123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252 |
- /*
- * Copyright 2011-2013 Blender Foundation
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- CCL_NAMESPACE_BEGIN
- /* Musgrave fBm
- *
- * H: fractal increment parameter
- * lacunarity: gap between successive frequencies
- * octaves: number of frequencies in the fBm
- *
- * from "Texturing and Modelling: A procedural approach"
- */
- ccl_device_noinline float noise_musgrave_fBm(float3 p, float H, float lacunarity, float octaves)
- {
- float rmd;
- float value = 0.0f;
- float pwr = 1.0f;
- float pwHL = powf(lacunarity, -H);
- int i;
- for (i = 0; i < float_to_int(octaves); i++) {
- value += snoise(p) * pwr;
- pwr *= pwHL;
- p *= lacunarity;
- }
- rmd = octaves - floorf(octaves);
- if (rmd != 0.0f)
- value += rmd * snoise(p) * pwr;
- return value;
- }
- /* Musgrave Multifractal
- *
- * H: highest fractal dimension
- * lacunarity: gap between successive frequencies
- * octaves: number of frequencies in the fBm
- */
- ccl_device_noinline float noise_musgrave_multi_fractal(float3 p,
- float H,
- float lacunarity,
- float octaves)
- {
- float rmd;
- float value = 1.0f;
- float pwr = 1.0f;
- float pwHL = powf(lacunarity, -H);
- int i;
- for (i = 0; i < float_to_int(octaves); i++) {
- value *= (pwr * snoise(p) + 1.0f);
- pwr *= pwHL;
- p *= lacunarity;
- }
- rmd = octaves - floorf(octaves);
- if (rmd != 0.0f)
- value *= (rmd * pwr * snoise(p) + 1.0f); /* correct? */
- return value;
- }
- /* Musgrave Heterogeneous Terrain
- *
- * H: fractal dimension of the roughest area
- * lacunarity: gap between successive frequencies
- * octaves: number of frequencies in the fBm
- * offset: raises the terrain from `sea level'
- */
- ccl_device_noinline float noise_musgrave_hetero_terrain(
- float3 p, float H, float lacunarity, float octaves, float offset)
- {
- float value, increment, rmd;
- float pwHL = powf(lacunarity, -H);
- float pwr = pwHL;
- int i;
- /* first unscaled octave of function; later octaves are scaled */
- value = offset + snoise(p);
- p *= lacunarity;
- for (i = 1; i < float_to_int(octaves); i++) {
- increment = (snoise(p) + offset) * pwr * value;
- value += increment;
- pwr *= pwHL;
- p *= lacunarity;
- }
- rmd = octaves - floorf(octaves);
- if (rmd != 0.0f) {
- increment = (snoise(p) + offset) * pwr * value;
- value += rmd * increment;
- }
- return value;
- }
- /* Hybrid Additive/Multiplicative Multifractal Terrain
- *
- * H: fractal dimension of the roughest area
- * lacunarity: gap between successive frequencies
- * octaves: number of frequencies in the fBm
- * offset: raises the terrain from `sea level'
- */
- ccl_device_noinline float noise_musgrave_hybrid_multi_fractal(
- float3 p, float H, float lacunarity, float octaves, float offset, float gain)
- {
- float result, signal, weight, rmd;
- float pwHL = powf(lacunarity, -H);
- float pwr = pwHL;
- int i;
- result = snoise(p) + offset;
- weight = gain * result;
- p *= lacunarity;
- for (i = 1; (weight > 0.001f) && (i < float_to_int(octaves)); i++) {
- if (weight > 1.0f)
- weight = 1.0f;
- signal = (snoise(p) + offset) * pwr;
- pwr *= pwHL;
- result += weight * signal;
- weight *= gain * signal;
- p *= lacunarity;
- }
- rmd = octaves - floorf(octaves);
- if (rmd != 0.0f)
- result += rmd * ((snoise(p) + offset) * pwr);
- return result;
- }
- /* Ridged Multifractal Terrain
- *
- * H: fractal dimension of the roughest area
- * lacunarity: gap between successive frequencies
- * octaves: number of frequencies in the fBm
- * offset: raises the terrain from `sea level'
- */
- ccl_device_noinline float noise_musgrave_ridged_multi_fractal(
- float3 p, float H, float lacunarity, float octaves, float offset, float gain)
- {
- float result, signal, weight;
- float pwHL = powf(lacunarity, -H);
- float pwr = pwHL;
- int i;
- signal = offset - fabsf(snoise(p));
- signal *= signal;
- result = signal;
- weight = 1.0f;
- for (i = 1; i < float_to_int(octaves); i++) {
- p *= lacunarity;
- weight = saturate(signal * gain);
- signal = offset - fabsf(snoise(p));
- signal *= signal;
- signal *= weight;
- result += signal * pwr;
- pwr *= pwHL;
- }
- return result;
- }
- /* Shader */
- ccl_device float svm_musgrave(NodeMusgraveType type,
- float dimension,
- float lacunarity,
- float octaves,
- float offset,
- float intensity,
- float gain,
- float3 p)
- {
- if (type == NODE_MUSGRAVE_MULTIFRACTAL)
- return intensity * noise_musgrave_multi_fractal(p, dimension, lacunarity, octaves);
- else if (type == NODE_MUSGRAVE_FBM)
- return intensity * noise_musgrave_fBm(p, dimension, lacunarity, octaves);
- else if (type == NODE_MUSGRAVE_HYBRID_MULTIFRACTAL)
- return intensity *
- noise_musgrave_hybrid_multi_fractal(p, dimension, lacunarity, octaves, offset, gain);
- else if (type == NODE_MUSGRAVE_RIDGED_MULTIFRACTAL)
- return intensity *
- noise_musgrave_ridged_multi_fractal(p, dimension, lacunarity, octaves, offset, gain);
- else if (type == NODE_MUSGRAVE_HETERO_TERRAIN)
- return intensity * noise_musgrave_hetero_terrain(p, dimension, lacunarity, octaves, offset);
- return 0.0f;
- }
- ccl_device void svm_node_tex_musgrave(
- KernelGlobals *kg, ShaderData *sd, float *stack, uint4 node, int *offset)
- {
- uint4 node2 = read_node(kg, offset);
- uint4 node3 = read_node(kg, offset);
- uint type, co_offset, color_offset, fac_offset;
- uint dimension_offset, lacunarity_offset, detail_offset, offset_offset;
- uint gain_offset, scale_offset;
- decode_node_uchar4(node.y, &type, &co_offset, &color_offset, &fac_offset);
- decode_node_uchar4(
- node.z, &dimension_offset, &lacunarity_offset, &detail_offset, &offset_offset);
- decode_node_uchar4(node.w, &gain_offset, &scale_offset, NULL, NULL);
- float3 co = stack_load_float3(stack, co_offset);
- float dimension = stack_load_float_default(stack, dimension_offset, node2.x);
- float lacunarity = stack_load_float_default(stack, lacunarity_offset, node2.y);
- float detail = stack_load_float_default(stack, detail_offset, node2.z);
- float foffset = stack_load_float_default(stack, offset_offset, node2.w);
- float gain = stack_load_float_default(stack, gain_offset, node3.x);
- float scale = stack_load_float_default(stack, scale_offset, node3.y);
- dimension = fmaxf(dimension, 1e-5f);
- detail = clamp(detail, 0.0f, 16.0f);
- lacunarity = fmaxf(lacunarity, 1e-5f);
- float f = svm_musgrave(
- (NodeMusgraveType)type, dimension, lacunarity, detail, foffset, 1.0f, gain, co * scale);
- if (stack_valid(fac_offset))
- stack_store_float(stack, fac_offset, f);
- if (stack_valid(color_offset))
- stack_store_float3(stack, color_offset, make_float3(f, f, f));
- }
- CCL_NAMESPACE_END
|