12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109 |
- /***************************************************************************
- frames.hpp `- description
- -------------------------
- begin : June 2006
- copyright : (C) 2006 Erwin Aertbelien
- email : firstname.lastname@mech.kuleuven.be
- History (only major changes)( AUTHOR-Description ) :
- ***************************************************************************
- * This library is free software; you can redistribute it and/or *
- * modify it under the terms of the GNU Lesser General Public *
- * License as published by the Free Software Foundation; either *
- * version 2.1 of the License, or (at your option) any later version. *
- * *
- * This library is distributed in the hope that it will be useful, *
- * but WITHOUT ANY WARRANTY; without even the implied warranty of *
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
- * Lesser General Public License for more details. *
- * *
- * You should have received a copy of the GNU Lesser General Public *
- * License along with this library; if not, write to the Free Software *
- * Foundation, Inc., 51 Franklin Street, *
- * Fifth Floor, Boston, MA 02110-1301, USA. *
- * *
- ***************************************************************************/
- /**
- * \file
- * \warning
- * Efficienty can be improved by writing p2 = A*(B*(C*p1))) instead of
- * p2=A*B*C*p1
- *
- * \par PROPOSED NAMING CONVENTION FOR FRAME-like OBJECTS
- *
- * \verbatim
- * A naming convention of objects of the type defined in this file :
- * (1) Frame : F...
- * Rotation : R ...
- * (2) Twist : T ...
- * Wrench : W ...
- * Vector : V ...
- * This prefix is followed by :
- * for category (1) :
- * F_A_B : w.r.t. frame A, frame B expressed
- * ( each column of F_A_B corresponds to an axis of B,
- * expressed w.r.t. frame A )
- * in mathematical convention :
- * A
- * F_A_B == F
- * B
- *
- * for category (2) :
- * V_B : a vector expressed w.r.t. frame B
- *
- * This can also be prepended by a name :
- * e.g. : temporaryV_B
- *
- * With this convention one can write :
- *
- * F_A_B = F_B_A.Inverse();
- * F_A_C = F_A_B * F_B_C;
- * V_B = F_B_C * V_C; // both translation and rotation
- * V_B = R_B_C * V_C; // only rotation
- * \endverbatim
- *
- * \par CONVENTIONS FOR WHEN USED WITH ROBOTS :
- *
- * \verbatim
- * world : represents the frame ([1 0 0,0 1 0,0 0 1],[0 0 0]')
- * mp : represents mounting plate of a robot
- * (i.e. everything before MP is constructed by robot manufacturer
- * everything after MP is tool )
- * tf : represents task frame of a robot
- * (i.e. frame in which motion and force control is expressed)
- * sf : represents sensor frame of a robot
- * (i.e. frame at which the forces measured by the force sensor
- * are expressed )
- *
- * Frame F_world_mp=...;
- * Frame F_mp_sf(..)
- * Frame F_mp_tf(,.)
- *
- * Wrench are measured in sensor frame SF, so one could write :
- * Wrench_tf = F_mp_tf.Inverse()* ( F_mp_sf * Wrench_sf );
- * \endverbatim
- *
- * \par CONVENTIONS REGARDING UNITS :
- * Any consistent series of units can be used, e.g. N,mm,Nmm,..mm/sec
- *
- * \par Twist and Wrench transformations
- * 3 different types of transformations do exist for the twists
- * and wrenches.
- *
- * \verbatim
- * 1) Frame * Twist or Frame * Wrench :
- * this transforms both the velocity/force reference point
- * and the basis to which the twist/wrench are expressed.
- * 2) Rotation * Twist or Rotation * Wrench :
- * this transforms the basis to which the twist/wrench are
- * expressed, but leaves the reference point intact.
- * 3) Twist.RefPoint(v_base_AB) or Wrench.RefPoint(v_base_AB)
- * this transforms only the reference point. v is expressed
- * in the same base as the twist/wrench and points from the
- * old reference point to the new reference point.
- * \endverbatim
- *
- * \par Complexity
- * Sometimes the amount of work is given in the documentation
- * e.g. 6M+3A means 6 multiplications and 3 additions.
- *
- * Erwin Aertbelien, Div. PMA, Dep. of Mech. Eng., K.U.Leuven
- *
- ****************************************************************************/
- #ifndef KDL_FRAMES_H
- #define KDL_FRAMES_H
- #include "utilities/kdl-config.h"
- #include "utilities/utility.h"
- /////////////////////////////////////////////////////////////
- namespace KDL {
- class Vector;
- class Rotation;
- class Frame;
- class Wrench;
- class Twist;
- class Vector2;
- class Rotation2;
- class Frame2;
- /**
- * \brief A concrete implementation of a 3 dimensional vector class
- */
- class Vector
- {
- public:
- double data[3];
- //! Does not initialise the Vector to zero. use Vector::Zero() or SetToZero for that
- inline Vector() {data[0]=data[1]=data[2] = 0.0;}
- //! Constructs a vector out of the three values x, y and z
- inline Vector(double x,double y, double z);
- //! Constructs a vector out of an array of three values x, y and z
- inline Vector(double* xyz);
- //! Constructs a vector out of an array of three values x, y and z
- inline Vector(float* xyz);
- //! Assignment operator. The normal copy by value semantics.
- inline Vector(const Vector& arg);
- //! store vector components in array
- inline void GetValue(double* xyz) const;
- //! Assignment operator. The normal copy by value semantics.
- inline Vector& operator = ( const Vector& arg);
- //! Access to elements, range checked when NDEBUG is not set, from 0..2
- inline double operator()(int index) const;
- //! Access to elements, range checked when NDEBUG is not set, from 0..2
- inline double& operator() (int index);
- //! Equivalent to double operator()(int index) const
- double operator[] ( int index ) const
- {
- return this->operator() ( index );
- }
- //! Equivalent to double& operator()(int index)
- double& operator[] ( int index )
- {
- return this->operator() ( index );
- }
- inline double x() const;
- inline double y() const;
- inline double z() const;
- inline void x(double);
- inline void y(double);
- inline void z(double);
- //! Reverses the sign of the Vector object itself
- inline void ReverseSign();
- //! subtracts a vector from the Vector object itself
- inline Vector& operator-=(const Vector& arg);
- //! Adds a vector from the Vector object itself
- inline Vector& operator +=(const Vector& arg);
- //! Multiply by a scalar
- inline Vector& operator *=(double arg);
- //! Scalar multiplication is defined
- inline friend Vector operator*(const Vector& lhs,double rhs);
- //! Scalar multiplication is defined
- inline friend Vector operator*(double lhs,const Vector& rhs);
- //! Scalar division is defined
- inline friend Vector operator/(const Vector& lhs,double rhs);
- inline friend Vector operator+(const Vector& lhs,const Vector& rhs);
- inline friend Vector operator-(const Vector& lhs,const Vector& rhs);
- inline friend Vector operator*(const Vector& lhs,const Vector& rhs);
- inline friend Vector operator-(const Vector& arg);
- inline friend double dot(const Vector& lhs,const Vector& rhs);
- //! To have a uniform operator to put an element to zero, for scalar values
- //! and for objects.
- inline friend void SetToZero(Vector& v);
- //! @return a zero vector
- inline static Vector Zero();
- /** Normalizes this vector and returns it norm
- * makes v a unitvector and returns the norm of v.
- * if v is smaller than eps, Vector(1,0,0) is returned with norm 0.
- * if this is not good, check the return value of this method.
- */
- double Normalize(double eps=epsilon);
- //! @return the norm of the vector
- double Norm() const;
- //! a 3D vector where the 2D vector v is put in the XY plane
- inline void Set2DXY(const Vector2& v);
- //! a 3D vector where the 2D vector v is put in the YZ plane
- inline void Set2DYZ(const Vector2& v);
- //! a 3D vector where the 2D vector v is put in the ZX plane
- inline void Set2DZX(const Vector2& v);
- //! a 3D vector where the 2D vector v_XY is put in the XY plane of the frame F_someframe_XY.
- inline void Set2DPlane(const Frame& F_someframe_XY,const Vector2& v_XY);
- //! do not use operator == because the definition of Equal(.,.) is slightly
- //! different. It compares whether the 2 arguments are equal in an eps-interval
- inline friend bool Equal(const Vector& a,const Vector& b,double eps);
- //! return a normalized vector
- inline friend Vector Normalize(const Vector& a, double eps);
- //! The literal equality operator==(), also identical.
- inline friend bool operator==(const Vector& a,const Vector& b);
- //! The literal inequality operator!=().
- inline friend bool operator!=(const Vector& a,const Vector& b);
- friend class Rotation;
- friend class Frame;
- };
- inline Vector Normalize(const Vector&, double eps=epsilon);
- /**
- \brief represents rotations in 3 dimensional space.
- This class represents a rotation matrix with the following
- conventions :
- \verbatim
- Suppose V2 = R*V, (1)
- V is expressed in frame B
- V2 is expressed in frame A
- This matrix R consists of 3 collumns [ X,Y,Z ],
- X,Y, and Z contain the axes of frame B, expressed in frame A
- Because of linearity expr(1) is valid.
- \endverbatim
- This class only represents rotational_interpolation, not translation
- Two interpretations are possible for rotation angles.
- * if you rotate with angle around X frame A to have frame B,
- then the result of SetRotX is equal to frame B expressed wrt A.
- In code:
- \verbatim
- Rotation R;
- F_A_B = R.SetRotX(angle);
- \endverbatim
- * Secondly, if you take the following code :
- \verbatim
- Vector p,p2; Rotation R;
- R.SetRotX(angle);
- p2 = R*p;
- \endverbatim
- then the frame p2 is rotated around X axis with (-angle).
- Analogue reasonings can be applyd to SetRotY,SetRotZ,SetRot
- \par type
- Concrete implementation
- */
- class Rotation
- {
- public:
- double data[9];
- inline Rotation() {
- *this = Identity();
- }
- inline Rotation(double Xx,double Yx,double Zx,
- double Xy,double Yy,double Zy,
- double Xz,double Yz,double Zz);
- inline Rotation(const Vector& x,const Vector& y,const Vector& z);
- // default copy constructor is sufficient
- inline void setValue(float* oglmat);
- inline void getValue(float* oglmat) const;
- inline Rotation& operator=(const Rotation& arg);
- //! Defines a multiplication R*V between a Rotation R and a Vector V.
- //! Complexity : 9M+6A
- inline Vector operator*(const Vector& v) const;
- //! Access to elements 0..2,0..2, bounds are checked when NDEBUG is not set
- inline double& operator()(int i,int j);
- //! Access to elements 0..2,0..2, bounds are checked when NDEBUG is not set
- inline double operator() (int i,int j) const;
- friend Rotation operator *(const Rotation& lhs,const Rotation& rhs);
- //! Sets the value of *this to its inverse.
- inline void SetInverse();
- //! Gives back the inverse rotation matrix of *this.
- inline Rotation Inverse() const;
- //! The same as R.Inverse()*v but more efficient.
- inline Vector Inverse(const Vector& v) const;
- //! The same as R.Inverse()*arg but more efficient.
- inline Wrench Inverse(const Wrench& arg) const;
- //! The same as R.Inverse()*arg but more efficient.
- inline Twist Inverse(const Twist& arg) const;
- //! Gives back an identity rotaton matrix
- inline static Rotation Identity();
- // = Rotations
- //! The Rot... static functions give the value of the appropriate rotation matrix back.
- inline static Rotation RotX(double angle);
- //! The Rot... static functions give the value of the appropriate rotation matrix back.
- inline static Rotation RotY(double angle);
- //! The Rot... static functions give the value of the appropriate rotation matrix back.
- inline static Rotation RotZ(double angle);
- //! The DoRot... functions apply a rotation R to *this,such that *this = *this * Rot..
- //! DoRot... functions are only defined when they can be executed more efficiently
- inline void DoRotX(double angle);
- //! The DoRot... functions apply a rotation R to *this,such that *this = *this * Rot..
- //! DoRot... functions are only defined when they can be executed more efficiently
- inline void DoRotY(double angle);
- //! The DoRot... functions apply a rotation R to *this,such that *this = *this * Rot..
- //! DoRot... functions are only defined when they can be executed more efficiently
- inline void DoRotZ(double angle);
- //! Along an arbitrary axes. It is not necessary to normalize rotaxis.
- //! returns identity rotation matrix in the case that the norm of rotaxis
- //! is to small to be used.
- // @see Rot2 if you want to handle this error in another way.
- static Rotation Rot(const Vector& rotaxis,double angle);
- //! Along an arbitrary axes. rotvec should be normalized.
- static Rotation Rot2(const Vector& rotvec,double angle);
-
- // make sure the matrix is a pure rotation (no scaling)
- void Ortho();
- //! Returns a vector with the direction of the equiv. axis
- //! and its norm is angle
- Vector GetRot() const;
- //! Returns a 2D vector representing the equivalent rotation in the XZ plane that brings the
- //! Y axis onto the Matrix Y axis and its norm is angle
- Vector2 GetXZRot() const;
- /** Returns the rotation angle around the equiv. axis
- * @param axis the rotation axis is returned in this variable
- * @param eps : in the case of angle == 0 : rot axis is undefined and choosen
- * to be +/- Z-axis
- * in the case of angle == PI : 2 solutions, positive Z-component
- * of the axis is choosen.
- * @result returns the rotation angle (between [0..PI] )
- */
- double GetRotAngle(Vector& axis,double eps=epsilon) const;
- //! Gives back a rotation matrix specified with EulerZYZ convention :
- //! First rotate around Z with alfa,
- //! then around the new Y with beta, then around
- //! new Z with gamma.
- static Rotation EulerZYZ(double Alfa,double Beta,double Gamma);
- //! Gives back the EulerZYZ convention description of the rotation matrix :
- //! First rotate around Z with alfa,
- //! then around the new Y with beta, then around
- //! new Z with gamma.
- //!
- //! Variables are bound by
- //! (-PI <= alfa <= PI),
- //! (0 <= beta <= PI),
- //! (-PI <= alfa <= PI)
- void GetEulerZYZ(double& alfa,double& beta,double& gamma) const;
- //! Sets the value of this object to a rotation specified with RPY convention:
- //! first rotate around X with roll, then around the
- //! old Y with pitch, then around old Z with alfa
- static Rotation RPY(double roll,double pitch,double yaw);
- //! Gives back a vector in RPY coordinates, variables are bound by
- //! -PI <= roll <= PI
- //! -PI <= Yaw <= PI
- //! -PI/2 <= PITCH <= PI/2
- //!
- //! convention : first rotate around X with roll, then around the
- //! old Y with pitch, then around old Z with alfa
- void GetRPY(double& roll,double& pitch,double& yaw) const;
- //! Gives back a rotation matrix specified with EulerZYX convention :
- //! First rotate around Z with alfa,
- //! then around the new Y with beta, then around
- //! new X with gamma.
- //!
- //! closely related to RPY-convention
- inline static Rotation EulerZYX(double Alfa,double Beta,double Gamma) {
- return RPY(Gamma,Beta,Alfa);
- }
- //! GetEulerZYX gets the euler ZYX parameters of a rotation :
- //! First rotate around Z with alfa,
- //! then around the new Y with beta, then around
- //! new X with gamma.
- //!
- //! Range of the results of GetEulerZYX :
- //! -PI <= alfa <= PI
- //! -PI <= gamma <= PI
- //! -PI/2 <= beta <= PI/2
- //!
- //! Closely related to RPY-convention.
- inline void GetEulerZYX(double& Alfa,double& Beta,double& Gamma) const {
- GetRPY(Gamma,Beta,Alfa);
- }
- //! Transformation of the base to which the twist is expressed.
- //! Complexity : 18M+12A
- //! @see Frame*Twist for a transformation that also transforms
- //! the velocity reference point.
- inline Twist operator * (const Twist& arg) const;
- //! Transformation of the base to which the wrench is expressed.
- //! Complexity : 18M+12A
- //! @see Frame*Wrench for a transformation that also transforms
- //! the force reference point.
- inline Wrench operator * (const Wrench& arg) const;
- //! Access to the underlying unitvectors of the rotation matrix
- inline Vector UnitX() const {
- return Vector(data[0],data[3],data[6]);
- }
- //! Access to the underlying unitvectors of the rotation matrix
- inline void UnitX(const Vector& X) {
- data[0] = X(0);
- data[3] = X(1);
- data[6] = X(2);
- }
- //! Access to the underlying unitvectors of the rotation matrix
- inline Vector UnitY() const {
- return Vector(data[1],data[4],data[7]);
- }
- //! Access to the underlying unitvectors of the rotation matrix
- inline void UnitY(const Vector& X) {
- data[1] = X(0);
- data[4] = X(1);
- data[7] = X(2);
- }
- //! Access to the underlying unitvectors of the rotation matrix
- inline Vector UnitZ() const {
- return Vector(data[2],data[5],data[8]);
- }
- //! Access to the underlying unitvectors of the rotation matrix
- inline void UnitZ(const Vector& X) {
- data[2] = X(0);
- data[5] = X(1);
- data[8] = X(2);
- }
- //! do not use operator == because the definition of Equal(.,.) is slightly
- //! different. It compares whether the 2 arguments are equal in an eps-interval
- //! The literal equality operator==(), also identical.
- friend bool operator==(const Rotation& a,const Rotation& b);
- //! The literal inequality operator!=()
- friend bool operator!=(const Rotation& a,const Rotation& b);
- friend class Frame;
- };
- bool operator==(const Rotation& a,const Rotation& b);
- /**
- \brief represents a frame transformation in 3D space (rotation + translation)
- if V2 = Frame*V1 (V2 expressed in frame A, V1 expressed in frame B)
- then V2 = Frame.M*V1+Frame.p
- Frame.M contains columns that represent the axes of frame B wrt frame A
- Frame.p contains the origin of frame B expressed in frame A.
- */
- class Frame {
- public:
- Vector p; //!< origine of the Frame
- Rotation M; //!< Orientation of the Frame
- public:
- inline Frame(const Rotation& R,const Vector& V);
- //! The rotation matrix defaults to identity
- explicit inline Frame(const Vector& V);
- //! The position matrix defaults to zero
- explicit inline Frame(const Rotation& R);
- inline void setValue(float* oglmat);
- inline void getValue(float* oglmat) const;
- inline Frame() {}
- //! The copy constructor. Normal copy by value semantics.
- inline Frame(const Frame& arg);
- //! Reads data from an double array
- //\TODO should be formulated as a constructor
- void Make4x4(double* d);
- //! Treats a frame as a 4x4 matrix and returns element i,j
- //! Access to elements 0..3,0..3, bounds are checked when NDEBUG is not set
- inline double operator()(int i,int j);
- //! Treats a frame as a 4x4 matrix and returns element i,j
- //! Access to elements 0..3,0..3, bounds are checked when NDEBUG is not set
- inline double operator() (int i,int j) const;
- // = Inverse
- //! Gives back inverse transformation of a Frame
- inline Frame Inverse() const;
- //! The same as p2=R.Inverse()*p but more efficient.
- inline Vector Inverse(const Vector& arg) const;
- //! The same as p2=R.Inverse()*p but more efficient.
- inline Wrench Inverse(const Wrench& arg) const;
- //! The same as p2=R.Inverse()*p but more efficient.
- inline Twist Inverse(const Twist& arg) const;
- //! Normal copy-by-value semantics.
- inline Frame& operator = (const Frame& arg);
- //! Transformation of the base to which the vector
- //! is expressed.
- inline Vector operator * (const Vector& arg) const;
- //! Transformation of both the force reference point
- //! and of the base to which the wrench is expressed.
- //! look at Rotation*Wrench operator for a transformation
- //! of only the base to which the twist is expressed.
- //!
- //! Complexity : 24M+18A
- inline Wrench operator * (const Wrench& arg) const;
- //! Transformation of both the velocity reference point
- //! and of the base to which the twist is expressed.
- //! look at Rotation*Twist for a transformation of only the
- //! base to which the twist is expressed.
- //!
- //! Complexity : 24M+18A
- inline Twist operator * (const Twist& arg) const;
- //! Composition of two frames.
- inline friend Frame operator *(const Frame& lhs,const Frame& rhs);
- //! @return the identity transformation Frame(Rotation::Identity(),Vector::Zero()).
- inline static Frame Identity();
- //! The twist <t_this> is expressed wrt the current
- //! frame. This frame is integrated into an updated frame with
- //! <samplefrequency>. Very simple first order integration rule.
- inline void Integrate(const Twist& t_this,double frequency);
- /*
- // DH_Craig1989 : constructs a transformationmatrix
- // T_link(i-1)_link(i) with the Denavit-Hartenberg convention as
- // described in the Craigs book: Craig, J. J.,Introduction to
- // Robotics: Mechanics and Control, Addison-Wesley,
- // isbn:0-201-10326-5, 1986.
- //
- // Note that the frame is a redundant way to express the information
- // in the DH-convention.
- // \verbatim
- // Parameters in full : a(i-1),alpha(i-1),d(i),theta(i)
- //
- // axis i-1 is connected by link i-1 to axis i numbering axis 1
- // to axis n link 0 (immobile base) to link n
- //
- // link length a(i-1) length of the mutual perpendicular line
- // (normal) between the 2 axes. This normal runs from (i-1) to
- // (i) axis.
- //
- // link twist alpha(i-1): construct plane perpendicular to the
- // normal project axis(i-1) and axis(i) into plane angle from
- // (i-1) to (i) measured in the direction of the normal
- //
- // link offset d(i) signed distance between normal (i-1) to (i)
- // and normal (i) to (i+1) along axis i joint angle theta(i)
- // signed angle between normal (i-1) to (i) and normal (i) to
- // (i+1) along axis i
- //
- // First and last joints : a(0)= a(n) = 0
- // alpha(0) = alpha(n) = 0
- //
- // PRISMATIC : theta(1) = 0 d(1) arbitrarily
- //
- // REVOLUTE : theta(1) arbitrarily d(1) = 0
- //
- // Not unique : if intersecting joint axis 2 choices for normal
- // Frame assignment of the DH convention : Z(i-1) follows axis
- // (i-1) X(i-1) is the normal between axis(i-1) and axis(i)
- // Y(i-1) follows out of Z(i-1) and X(i-1)
- //
- // a(i-1) = distance from Z(i-1) to Z(i) along X(i-1)
- // alpha(i-1) = angle between Z(i-1) to Z(i) along X(i-1)
- // d(i) = distance from X(i-1) to X(i) along Z(i)
- // theta(i) = angle between X(i-1) to X(i) along X(i)
- // \endverbatim
- */
- static Frame DH_Craig1989(double a,double alpha,double d,double theta);
- // DH : constructs a transformationmatrix T_link(i-1)_link(i) with
- // the Denavit-Hartenberg convention as described in the original
- // publictation: Denavit, J. and Hartenberg, R. S., A kinematic
- // notation for lower-pair mechanisms based on matrices, ASME
- // Journal of Applied Mechanics, 23:215-221, 1955.
- static Frame DH(double a,double alpha,double d,double theta);
- //! do not use operator == because the definition of Equal(.,.) is slightly
- //! different. It compares whether the 2 arguments are equal in an eps-interval
- inline friend bool Equal(const Frame& a,const Frame& b,double eps);
- //! The literal equality operator==(), also identical.
- inline friend bool operator==(const Frame& a,const Frame& b);
- //! The literal inequality operator!=().
- inline friend bool operator!=(const Frame& a,const Frame& b);
- };
- /**
- * \brief represents both translational and rotational velocities.
- *
- * This class represents a twist. A twist is the combination of translational
- * velocity and rotational velocity applied at one point.
- */
- class Twist {
- public:
- Vector vel; //!< The velocity of that point
- Vector rot; //!< The rotational velocity of that point.
- public:
- //! The default constructor initialises to Zero via the constructor of Vector.
- Twist():vel(),rot() {};
- Twist(const Vector& _vel,const Vector& _rot):vel(_vel),rot(_rot) {};
- inline Twist& operator-=(const Twist& arg);
- inline Twist& operator+=(const Twist& arg);
- //! index-based access to components, first vel(0..2), then rot(3..5)
- inline double& operator()(int i);
- //! index-based access to components, first vel(0..2), then rot(3..5)
- //! For use with a const Twist
- inline double operator()(int i) const;
- double operator[] ( int index ) const
- {
- return this->operator() ( index );
- }
- double& operator[] ( int index )
- {
- return this->operator() ( index );
- }
- inline friend Twist operator*(const Twist& lhs,double rhs);
- inline friend Twist operator*(double lhs,const Twist& rhs);
- inline friend Twist operator/(const Twist& lhs,double rhs);
- inline friend Twist operator+(const Twist& lhs,const Twist& rhs);
- inline friend Twist operator-(const Twist& lhs,const Twist& rhs);
- inline friend Twist operator-(const Twist& arg);
- inline friend double dot(const Twist& lhs,const Wrench& rhs);
- inline friend double dot(const Wrench& rhs,const Twist& lhs);
- inline friend void SetToZero(Twist& v);
- //! @return a zero Twist : Twist(Vector::Zero(),Vector::Zero())
- static inline Twist Zero();
- //! Reverses the sign of the twist
- inline void ReverseSign();
- //! Changes the reference point of the twist.
- //! The vector v_base_AB is expressed in the same base as the twist
- //! The vector v_base_AB is a vector from the old point to
- //! the new point.
- //!
- //! Complexity : 6M+6A
- inline Twist RefPoint(const Vector& v_base_AB) const;
- //! do not use operator == because the definition of Equal(.,.) is slightly
- //! different. It compares whether the 2 arguments are equal in an eps-interval
- inline friend bool Equal(const Twist& a,const Twist& b,double eps);
- //! The literal equality operator==(), also identical.
- inline friend bool operator==(const Twist& a,const Twist& b);
- //! The literal inequality operator!=().
- inline friend bool operator!=(const Twist& a,const Twist& b);
- // = Friends
- friend class Rotation;
- friend class Frame;
- };
- /**
- * \brief represents both translational and rotational acceleration.
- *
- * This class represents an acceleration twist. A acceleration twist is
- * the combination of translational
- * acceleration and rotational acceleration applied at one point.
- */
- /*
- class AccelerationTwist {
- public:
- Vector trans; //!< The translational acceleration of that point
- Vector rot; //!< The rotational acceleration of that point.
- public:
- //! The default constructor initialises to Zero via the constructor of Vector.
- AccelerationTwist():trans(),rot() {};
- AccelerationTwist(const Vector& _trans,const Vector& _rot):trans(_trans),rot(_rot) {};
- inline AccelerationTwist& operator-=(const AccelerationTwist& arg);
- inline AccelerationTwist& operator+=(const AccelerationTwist& arg);
- //! index-based access to components, first vel(0..2), then rot(3..5)
- inline double& operator()(int i);
- //! index-based access to components, first vel(0..2), then rot(3..5)
- //! For use with a const AccelerationTwist
- inline double operator()(int i) const;
- double operator[] ( int index ) const
- {
- return this->operator() ( index );
- }
- double& operator[] ( int index )
- {
- return this->operator() ( index );
- }
- inline friend AccelerationTwist operator*(const AccelerationTwist& lhs,double rhs);
- inline friend AccelerationTwist operator*(double lhs,const AccelerationTwist& rhs);
- inline friend AccelerationTwist operator/(const AccelerationTwist& lhs,double rhs);
- inline friend AccelerationTwist operator+(const AccelerationTwist& lhs,const AccelerationTwist& rhs);
- inline friend AccelerationTwist operator-(const AccelerationTwist& lhs,const AccelerationTwist& rhs);
- inline friend AccelerationTwist operator-(const AccelerationTwist& arg);
- //inline friend double dot(const AccelerationTwist& lhs,const Wrench& rhs);
- //inline friend double dot(const Wrench& rhs,const AccelerationTwist& lhs);
- inline friend void SetToZero(AccelerationTwist& v);
- //! @return a zero AccelerationTwist : AccelerationTwist(Vector::Zero(),Vector::Zero())
- static inline AccelerationTwist Zero();
- //! Reverses the sign of the AccelerationTwist
- inline void ReverseSign();
- //! Changes the reference point of the AccelerationTwist.
- //! The vector v_base_AB is expressed in the same base as the AccelerationTwist
- //! The vector v_base_AB is a vector from the old point to
- //! the new point.
- //!
- //! Complexity : 6M+6A
- inline AccelerationTwist RefPoint(const Vector& v_base_AB) const;
- //! do not use operator == because the definition of Equal(.,.) is slightly
- //! different. It compares whether the 2 arguments are equal in an eps-interval
- inline friend bool Equal(const AccelerationTwist& a,const AccelerationTwist& b,double eps=epsilon);
- //! The literal equality operator==(), also identical.
- inline friend bool operator==(const AccelerationTwist& a,const AccelerationTwist& b);
- //! The literal inequality operator!=().
- inline friend bool operator!=(const AccelerationTwist& a,const AccelerationTwist& b);
- // = Friends
- friend class Rotation;
- friend class Frame;
- };
- */
- /**
- * \brief represents the combination of a force and a torque.
- *
- * This class represents a Wrench. A Wrench is the force and torque applied at a point
- */
- class Wrench
- {
- public:
- Vector force; //!< Force that is applied at the origin of the current ref frame
- Vector torque; //!< Torque that is applied at the origin of the current ref frame
- public:
- //! Does initialise force and torque to zero via the underlying constructor of Vector
- Wrench():force(),torque() {};
- Wrench(const Vector& _force,const Vector& _torque):force(_force),torque(_torque) {};
- // = Operators
- inline Wrench& operator-=(const Wrench& arg);
- inline Wrench& operator+=(const Wrench& arg);
- //! index-based access to components, first force(0..2), then torque(3..5)
- inline double& operator()(int i);
- //! index-based access to components, first force(0..2), then torque(3..5)
- //! for use with a const Wrench
- inline double operator()(int i) const;
- double operator[] ( int index ) const
- {
- return this->operator() ( index );
- }
- double& operator[] ( int index )
- {
- return this->operator() ( index );
- }
- //! Scalar multiplication
- inline friend Wrench operator*(const Wrench& lhs,double rhs);
- //! Scalar multiplication
- inline friend Wrench operator*(double lhs,const Wrench& rhs);
- //! Scalar division
- inline friend Wrench operator/(const Wrench& lhs,double rhs);
- inline friend Wrench operator+(const Wrench& lhs,const Wrench& rhs);
- inline friend Wrench operator-(const Wrench& lhs,const Wrench& rhs);
- //! An unary - operator
- inline friend Wrench operator-(const Wrench& arg);
- //! Sets the Wrench to Zero, to have a uniform function that sets an object or
- //! double to zero.
- inline friend void SetToZero(Wrench& v);
- //! @return a zero Wrench
- static inline Wrench Zero();
- //! Reverses the sign of the current Wrench
- inline void ReverseSign();
- //! Changes the reference point of the wrench.
- //! The vector v_base_AB is expressed in the same base as the twist
- //! The vector v_base_AB is a vector from the old point to
- //! the new point.
- //!
- //! Complexity : 6M+6A
- inline Wrench RefPoint(const Vector& v_base_AB) const;
- //! do not use operator == because the definition of Equal(.,.) is slightly
- //! different. It compares whether the 2 arguments are equal in an eps-interval
- inline friend bool Equal(const Wrench& a,const Wrench& b,double eps);
- //! The literal equality operator==(), also identical.
- inline friend bool operator==(const Wrench& a,const Wrench& b);
- //! The literal inequality operator!=().
- inline friend bool operator!=(const Wrench& a,const Wrench& b);
- friend class Rotation;
- friend class Frame;
- };
- //! 2D version of Vector
- class Vector2
- {
- double data[2];
- public:
- //! Does not initialise to Zero().
- Vector2() {data[0]=data[1] = 0.0;}
- inline Vector2(double x,double y);
- inline Vector2(const Vector2& arg);
- inline Vector2(double* xyz);
- inline Vector2(float* xyz);
- inline Vector2& operator = ( const Vector2& arg);
- //! Access to elements, range checked when NDEBUG is not set, from 0..1
- inline double operator()(int index) const;
- //! Access to elements, range checked when NDEBUG is not set, from 0..1
- inline double& operator() (int index);
- //! store vector components in array
- inline void GetValue(double* xy) const;
- inline void ReverseSign();
- inline Vector2& operator-=(const Vector2& arg);
- inline Vector2& operator +=(const Vector2& arg);
- inline friend Vector2 operator*(const Vector2& lhs,double rhs);
- inline friend Vector2 operator*(double lhs,const Vector2& rhs);
- inline friend Vector2 operator/(const Vector2& lhs,double rhs);
- inline friend Vector2 operator+(const Vector2& lhs,const Vector2& rhs);
- inline friend Vector2 operator-(const Vector2& lhs,const Vector2& rhs);
- inline friend Vector2 operator*(const Vector2& lhs,const Vector2& rhs);
- inline friend Vector2 operator-(const Vector2& arg);
- inline friend void SetToZero(Vector2& v);
- //! @return a zero 2D vector.
- inline static Vector2 Zero();
- /** Normalizes this vector and returns it norm
- * makes v a unitvector and returns the norm of v.
- * if v is smaller than eps, Vector(1,0,0) is returned with norm 0.
- * if this is not good, check the return value of this method.
- */
- double Normalize(double eps=epsilon);
- //! @return the norm of the vector
- inline double Norm() const;
- //! projects v in its XY plane, and sets *this to these values
- inline void Set3DXY(const Vector& v);
- //! projects v in its YZ plane, and sets *this to these values
- inline void Set3DYZ(const Vector& v);
- //! projects v in its ZX plane, and sets *this to these values
- inline void Set3DZX(const Vector& v);
- //! projects v_someframe in the XY plane of F_someframe_XY,
- //! and sets *this to these values
- //! expressed wrt someframe.
- inline void Set3DPlane(const Frame& F_someframe_XY,const Vector& v_someframe);
- //! do not use operator == because the definition of Equal(.,.) is slightly
- //! different. It compares whether the 2 arguments are equal in an eps-interval
- inline friend bool Equal(const Vector2& a,const Vector2& b,double eps);
- friend class Rotation2;
- };
- //! A 2D Rotation class, for conventions see Rotation. For further documentation
- //! of the methods see Rotation class.
- class Rotation2
- {
- double s,c;
- //! c,s represent cos(angle), sin(angle), this also represents first col. of rot matrix
- //! from outside, this class behaves as if it would store the complete 2x2 matrix.
- public:
- //! Default constructor does NOT initialise to Zero().
- Rotation2() {c=1.0;s=0.0;}
- explicit Rotation2(double angle_rad):s(sin(angle_rad)),c(cos(angle_rad)) {}
- Rotation2(double ca,double sa):s(sa),c(ca){}
- inline Rotation2& operator=(const Rotation2& arg);
- inline Vector2 operator*(const Vector2& v) const;
- //! Access to elements 0..1,0..1, bounds are checked when NDEBUG is not set
- inline double operator() (int i,int j) const;
- inline friend Rotation2 operator *(const Rotation2& lhs,const Rotation2& rhs);
- inline void SetInverse();
- inline Rotation2 Inverse() const;
- inline Vector2 Inverse(const Vector2& v) const;
- inline void SetIdentity();
- inline static Rotation2 Identity();
- //! The SetRot.. functions set the value of *this to the appropriate rotation matrix.
- inline void SetRot(double angle);
- //! The Rot... static functions give the value of the appropriate rotation matrix bac
- inline static Rotation2 Rot(double angle);
- //! Gets the angle (in radians)
- inline double GetRot() const;
- //! do not use operator == because the definition of Equal(.,.) is slightly
- //! different. It compares whether the 2 arguments are equal in an eps-interval
- inline friend bool Equal(const Rotation2& a,const Rotation2& b,double eps);
- };
- //! A 2D frame class, for further documentation see the Frames class
- //! for methods with unchanged semantics.
- class Frame2
- {
- public:
- Vector2 p; //!< origine of the Frame
- Rotation2 M; //!< Orientation of the Frame
- public:
- inline Frame2(const Rotation2& R,const Vector2& V);
- explicit inline Frame2(const Vector2& V);
- explicit inline Frame2(const Rotation2& R);
- inline Frame2(void);
- inline Frame2(const Frame2& arg);
- inline void Make4x4(double* d);
- //! Treats a frame as a 3x3 matrix and returns element i,j
- //! Access to elements 0..2,0..2, bounds are checked when NDEBUG is not set
- inline double operator()(int i,int j);
- //! Treats a frame as a 4x4 matrix and returns element i,j
- //! Access to elements 0..3,0..3, bounds are checked when NDEBUG is not set
- inline double operator() (int i,int j) const;
- inline void SetInverse();
- inline Frame2 Inverse() const;
- inline Vector2 Inverse(const Vector2& arg) const;
- inline Frame2& operator = (const Frame2& arg);
- inline Vector2 operator * (const Vector2& arg);
- inline friend Frame2 operator *(const Frame2& lhs,const Frame2& rhs);
- inline void SetIdentity();
- inline void Integrate(const Twist& t_this,double frequency);
- inline static Frame2 Identity() {
- Frame2 tmp;
- tmp.SetIdentity();
- return tmp;
- }
- inline friend bool Equal(const Frame2& a,const Frame2& b,double eps);
- };
- inline bool Equal(const Vector&, const Vector&, double = epsilon);
- bool Equal(const Rotation&, const Rotation&, double = epsilon);
- inline bool Equal(const Frame&, const Frame&, double = epsilon);
- inline bool Equal(const Twist&, const Twist&, double = epsilon);
- inline bool Equal(const Wrench&, const Wrench&, double = epsilon);
- inline bool Equal(const Vector2&, const Vector2&, double = epsilon);
- inline bool Equal(const Rotation2&, const Rotation2&, double = epsilon);
- inline bool Equal(const Frame2&, const Frame2&, double = epsilon);
-
- IMETHOD Vector diff(const Vector& a,const Vector& b,double dt=1);
- IMETHOD Vector diff(const Rotation& R_a_b1,const Rotation& R_a_b2,double dt=1);
- IMETHOD Twist diff(const Frame& F_a_b1,const Frame& F_a_b2,double dt=1);
- IMETHOD Twist diff(const Twist& a,const Twist& b,double dt=1);
- IMETHOD Wrench diff(const Wrench& W_a_p1,const Wrench& W_a_p2,double dt=1);
- IMETHOD Vector addDelta(const Vector& a,const Vector&da,double dt=1);
- IMETHOD Rotation addDelta(const Rotation& a,const Vector&da,double dt=1);
- IMETHOD Frame addDelta(const Frame& a,const Twist& da,double dt=1);
- IMETHOD Twist addDelta(const Twist& a,const Twist&da,double dt=1);
- IMETHOD Wrench addDelta(const Wrench& a,const Wrench&da,double dt=1);
- #ifdef KDL_INLINE
- // #include "vector.inl"
- // #include "wrench.inl"
- //#include "rotation.inl"
- //#include "frame.inl"
- //#include "twist.inl"
- //#include "vector2.inl"
- //#include "rotation2.inl"
- //#include "frame2.inl"
- #include "frames.inl"
- #endif
- }
- #endif
|