123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122 |
- /*
- * Copyright 2011-2013 Blender Foundation
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- CCL_NAMESPACE_BEGIN
- /* IES Light */
- ccl_device_inline float interpolate_ies_vertical(
- KernelGlobals *kg, int ofs, int v, int v_num, float v_frac, int h)
- {
- /* Since lookups are performed in spherical coordinates, clamping the coordinates at the low end
- * of v (corresponding to the north pole) would result in artifacts. The proper way of dealing
- * with this would be to lookup the corresponding value on the other side of the pole, but since
- * the horizontal coordinates might be nonuniform, this would require yet another interpolation.
- * Therefore, the assumtion is made that the light is going to be symmetrical, which means that
- * we can just take the corresponding value at the current horizontal coordinate. */
- #define IES_LOOKUP(v) kernel_tex_fetch(__ies, ofs + h * v_num + (v))
- /* If v is zero, assume symmetry and read at v=1 instead of v=-1. */
- float a = IES_LOOKUP((v == 0) ? 1 : v - 1);
- float b = IES_LOOKUP(v);
- float c = IES_LOOKUP(v + 1);
- float d = IES_LOOKUP(min(v + 2, v_num - 1));
- #undef IES_LOOKUP
- return cubic_interp(a, b, c, d, v_frac);
- }
- ccl_device_inline float kernel_ies_interp(KernelGlobals *kg,
- int slot,
- float h_angle,
- float v_angle)
- {
- /* Find offset of the IES data in the table. */
- int ofs = __float_as_int(kernel_tex_fetch(__ies, slot));
- if (ofs == -1) {
- return 100.0f;
- }
- int h_num = __float_as_int(kernel_tex_fetch(__ies, ofs++));
- int v_num = __float_as_int(kernel_tex_fetch(__ies, ofs++));
- #define IES_LOOKUP_ANGLE_H(h) kernel_tex_fetch(__ies, ofs + (h))
- #define IES_LOOKUP_ANGLE_V(v) kernel_tex_fetch(__ies, ofs + h_num + (v))
- /* Check whether the angle is within the bounds of the IES texture. */
- if (v_angle >= IES_LOOKUP_ANGLE_V(v_num - 1)) {
- return 0.0f;
- }
- kernel_assert(v_angle >= IES_LOOKUP_ANGLE_V(0));
- kernel_assert(h_angle >= IES_LOOKUP_ANGLE_H(0));
- kernel_assert(h_angle <= IES_LOOKUP_ANGLE_H(h_num - 1));
- /* Lookup the angles to find the table position. */
- int h_i, v_i;
- /* TODO(lukas): Consider using bisection.
- * Probably not worth it for the vast majority of IES files. */
- for (h_i = 0; IES_LOOKUP_ANGLE_H(h_i + 1) < h_angle; h_i++)
- ;
- for (v_i = 0; IES_LOOKUP_ANGLE_V(v_i + 1) < v_angle; v_i++)
- ;
- float h_frac = inverse_lerp(IES_LOOKUP_ANGLE_H(h_i), IES_LOOKUP_ANGLE_H(h_i + 1), h_angle);
- float v_frac = inverse_lerp(IES_LOOKUP_ANGLE_V(v_i), IES_LOOKUP_ANGLE_V(v_i + 1), v_angle);
- #undef IES_LOOKUP_ANGLE_H
- #undef IES_LOOKUP_ANGLE_V
- /* Skip forward to the actual intensity data. */
- ofs += h_num + v_num;
- /* Perform cubic interpolation along the horizontal coordinate to get the intensity value.
- * If h_i is zero, just wrap around since the horizontal angles always go over the full circle.
- * However, the last entry (360°) equals the first one, so we need to wrap around to the one
- * before that. */
- float a = interpolate_ies_vertical(
- kg, ofs, v_i, v_num, v_frac, (h_i == 0) ? h_num - 2 : h_i - 1);
- float b = interpolate_ies_vertical(kg, ofs, v_i, v_num, v_frac, h_i);
- float c = interpolate_ies_vertical(kg, ofs, v_i, v_num, v_frac, h_i + 1);
- /* Same logic here, wrap around to the second element if necessary. */
- float d = interpolate_ies_vertical(
- kg, ofs, v_i, v_num, v_frac, (h_i + 2 == h_num) ? 1 : h_i + 2);
- /* Cubic interpolation can result in negative values, so get rid of them. */
- return max(cubic_interp(a, b, c, d, h_frac), 0.0f);
- }
- ccl_device void svm_node_ies(
- KernelGlobals *kg, ShaderData *sd, float *stack, uint4 node, int *offset)
- {
- uint vector_offset, strength_offset, fac_offset, dummy, slot = node.z;
- decode_node_uchar4(node.y, &strength_offset, &vector_offset, &fac_offset, &dummy);
- float3 vector = stack_load_float3(stack, vector_offset);
- float strength = stack_load_float_default(stack, strength_offset, node.w);
- vector = normalize(vector);
- float v_angle = safe_acosf(-vector.z);
- float h_angle = atan2f(vector.x, vector.y) + M_PI_F;
- float fac = strength * kernel_ies_interp(kg, slot, h_angle, v_angle);
- if (stack_valid(fac_offset)) {
- stack_store_float(stack, fac_offset, fac);
- }
- }
- CCL_NAMESPACE_END
|