless make sense
  36. * typographically to allocate two character cells to characters such
  37. * as for instance EM SPACE or VOLUME INTEGRAL, which cannot be
  38. * represented adequately with a single-width glyph. The following
  39. * routines at present merely assign a single-cell width to all
  40. * neutral characters, in the interest of simplicity. This is not
  41. * entirely satisfactory and should be reconsidered before
  42. * establishing a formal standard in this area. At the moment, the
  43. * decision which Not East Asian (Neutral) characters should be
  44. * represented by double-width glyphs cannot yet be answered by
  45. * applying a simple rule from the Unicode database content. Setting
  46. * up a proper standard for the behavior of UTF-8 character terminals
  47. * will require a careful analysis not only of each Unicode character,
  48. * but also of each presentation form, something the author of these
  49. * routines has avoided to do so far.
  50. *
  51. * http://www.unicode.org/unicode/reports/tr11/
  52. *
  53. * Markus Kuhn -- 2007-05-26 (Unicode 5.0)
  54. *
  55. * Permission to use, copy, modify, and distribute this software
  56. * for any purpose and without fee is hereby granted. The author
  57. * disclaims all warranties with regard to this software.
  58. *
  59. * Latest version: http://www.cl.cam.ac.uk/~mgk25/ucs/wcwidth.c
  60. */
  61. #include <wchar.h>
  62. #include "wcwidth.h"
  63. struct interval {
  64. int first;
  65. int last;
  66. };
  67. /* auxiliary function for binary search in interval table */
  68. static int bisearch(wchar_t ucs, const struct interval *table, int max) {
  69. int min = 0;
  70. int mid;
  71. if (ucs < table[0].first || ucs > table[max].last)
  72. return 0;
  73. while (max >= min) {
  74. mid = (min + max) / 2;
  75. if (ucs > table[mid].last)
  76. min = mid + 1;
  77. else if (ucs < table[mid].first)
  78. max = mid - 1;
  79. else
  80. return 1;
  81. }
  82. return 0;
  83. }
  84. /* The following two functions define the column width of an ISO 10646
  85. * character as follows:
  86. *
  87. * - The null character (U+0000) has a column width of 0.
  88. *
  89. * - Other C0/C1 control characters and DEL will lead to a return
  90. * value of -1.
  91. *
  92. * - Non-spacing and enclosing combining characters (general
  93. * category code Mn or Me in the Unicode database) have a
  94. * column width of 0.
  95. *
  96. * - SOFT HYPHEN (U+00AD) has a column width of 1.
  97. *
  98. * - Other format characters (general category code Cf in the Unicode
  99. * database) and ZERO WIDTH SPACE (U+200B) have a column width of 0.
  100. *
  101. * - Hangul Jamo medial vowels and final consonants (U+1160-U+11FF)
  102. * have a column width of 0.
  103. *
  104. * - Spacing characters in the East Asian Wide (W) or East Asian
  105. * Full-width (F) category as defined in Unicode Technical
  106. * Report #11 have a column width of 2.
  107. *
  108. * - All remaining characters (including all printable
  109. * ISO 8859-1 and WGL4 characters, Unicode control characters,
  110. * etc.) have a column width of 1.
  111. *
  112. * This implementation assumes that wchar_t characters are encoded
  113. * in ISO 10646.
  114. */
  115. int mk_wcwidth(wchar_t ucs)
  116. {
  117. /* sorted list of non-overlapping intervals of non-spacing characters */
  118. /* generated by "uniset +cat=Me +cat=Mn +cat=Cf -00AD +1160-11FF +200B c" */
  119. static const struct interval combining[] = {
  120. { 0x0300, 0x036F }, { 0x0483, 0x0486 }, { 0x0488, 0x0489 },
  121. { 0x0591, 0x05BD }, { 0x05BF, 0x05BF }, { 0x05C1, 0x05C2 },
  122. { 0x05C4, 0x05C5 }, { 0x05C7, 0x05C7 }, { 0x0600, 0x0603 },
  123. { 0x0610, 0x0615 }, { 0x064B, 0x065E }, { 0x0670, 0x0670 },
  124. { 0x06D6, 0x06E4 }, { 0x06E7, 0x06E8 }, { 0x06EA, 0x06ED },
  125. { 0x070F, 0x070F }, { 0x0711, 0x0711 }, { 0x0730, 0x074A },
  126. { 0x07A6, 0x07B0 }, { 0x07EB, 0x07F3 }, { 0x0901, 0x0902 },
  127. { 0x093C, 0x093C }, { 0x0941, 0x0948 }, { 0x094D, 0x094D },
  128. { 0x0951, 0x0954 }, { 0x0962, 0x0963 }, { 0x0981, 0x0981 },
  129. { 0x09BC, 0x09BC }, { 0x09C1, 0x09C4 }, { 0x09CD, 0x09CD },
  130. { 0x09E2, 0x09E3 }, { 0x0A01, 0x0A02 }, { 0x0A3C, 0x0A3C },
  131. { 0x0A41, 0x0A42 }, { 0x0A47, 0x0A48 }, { 0x0A4B, 0x0A4D },
  132. { 0x0A70, 0x0A71 }, { 0x0A81, 0x0A82 }, { 0x0ABC, 0x0ABC },
  133. { 0x0AC1, 0x0AC5 }, { 0x0AC7, 0x0AC8 }, { 0x0ACD, 0x0ACD },
  134. { 0x0AE2, 0x0AE3 }, { 0x0B01, 0x0B01 }, { 0x0B3C, 0x0B3C },
  135. { 0x0B3F, 0x0B3F }, { 0x0B41, 0x0B43 }, { 0x0B4D, 0x0B4D },
  136. { 0x0B56, 0x0B56 }, { 0x0B82, 0x0B82 }, { 0x0BC0, 0x0BC0 },
  137. { 0x0BCD, 0x0BCD }, { 0x0C3E, 0x0C40 }, { 0x0C46, 0x0C48 },
  138. { 0x0C4A, 0x0C4D }, { 0x0C55, 0x0C56 }, { 0x0CBC, 0x0CBC },
  139. { 0x0CBF, 0x0CBF }, { 0x0CC6, 0x0CC6 }, { 0x0CCC, 0x0CCD },
  140. { 0x0CE2, 0x0CE3 }, { 0x0D41, 0x0D43 }, { 0x0D4D, 0x0D4D },
  141. { 0x0DCA, 0x0DCA }, { 0x0DD2, 0x0DD4 }, { 0x0DD6, 0x0DD6 },
  142. { 0x0E31, 0x0E31 }, { 0x0E34, 0x0E3A }, { 0x0E47, 0x0E4E },
  143. { 0x0EB1, 0x0EB1 }, { 0x0EB4, 0x0EB9 }, { 0x0EBB, 0x0EBC },
  144. { 0x0EC8, 0x0ECD }, { 0x0F18, 0x0F19 }, { 0x0F35, 0x0F35 },
  145. { 0x0F37, 0x0F37 }, { 0x0F39, 0x0F39 }, { 0x0F71, 0x0F7E },
  146. { 0x0F80, 0x0F84 }, { 0x0F86, 0x0F87 }, { 0x0F90, 0x0F97 },
  147. { 0x0F99, 0x0FBC }, { 0x0FC6, 0x0FC6 }, { 0x102D, 0x1030 },
  148. { 0x1032, 0x1032 }, { 0x1036, 0x1037 }, { 0x1039, 0x1039 },
  149. { 0x1058, 0x1059 }, { 0x1160, 0x11FF }, { 0x135F, 0x135F },
  150. { 0x1712, 0x1714 }, { 0x1732, 0x1734 }, { 0x1752, 0x1753 },
  151. { 0x1772, 0x1773 }, { 0x17B4, 0x17B5 }, { 0x17B7, 0x17BD },
  152. { 0x17C6, 0x17C6 }, { 0x17C9, 0x17D3 }, { 0x17DD, 0x17DD },
  153. { 0x180B, 0x180D }, { 0x18A9, 0x18A9 }, { 0x1920, 0x1922 },
  154. { 0x1927, 0x1928 }, { 0x1932, 0x1932 }, { 0x1939, 0x193B },
  155. { 0x1A17, 0x1A18 }, { 0x1B00, 0x1B03 }, { 0x1B34, 0x1B34 },
  156. { 0x1B36, 0x1B3A }, { 0x1B3C, 0x1B3C }, { 0x1B42, 0x1B42 },
  157. { 0x1B6B, 0x1B73 }, { 0x1DC0, 0x1DCA }, { 0x1DFE, 0x1DFF },
  158. { 0x200B, 0x200F }, { 0x202A, 0x202E }, { 0x2060, 0x2063 },
  159. { 0x206A, 0x206F }, { 0x20D0, 0x20EF }, { 0x302A, 0x302F },
  160. { 0x3099, 0x309A }, { 0xA806, 0xA806 }, { 0xA80B, 0xA80B },
  161. { 0xA825, 0xA826 }, { 0xFB1E, 0xFB1E }, { 0xFE00, 0xFE0F },
  162. { 0xFE20, 0xFE23 }, { 0xFEFF, 0xFEFF }, { 0xFFF9, 0xFFFB },
  163. { 0x10A01, 0x10A03 }, { 0x10A05, 0x10A06 }, { 0x10A0C, 0x10A0F },
  164. { 0x10A38, 0x10A3A }, { 0x10A3F, 0x10A3F }, { 0x1D167, 0x1D169 },
  165. { 0x1D173, 0x1D182 }, { 0x1D185, 0x1D18B }, { 0x1D1AA, 0x1D1AD },
  166. { 0x1D242, 0x1D244 }, { 0xE0001, 0xE0001 }, { 0xE0020, 0xE007F },
  167. { 0xE0100, 0xE01EF }
  168. };
  169. /* test for 8-bit control characters */
  170. if (ucs == 0)
  171. return 0;
  172. if (ucs < 32 || (ucs >= 0x7f && ucs < 0xa0))
  173. return -1;
  174. /* binary search in table of non-spacing characters */
  175. if (bisearch(ucs, combining,
  176. sizeof(combining) / sizeof(struct interval) - 1))
  177. return 0;
  178. /* if we arrive here, ucs is not a combining or C0/C1 control character */
  179. return 1 +
  180. (ucs >= 0x1100 &&
  181. (ucs <= 0x115f || /* Hangul Jamo init. consonants */
  182. ucs == 0x2329 || ucs == 0x232a ||
  183. (ucs >= 0x2e80 && ucs <= 0xa4cf &&
  184. ucs != 0x303f) || /* CJK ... Yi */
  185. (ucs >= 0xac00 && ucs <= 0xd7a3) || /* Hangul Syllables */
  186. (ucs >= 0xf900 && ucs <= 0xfaff) || /* CJK Compatibility Ideographs */
  187. (ucs >= 0xfe10 && ucs <= 0xfe19) || /* Vertical forms */
  188. (ucs >= 0xfe30 && ucs <= 0xfe6f) || /* CJK Compatibility Forms */
  189. (ucs >= 0xff00 && ucs <= 0xff60) || /* Fullwidth Forms */
  190. (ucs >= 0xffe0 && ucs <= 0xffe6) ||
  191. (ucs >= 0x20000 && ucs <= 0x2fffd) ||
  192. (ucs >= 0x30000 && ucs <= 0x3fffd)));
  193. }
  194. int mk_wcswidth(const wchar_t *pwcs, size_t n)
  195. {
  196. int w, width = 0;
  197. for (;*pwcs && n-- > 0; pwcs++)
  198. if ((w = mk_wcwidth(*pwcs)) < 0)
  199. return -1;
  200. else
  201. width += w;
  202. return width;
  203. }
  204. /*
  205. * The following functions are the same as mk_wcwidth() and
  206. * mk_wcswidth(), except that spacing characters in the East Asian
  207. * Ambiguous (A) category as defined in Unicode Technical Report #11
  208. * have a column width of 2. This variant might be useful for users of
  209. * CJK legacy encodings who want to migrate to UCS without changing
  210. * the traditional terminal character-width behaviour. It is not
  211. * otherwise recommended for general use.
  212. */
  213. int mk_wcwidth_cjk(wchar_t ucs)
  214. {
  215. /* sorted list of non-overlapping intervals of East Asian Ambiguous
  216. * characters, generated by "uniset +WIDTH-A -cat=Me -cat=Mn -cat=Cf c" */
  217. static const struct interval ambiguous[] = {
  218. { 0x00A1, 0x00A1 }, { 0x00A4, 0x00A4 }, { 0x00A7, 0x00A8 },
  219. { 0x00AA, 0x00AA }, { 0x00AE, 0x00AE }, { 0x00B0, 0x00B4 },
  220. { 0x00B6, 0x00BA }, { 0x00BC, 0x00BF }, { 0x00C6, 0x00C6 },
  221. { 0x00D0, 0x00D0 }, { 0x00D7, 0x00D8 }, { 0x00DE, 0x00E1 },
  222. { 0x00E6, 0x00E6 }, { 0x00E8, 0x00EA }, { 0x00EC, 0x00ED },
  223. { 0x00F0, 0x00F0 }, { 0x00F2, 0x00F3 }, { 0x00F7, 0x00FA },
  224. { 0x00FC, 0x00FC }, { 0x00FE, 0x00FE }, { 0x0101, 0x0101 },
  225. { 0x0111, 0x0111 }, { 0x0113, 0x0113 }, { 0x011B, 0x011B },
  226. { 0x0126, 0x0127 }, { 0x012B, 0x012B }, { 0x0131, 0x0133 },
  227. { 0x0138, 0x0138 }, { 0x013F, 0x0142 }, { 0x0144, 0x0144 },
  228. { 0x0148, 0x014B }, { 0x014D, 0x014D }, { 0x0152, 0x0153 },
  229. { 0x0166, 0x0167 }, { 0x016B, 0x016B }, { 0x01CE, 0x01CE },
  230. { 0x01D0, 0x01D0 }, { 0x01D2, 0x01D2 }, { 0x01D4, 0x01D4 },
  231. { 0x01D6, 0x01D6 }, { 0x01D8, 0x01D8 }, { 0x01DA, 0x01DA },
  232. { 0x01DC, 0x01DC }, { 0x0251, 0x0251 }, { 0x0261, 0x0261 },
  233. { 0x02C4, 0x02C4 }, { 0x02C7, 0x02C7 }, { 0x02C9, 0x02CB },
  234. { 0x02CD, 0x02CD }, { 0x02D0, 0x02D0 }, { 0x02D8, 0x02DB },
  235. { 0x02DD, 0x02DD }, { 0x02DF, 0x02DF }, { 0x0391, 0x03A1 },
  236. { 0x03A3, 0x03A9 }, { 0x03B1, 0x03C1 }, { 0x03C3, 0x03C9 },
  237. { 0x0401, 0x0401 }, { 0x0410, 0x044F }, { 0x0451, 0x0451 },
  238. { 0x2010, 0x2010 }, { 0x2013, 0x2016 }, { 0x2018, 0x2019 },
  239. { 0x201C, 0x201D }, { 0x2020, 0x2022 }, { 0x2024, 0x2027 },
  240. { 0x2030, 0x2030 }, { 0x2032, 0x2033 }, { 0x2035, 0x2035 },
  241. { 0x203B, 0x203B }, { 0x203E, 0x203E }, { 0x2074, 0x2074 },
  242. { 0x207F, 0x207F }, { 0x2081, 0x2084 }, { 0x20AC, 0x20AC },
  243. { 0x2103, 0x2103 }, { 0x2105, 0x2105 }, { 0x2109, 0x2109 },
  244. { 0x2113, 0x2113 }, { 0x2116, 0x2116 }, { 0x2121, 0x2122 },
  245. { 0x2126, 0x2126 }, { 0x212B, 0x212B }, { 0x2153, 0x2154 },
  246. { 0x215B, 0x215E }, { 0x2160, 0x216B }, { 0x2170, 0x2179 },
  247. { 0x2190, 0x2199 }, { 0x21B8, 0x21B9 }, { 0x21D2, 0x21D2 },
  248. { 0x21D4, 0x21D4 }, { 0x21E7, 0x21E7 }, { 0x2200, 0x2200 },
  249. { 0x2202, 0x2203 }, { 0x2207, 0x2208 }, { 0x220B, 0x220B },
  250. { 0x220F, 0x220F }, { 0x2211, 0x2211 }, { 0x2215, 0x2215 },
  251. { 0x221A, 0x221A }, { 0x221D, 0x2220 }, { 0x2223, 0x2223 },
  252. { 0x2225, 0x2225 }, { 0x2227, 0x222C }, { 0x222E, 0x222E },
  253. { 0x2234, 0x2237 }, { 0x223C, 0x223D }, { 0x2248, 0x2248 },
  254. { 0x224C, 0x224C }, { 0x2252, 0x2252 }, { 0x2260, 0x2261 },
  255. { 0x2264, 0x2267 }, { 0x226A, 0x226B }, { 0x226E, 0x226F },
  256. { 0x2282, 0x2283 }, { 0x2286, 0x2287 }, { 0x2295, 0x2295 },
  257. { 0x2299, 0x2299 }, { 0x22A5, 0x22A5 }, { 0x22BF, 0x22BF },
  258. { 0x2312, 0x2312 }, { 0x2460, 0x24E9 }, { 0x24EB, 0x254B },
  259. { 0x2550, 0x2573 }, { 0x2580, 0x258F }, { 0x2592, 0x2595 },
  260. { 0x25A0, 0x25A1 }, { 0x25A3, 0x25A9 }, { 0x25B2, 0x25B3 },
  261. { 0x25B6, 0x25B7 }, { 0x25BC, 0x25BD }, { 0x25C0, 0x25C1 },
  262. { 0x25C6, 0x25C8 }, { 0x25CB, 0x25CB }, { 0x25CE, 0x25D1 },
  263. { 0x25E2, 0x25E5 }, { 0x25EF, 0x25EF }, { 0x2605, 0x2606 },
  264. { 0x2609, 0x2609 }, { 0x260E, 0x260F }, { 0x2614, 0x2615 },
  265. { 0x261C, 0x261C }, { 0x261E, 0x261E }, { 0x2640, 0x2640 },
  266. { 0x2642, 0x2642 }, { 0x2660, 0x2661 }, { 0x2663, 0x2665 },
  267. { 0x2667, 0x266A }, { 0x266C, 0x266D }, { 0x266F, 0x266F },
  268. { 0x273D, 0x273D }, { 0x2776, 0x277F }, { 0xE000, 0xF8FF },
  269. { 0xFFFD, 0xFFFD }, { 0xF0000, 0xFFFFD }, { 0x100000, 0x10FFFD }
  270. };
  271. /* binary search in table of non-spacing characters */
  272. if (bisearch(ucs, ambiguous,
  273. sizeof(ambiguous) / sizeof(struct interval) - 1))
  274. return 2;
  275. return mk_wcwidth(ucs);
  276. }
  277. int mk_wcswidth_cjk(const wchar_t *pwcs, size_t n)
  278. {
  279. int w, width = 0;
  280. for (;*pwcs && n-- > 0; pwcs++)
  281. if ((w = mk_wcwidth_cjk(*pwcs)) < 0)
  282. return -1;
  283. else
  284. width += w;
  285. return width;
  286. }