1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330 |
- /**
- * Reverb for the OpenAL cross platform audio library
- * Copyright (C) 2008-2009 by Christopher Fitzgerald.
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Library General Public
- * License as published by the Free Software Foundation; either
- * version 2 of the License, or (at your option) any later version.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Library General Public License for more details.
- *
- * You should have received a copy of the GNU Library General Public
- * License along with this library; if not, write to the
- * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
- * Boston, MA 02111-1307, USA.
- * Or go to http://www.gnu.org/copyleft/lgpl.html
- */
- #include "config.h"
- #include <stdio.h>
- #include <stdlib.h>
- #include <math.h>
- #include "AL/al.h"
- #include "AL/alc.h"
- #include "alMain.h"
- #include "alAuxEffectSlot.h"
- #include "alEffect.h"
- #include "alError.h"
- #include "alu.h"
- typedef struct DelayLine
- {
- // The delay lines use sample lengths that are powers of 2 to allow the
- // use of bit-masking instead of a modulus for wrapping.
- ALuint Mask;
- ALfloat *Line;
- } DelayLine;
- typedef struct ALverbState {
- // Must be first in all effects!
- ALeffectState state;
- // All delay lines are allocated as a single buffer to reduce memory
- // fragmentation and management code.
- ALfloat *SampleBuffer;
- ALuint TotalSamples;
- // Master effect low-pass filter (2 chained 1-pole filters).
- FILTER LpFilter;
- ALfloat LpHistory[2];
- struct {
- // Modulator delay line.
- DelayLine Delay;
- // The vibrato time is tracked with an index over a modulus-wrapped
- // range (in samples).
- ALuint Index;
- ALuint Range;
- // The depth of frequency change (also in samples) and its filter.
- ALfloat Depth;
- ALfloat Coeff;
- ALfloat Filter;
- } Mod;
- // Initial effect delay.
- DelayLine Delay;
- // The tap points for the initial delay. First tap goes to early
- // reflections, the last to late reverb.
- ALuint DelayTap[2];
- struct {
- // Output gain for early reflections.
- ALfloat Gain;
- // Early reflections are done with 4 delay lines.
- ALfloat Coeff[4];
- DelayLine Delay[4];
- ALuint Offset[4];
- // The gain for each output channel based on 3D panning (only for the
- // EAX path).
- ALfloat PanGain[OUTPUTCHANNELS];
- } Early;
- // Decorrelator delay line.
- DelayLine Decorrelator;
- // There are actually 4 decorrelator taps, but the first occurs at the
- // initial sample.
- ALuint DecoTap[3];
- struct {
- // Output gain for late reverb.
- ALfloat Gain;
- // Attenuation to compensate for the modal density and decay rate of
- // the late lines.
- ALfloat DensityGain;
- // The feed-back and feed-forward all-pass coefficient.
- ALfloat ApFeedCoeff;
- // Mixing matrix coefficient.
- ALfloat MixCoeff;
- // Late reverb has 4 parallel all-pass filters.
- ALfloat ApCoeff[4];
- DelayLine ApDelay[4];
- ALuint ApOffset[4];
- // In addition to 4 cyclical delay lines.
- ALfloat Coeff[4];
- DelayLine Delay[4];
- ALuint Offset[4];
- // The cyclical delay lines are 1-pole low-pass filtered.
- ALfloat LpCoeff[4];
- ALfloat LpSample[4];
- // The gain for each output channel based on 3D panning (only for the
- // EAX path).
- ALfloat PanGain[OUTPUTCHANNELS];
- } Late;
- struct {
- // Attenuation to compensate for the modal density and decay rate of
- // the echo line.
- ALfloat DensityGain;
- // Echo delay and all-pass lines.
- DelayLine Delay;
- DelayLine ApDelay;
- ALfloat Coeff;
- ALfloat ApFeedCoeff;
- ALfloat ApCoeff;
- ALuint Offset;
- ALuint ApOffset;
- // The echo line is 1-pole low-pass filtered.
- ALfloat LpCoeff;
- ALfloat LpSample;
- // Echo mixing coefficients.
- ALfloat MixCoeff[2];
- } Echo;
- // The current read offset for all delay lines.
- ALuint Offset;
- // Gain scale to account for device down-mixing
- ALfloat Scale;
- } ALverbState;
- /* This coefficient is used to define the maximum frequency range controlled
- * by the modulation depth. The current value of 0.1 will allow it to swing
- * from 0.9x to 1.1x. This value must be below 1. At 1 it will cause the
- * sampler to stall on the downswing, and above 1 it will cause it to sample
- * backwards.
- */
- static const ALfloat MODULATION_DEPTH_COEFF = 0.1f;
- /* A filter is used to avoid the terrible distortion caused by changing
- * modulation time and/or depth. To be consistent across different sample
- * rates, the coefficient must be raised to a constant divided by the sample
- * rate: coeff^(constant / rate).
- */
- static const ALfloat MODULATION_FILTER_COEFF = 0.048f;
- static const ALfloat MODULATION_FILTER_CONST = 100000.0f;
- // When diffusion is above 0, an all-pass filter is used to take the edge off
- // the echo effect. It uses the following line length (in seconds).
- static const ALfloat ECHO_ALLPASS_LENGTH = 0.0133f;
- // Input into the late reverb is decorrelated between four channels. Their
- // timings are dependent on a fraction and multiplier. See the
- // UpdateDecorrelator() routine for the calculations involved.
- static const ALfloat DECO_FRACTION = 0.15f;
- static const ALfloat DECO_MULTIPLIER = 2.0f;
- // All delay line lengths are specified in seconds.
- // The lengths of the early delay lines.
- static const ALfloat EARLY_LINE_LENGTH[4] =
- {
- 0.0015f, 0.0045f, 0.0135f, 0.0405f
- };
- // The lengths of the late all-pass delay lines.
- static const ALfloat ALLPASS_LINE_LENGTH[4] =
- {
- 0.0151f, 0.0167f, 0.0183f, 0.0200f,
- };
- // The lengths of the late cyclical delay lines.
- static const ALfloat LATE_LINE_LENGTH[4] =
- {
- 0.0211f, 0.0311f, 0.0461f, 0.0680f
- };
- // The late cyclical delay lines have a variable length dependent on the
- // effect's density parameter (inverted for some reason) and this multiplier.
- static const ALfloat LATE_LINE_MULTIPLIER = 4.0f;
- // Calculate the length of a delay line and store its mask and offset.
- static ALuint CalcLineLength(ALfloat length, ALintptrEXT offset, ALuint frequency, DelayLine *Delay)
- {
- ALuint samples;
- // All line lengths are powers of 2, calculated from their lengths, with
- // an additional sample in case of rounding errors.
- samples = NextPowerOf2((ALuint)(length * frequency) + 1);
- // All lines share a single sample buffer.
- Delay->Mask = samples - 1;
- Delay->Line = (ALfloat*)offset;
- // Return the sample count for accumulation.
- return samples;
- }
- // Given the allocated sample buffer, this function updates each delay line
- // offset.
- static __inline ALvoid RealizeLineOffset(ALfloat * sampleBuffer, DelayLine *Delay)
- {
- Delay->Line = &sampleBuffer[(ALintptrEXT)Delay->Line];
- }
- /* Calculates the delay line metrics and allocates the shared sample buffer
- * for all lines given a flag indicating whether or not to allocate the EAX-
- * related delays (eaxFlag) and the sample rate (frequency). If an
- * allocation failure occurs, it returns AL_FALSE.
- */
- static ALboolean AllocLines(ALboolean eaxFlag, ALuint frequency, ALverbState *State)
- {
- ALuint totalSamples, index;
- ALfloat length;
- ALfloat *newBuffer = NULL;
- // All delay line lengths are calculated to accomodate the full range of
- // lengths given their respective paramters.
- totalSamples = 0;
- if(eaxFlag)
- {
- /* The modulator's line length is calculated from the maximum
- * modulation time and depth coefficient, and halfed for the low-to-
- * high frequency swing. An additional sample is added to keep it
- * stable when there is no modulation.
- */
- length = (AL_EAXREVERB_MAX_MODULATION_TIME * MODULATION_DEPTH_COEFF /
- 2.0f) + (1.0f / frequency);
- totalSamples += CalcLineLength(length, totalSamples, frequency,
- &State->Mod.Delay);
- }
- // The initial delay is the sum of the reflections and late reverb
- // delays.
- if(eaxFlag)
- length = AL_EAXREVERB_MAX_REFLECTIONS_DELAY +
- AL_EAXREVERB_MAX_LATE_REVERB_DELAY;
- else
- length = AL_REVERB_MAX_REFLECTIONS_DELAY +
- AL_REVERB_MAX_LATE_REVERB_DELAY;
- totalSamples += CalcLineLength(length, totalSamples, frequency,
- &State->Delay);
- // The early reflection lines.
- for(index = 0;index < 4;index++)
- totalSamples += CalcLineLength(EARLY_LINE_LENGTH[index], totalSamples,
- frequency, &State->Early.Delay[index]);
- // The decorrelator line is calculated from the lowest reverb density (a
- // parameter value of 1).
- length = (DECO_FRACTION * DECO_MULTIPLIER * DECO_MULTIPLIER) *
- LATE_LINE_LENGTH[0] * (1.0f + LATE_LINE_MULTIPLIER);
- totalSamples += CalcLineLength(length, totalSamples, frequency,
- &State->Decorrelator);
- // The late all-pass lines.
- for(index = 0;index < 4;index++)
- totalSamples += CalcLineLength(ALLPASS_LINE_LENGTH[index], totalSamples,
- frequency, &State->Late.ApDelay[index]);
- // The late delay lines are calculated from the lowest reverb density.
- for(index = 0;index < 4;index++)
- {
- length = LATE_LINE_LENGTH[index] * (1.0f + LATE_LINE_MULTIPLIER);
- totalSamples += CalcLineLength(length, totalSamples, frequency,
- &State->Late.Delay[index]);
- }
- if(eaxFlag)
- {
- // The echo all-pass and delay lines.
- totalSamples += CalcLineLength(ECHO_ALLPASS_LENGTH, totalSamples,
- frequency, &State->Echo.ApDelay);
- totalSamples += CalcLineLength(AL_EAXREVERB_MAX_ECHO_TIME, totalSamples,
- frequency, &State->Echo.Delay);
- }
- if(totalSamples != State->TotalSamples)
- {
- newBuffer = realloc(State->SampleBuffer, sizeof(ALfloat) * totalSamples);
- if(newBuffer == NULL)
- return AL_FALSE;
- State->SampleBuffer = newBuffer;
- State->TotalSamples = totalSamples;
- }
- // Update all delays to reflect the new sample buffer.
- RealizeLineOffset(State->SampleBuffer, &State->Delay);
- RealizeLineOffset(State->SampleBuffer, &State->Decorrelator);
- for(index = 0;index < 4;index++)
- {
- RealizeLineOffset(State->SampleBuffer, &State->Early.Delay[index]);
- RealizeLineOffset(State->SampleBuffer, &State->Late.ApDelay[index]);
- RealizeLineOffset(State->SampleBuffer, &State->Late.Delay[index]);
- }
- if(eaxFlag)
- {
- RealizeLineOffset(State->SampleBuffer, &State->Mod.Delay);
- RealizeLineOffset(State->SampleBuffer, &State->Echo.ApDelay);
- RealizeLineOffset(State->SampleBuffer, &State->Echo.Delay);
- }
- // Clear the sample buffer.
- for(index = 0;index < State->TotalSamples;index++)
- State->SampleBuffer[index] = 0.0f;
- return AL_TRUE;
- }
- // Calculate a decay coefficient given the length of each cycle and the time
- // until the decay reaches -60 dB.
- static __inline ALfloat CalcDecayCoeff(ALfloat length, ALfloat decayTime)
- {
- return aluPow(10.0f, length / decayTime * -60.0f / 20.0f);
- }
- // Calculate a decay length from a coefficient and the time until the decay
- // reaches -60 dB.
- static __inline ALfloat CalcDecayLength(ALfloat coeff, ALfloat decayTime)
- {
- return log10(coeff) / -60.0 * 20.0f * decayTime;
- }
- // Calculate the high frequency parameter for the I3DL2 coefficient
- // calculation.
- static __inline ALfloat CalcI3DL2HFreq(ALfloat hfRef, ALuint frequency)
- {
- return cos(2.0f * M_PI * hfRef / frequency);
- }
- // Calculate an attenuation to be applied to the input of any echo models to
- // compensate for modal density and decay time.
- static __inline ALfloat CalcDensityGain(ALfloat a)
- {
- /* The energy of a signal can be obtained by finding the area under the
- * squared signal. This takes the form of Sum(x_n^2), where x is the
- * amplitude for the sample n.
- *
- * Decaying feedback matches exponential decay of the form Sum(a^n),
- * where a is the attenuation coefficient, and n is the sample. The area
- * under this decay curve can be calculated as: 1 / (1 - a).
- *
- * Modifying the above equation to find the squared area under the curve
- * (for energy) yields: 1 / (1 - a^2). Input attenuation can then be
- * calculated by inverting the square root of this approximation,
- * yielding: 1 / sqrt(1 / (1 - a^2)), simplified to: sqrt(1 - a^2).
- */
- return aluSqrt(1.0f - (a * a));
- }
- // Calculate the mixing matrix coefficients given a diffusion factor.
- static __inline ALvoid CalcMatrixCoeffs(ALfloat diffusion, ALfloat *x, ALfloat *y)
- {
- ALfloat n, t;
- // The matrix is of order 4, so n is sqrt (4 - 1).
- n = aluSqrt(3.0f);
- t = diffusion * atan(n);
- // Calculate the first mixing matrix coefficient.
- *x = cos(t);
- // Calculate the second mixing matrix coefficient.
- *y = sin(t) / n;
- }
- // Calculate the limited HF ratio for use with the late reverb low-pass
- // filters.
- static __inline ALfloat CalcLimitedHfRatio(ALfloat hfRatio, ALfloat airAbsorptionGainHF, ALfloat decayTime)
- {
- ALfloat limitRatio;
- /* Find the attenuation due to air absorption in dB (converting delay
- * time to meters using the speed of sound). Then reversing the decay
- * equation, solve for HF ratio. The delay length is cancelled out of
- * the equation, so it can be calculated once for all lines.
- */
- limitRatio = 1.0f / (CalcDecayLength(airAbsorptionGainHF, decayTime) *
- SPEEDOFSOUNDMETRESPERSEC);
- // Need to limit the result to a minimum of 0.1, just like the HF ratio
- // parameter.
- limitRatio = __max(limitRatio, 0.1f);
- // Using the limit calculated above, apply the upper bound to the HF
- // ratio.
- return __min(hfRatio, limitRatio);
- }
- // Calculate the coefficient for a HF (and eventually LF) decay damping
- // filter.
- static __inline ALfloat CalcDampingCoeff(ALfloat hfRatio, ALfloat length, ALfloat decayTime, ALfloat decayCoeff, ALfloat cw)
- {
- ALfloat coeff, g;
- // Eventually this should boost the high frequencies when the ratio
- // exceeds 1.
- coeff = 0.0f;
- if (hfRatio < 1.0f)
- {
- // Calculate the low-pass coefficient by dividing the HF decay
- // coefficient by the full decay coefficient.
- g = CalcDecayCoeff(length, decayTime * hfRatio) / decayCoeff;
- // Damping is done with a 1-pole filter, so g needs to be squared.
- g *= g;
- coeff = lpCoeffCalc(g, cw);
- // Very low decay times will produce minimal output, so apply an
- // upper bound to the coefficient.
- coeff = __min(coeff, 0.98f);
- }
- return coeff;
- }
- // Update the EAX modulation index, range, and depth. Keep in mind that this
- // kind of vibrato is additive and not multiplicative as one may expect. The
- // downswing will sound stronger than the upswing.
- static ALvoid UpdateModulator(ALfloat modTime, ALfloat modDepth, ALuint frequency, ALverbState *State)
- {
- ALfloat length;
- /* Modulation is calculated in two parts.
- *
- * The modulation time effects the sinus applied to the change in
- * frequency. An index out of the current time range (both in samples)
- * is incremented each sample. The range is bound to a reasonable
- * minimum (1 sample) and when the timing changes, the index is rescaled
- * to the new range (to keep the sinus consistent).
- */
- length = modTime * frequency;
- if (length >= 1.0f) {
- State->Mod.Index = (ALuint)(State->Mod.Index * length /
- State->Mod.Range);
- State->Mod.Range = (ALuint)length;
- } else {
- State->Mod.Index = 0;
- State->Mod.Range = 1;
- }
- /* The modulation depth effects the amount of frequency change over the
- * range of the sinus. It needs to be scaled by the modulation time so
- * that a given depth produces a consistent change in frequency over all
- * ranges of time. Since the depth is applied to a sinus value, it needs
- * to be halfed once for the sinus range and again for the sinus swing
- * in time (half of it is spent decreasing the frequency, half is spent
- * increasing it).
- */
- State->Mod.Depth = modDepth * MODULATION_DEPTH_COEFF * modTime / 2.0f /
- 2.0f * frequency;
- }
- // Update the offsets for the initial effect delay line.
- static ALvoid UpdateDelayLine(ALfloat earlyDelay, ALfloat lateDelay, ALuint frequency, ALverbState *State)
- {
- // Calculate the initial delay taps.
- State->DelayTap[0] = (ALuint)(earlyDelay * frequency);
- State->DelayTap[1] = (ALuint)((earlyDelay + lateDelay) * frequency);
- }
- // Update the early reflections gain and line coefficients.
- static ALvoid UpdateEarlyLines(ALfloat reverbGain, ALfloat earlyGain, ALfloat lateDelay, ALverbState *State)
- {
- ALuint index;
- // Calculate the early reflections gain (from the master effect gain, and
- // reflections gain parameters) with a constant attenuation of 0.5.
- State->Early.Gain = 0.5f * reverbGain * earlyGain;
- // Calculate the gain (coefficient) for each early delay line using the
- // late delay time. This expands the early reflections to the start of
- // the late reverb.
- for(index = 0;index < 4;index++)
- State->Early.Coeff[index] = CalcDecayCoeff(EARLY_LINE_LENGTH[index],
- lateDelay);
- }
- // Update the offsets for the decorrelator line.
- static ALvoid UpdateDecorrelator(ALfloat density, ALuint frequency, ALverbState *State)
- {
- ALuint index;
- ALfloat length;
- /* The late reverb inputs are decorrelated to smooth the reverb tail and
- * reduce harsh echos. The first tap occurs immediately, while the
- * remaining taps are delayed by multiples of a fraction of the smallest
- * cyclical delay time.
- *
- * offset[index] = (FRACTION (MULTIPLIER^index)) smallest_delay
- */
- for(index = 0;index < 3;index++)
- {
- length = (DECO_FRACTION * aluPow(DECO_MULTIPLIER, (ALfloat)index)) *
- LATE_LINE_LENGTH[0] * (1.0f + (density * LATE_LINE_MULTIPLIER));
- State->DecoTap[index] = (ALuint)(length * frequency);
- }
- }
- // Update the late reverb gains, line lengths, and line coefficients.
- static ALvoid UpdateLateLines(ALfloat reverbGain, ALfloat lateGain, ALfloat xMix, ALfloat density, ALfloat decayTime, ALfloat diffusion, ALfloat hfRatio, ALfloat cw, ALuint frequency, ALverbState *State)
- {
- ALfloat length;
- ALuint index;
- /* Calculate the late reverb gain (from the master effect gain, and late
- * reverb gain parameters). Since the output is tapped prior to the
- * application of the next delay line coefficients, this gain needs to be
- * attenuated by the 'x' mixing matrix coefficient as well.
- */
- State->Late.Gain = reverbGain * lateGain * xMix;
- /* To compensate for changes in modal density and decay time of the late
- * reverb signal, the input is attenuated based on the maximal energy of
- * the outgoing signal. This approximation is used to keep the apparent
- * energy of the signal equal for all ranges of density and decay time.
- *
- * The average length of the cyclcical delay lines is used to calculate
- * the attenuation coefficient.
- */
- length = (LATE_LINE_LENGTH[0] + LATE_LINE_LENGTH[1] +
- LATE_LINE_LENGTH[2] + LATE_LINE_LENGTH[3]) / 4.0f;
- length *= 1.0f + (density * LATE_LINE_MULTIPLIER);
- State->Late.DensityGain = CalcDensityGain(CalcDecayCoeff(length,
- decayTime));
- // Calculate the all-pass feed-back and feed-forward coefficient.
- State->Late.ApFeedCoeff = 0.5f * aluPow(diffusion, 2.0f);
- for(index = 0;index < 4;index++)
- {
- // Calculate the gain (coefficient) for each all-pass line.
- State->Late.ApCoeff[index] = CalcDecayCoeff(ALLPASS_LINE_LENGTH[index],
- decayTime);
- // Calculate the length (in seconds) of each cyclical delay line.
- length = LATE_LINE_LENGTH[index] * (1.0f + (density *
- LATE_LINE_MULTIPLIER));
- // Calculate the delay offset for each cyclical delay line.
- State->Late.Offset[index] = (ALuint)(length * frequency);
- // Calculate the gain (coefficient) for each cyclical line.
- State->Late.Coeff[index] = CalcDecayCoeff(length, decayTime);
- // Calculate the damping coefficient for each low-pass filter.
- State->Late.LpCoeff[index] =
- CalcDampingCoeff(hfRatio, length, decayTime,
- State->Late.Coeff[index], cw);
- // Attenuate the cyclical line coefficients by the mixing coefficient
- // (x).
- State->Late.Coeff[index] *= xMix;
- }
- }
- // Update the echo gain, line offset, line coefficients, and mixing
- // coefficients.
- static ALvoid UpdateEchoLine(ALfloat reverbGain, ALfloat lateGain, ALfloat echoTime, ALfloat decayTime, ALfloat diffusion, ALfloat echoDepth, ALfloat hfRatio, ALfloat cw, ALuint frequency, ALverbState *State)
- {
- // Update the offset and coefficient for the echo delay line.
- State->Echo.Offset = (ALuint)(echoTime * frequency);
- // Calculate the decay coefficient for the echo line.
- State->Echo.Coeff = CalcDecayCoeff(echoTime, decayTime);
- // Calculate the energy-based attenuation coefficient for the echo delay
- // line.
- State->Echo.DensityGain = CalcDensityGain(State->Echo.Coeff);
- // Calculate the echo all-pass feed coefficient.
- State->Echo.ApFeedCoeff = 0.5f * aluPow(diffusion, 2.0f);
- // Calculate the echo all-pass attenuation coefficient.
- State->Echo.ApCoeff = CalcDecayCoeff(ECHO_ALLPASS_LENGTH, decayTime);
- // Calculate the damping coefficient for each low-pass filter.
- State->Echo.LpCoeff = CalcDampingCoeff(hfRatio, echoTime, decayTime,
- State->Echo.Coeff, cw);
- /* Calculate the echo mixing coefficients. The first is applied to the
- * echo itself. The second is used to attenuate the late reverb when
- * echo depth is high and diffusion is low, so the echo is slightly
- * stronger than the decorrelated echos in the reverb tail.
- */
- State->Echo.MixCoeff[0] = reverbGain * lateGain * echoDepth;
- State->Echo.MixCoeff[1] = 1.0f - (echoDepth * 0.5f * (1.0f - diffusion));
- }
- // Update the early and late 3D panning gains.
- static ALvoid Update3DPanning(const ALfloat *ReflectionsPan, const ALfloat *LateReverbPan, ALfloat *PanningLUT, ALverbState *State)
- {
- ALfloat length;
- ALfloat earlyPan[3] = { ReflectionsPan[0], ReflectionsPan[1],
- ReflectionsPan[2] };
- ALfloat latePan[3] = { LateReverbPan[0], LateReverbPan[1],
- LateReverbPan[2] };
- ALint pos;
- ALfloat *speakerGain, dirGain, ambientGain;
- ALuint index;
- // Calculate the 3D-panning gains for the early reflections and late
- // reverb.
- length = earlyPan[0]*earlyPan[0] + earlyPan[1]*earlyPan[1] + earlyPan[2]*earlyPan[2];
- if(length > 1.0f)
- {
- length = 1.0f / aluSqrt(length);
- earlyPan[0] *= length;
- earlyPan[1] *= length;
- earlyPan[2] *= length;
- }
- length = latePan[0]*latePan[0] + latePan[1]*latePan[1] + latePan[2]*latePan[2];
- if(length > 1.0f)
- {
- length = 1.0f / aluSqrt(length);
- latePan[0] *= length;
- latePan[1] *= length;
- latePan[2] *= length;
- }
- /* This code applies directional reverb just like the mixer applies
- * directional sources. It diffuses the sound toward all speakers as the
- * magnitude of the panning vector drops, which is only a rough
- * approximation of the expansion of sound across the speakers from the
- * panning direction.
- */
- pos = aluCart2LUTpos(earlyPan[2], earlyPan[0]);
- speakerGain = &PanningLUT[OUTPUTCHANNELS * pos];
- dirGain = aluSqrt((earlyPan[0] * earlyPan[0]) + (earlyPan[2] * earlyPan[2]));
- ambientGain = (1.0 - dirGain);
- for(index = 0;index < OUTPUTCHANNELS;index++)
- State->Early.PanGain[index] = dirGain * speakerGain[index] + ambientGain;
- pos = aluCart2LUTpos(latePan[2], latePan[0]);
- speakerGain = &PanningLUT[OUTPUTCHANNELS * pos];
- dirGain = aluSqrt((latePan[0] * latePan[0]) + (latePan[2] * latePan[2]));
- ambientGain = (1.0 - dirGain);
- for(index = 0;index < OUTPUTCHANNELS;index++)
- State->Late.PanGain[index] = dirGain * speakerGain[index] + ambientGain;
- }
- // Basic delay line input/output routines.
- static __inline ALfloat DelayLineOut(DelayLine *Delay, ALuint offset)
- {
- return Delay->Line[offset&Delay->Mask];
- }
- static __inline ALvoid DelayLineIn(DelayLine *Delay, ALuint offset, ALfloat in)
- {
- Delay->Line[offset&Delay->Mask] = in;
- }
- // Attenuated delay line output routine.
- static __inline ALfloat AttenuatedDelayLineOut(DelayLine *Delay, ALuint offset, ALfloat coeff)
- {
- return coeff * Delay->Line[offset&Delay->Mask];
- }
- // Basic attenuated all-pass input/output routine.
- static __inline ALfloat AllpassInOut(DelayLine *Delay, ALuint outOffset, ALuint inOffset, ALfloat in, ALfloat feedCoeff, ALfloat coeff)
- {
- ALfloat out, feed;
- out = DelayLineOut(Delay, outOffset);
- feed = feedCoeff * in;
- DelayLineIn(Delay, inOffset, (feedCoeff * (out - feed)) + in);
- // The time-based attenuation is only applied to the delay output to
- // keep it from affecting the feed-back path (which is already controlled
- // by the all-pass feed coefficient).
- return (coeff * out) - feed;
- }
- // Given an input sample, this function produces modulation for the late
- // reverb.
- static __inline ALfloat EAXModulation(ALverbState *State, ALfloat in)
- {
- ALfloat sinus, frac;
- ALuint offset;
- ALfloat out0, out1;
- // Calculate the sinus rythm (dependent on modulation time and the
- // sampling rate). The center of the sinus is moved to reduce the delay
- // of the effect when the time or depth are low.
- sinus = 1.0f - cos(2.0f * M_PI * State->Mod.Index / State->Mod.Range);
- // The depth determines the range over which to read the input samples
- // from, so it must be filtered to reduce the distortion caused by even
- // small parameter changes.
- State->Mod.Filter += (State->Mod.Depth - State->Mod.Filter) *
- State->Mod.Coeff;
- // Calculate the read offset and fraction between it and the next sample.
- frac = (1.0f + (State->Mod.Filter * sinus));
- offset = (ALuint)frac;
- frac -= offset;
- // Get the two samples crossed by the offset, and feed the delay line
- // with the next input sample.
- out0 = DelayLineOut(&State->Mod.Delay, State->Offset - offset);
- out1 = DelayLineOut(&State->Mod.Delay, State->Offset - offset - 1);
- DelayLineIn(&State->Mod.Delay, State->Offset, in);
- // Step the modulation index forward, keeping it bound to its range.
- State->Mod.Index = (State->Mod.Index + 1) % State->Mod.Range;
- // The output is obtained by linearly interpolating the two samples that
- // were acquired above.
- return out0 + ((out1 - out0) * frac);
- }
- // Delay line output routine for early reflections.
- static __inline ALfloat EarlyDelayLineOut(ALverbState *State, ALuint index)
- {
- return AttenuatedDelayLineOut(&State->Early.Delay[index],
- State->Offset - State->Early.Offset[index],
- State->Early.Coeff[index]);
- }
- // Given an input sample, this function produces four-channel output for the
- // early reflections.
- static __inline ALvoid EarlyReflection(ALverbState *State, ALfloat in, ALfloat *out)
- {
- ALfloat d[4], v, f[4];
- // Obtain the decayed results of each early delay line.
- d[0] = EarlyDelayLineOut(State, 0);
- d[1] = EarlyDelayLineOut(State, 1);
- d[2] = EarlyDelayLineOut(State, 2);
- d[3] = EarlyDelayLineOut(State, 3);
- /* The following uses a lossless scattering junction from waveguide
- * theory. It actually amounts to a householder mixing matrix, which
- * will produce a maximally diffuse response, and means this can probably
- * be considered a simple feed-back delay network (FDN).
- * N
- * ---
- * \
- * v = 2/N / d_i
- * ---
- * i=1
- */
- v = (d[0] + d[1] + d[2] + d[3]) * 0.5f;
- // The junction is loaded with the input here.
- v += in;
- // Calculate the feed values for the delay lines.
- f[0] = v - d[0];
- f[1] = v - d[1];
- f[2] = v - d[2];
- f[3] = v - d[3];
- // Re-feed the delay lines.
- DelayLineIn(&State->Early.Delay[0], State->Offset, f[0]);
- DelayLineIn(&State->Early.Delay[1], State->Offset, f[1]);
- DelayLineIn(&State->Early.Delay[2], State->Offset, f[2]);
- DelayLineIn(&State->Early.Delay[3], State->Offset, f[3]);
- // Output the results of the junction for all four channels.
- out[0] = State->Early.Gain * f[0];
- out[1] = State->Early.Gain * f[1];
- out[2] = State->Early.Gain * f[2];
- out[3] = State->Early.Gain * f[3];
- }
- // All-pass input/output routine for late reverb.
- static __inline ALfloat LateAllPassInOut(ALverbState *State, ALuint index, ALfloat in)
- {
- return AllpassInOut(&State->Late.ApDelay[index],
- State->Offset - State->Late.ApOffset[index],
- State->Offset, in, State->Late.ApFeedCoeff,
- State->Late.ApCoeff[index]);
- }
- // Delay line output routine for late reverb.
- static __inline ALfloat LateDelayLineOut(ALverbState *State, ALuint index)
- {
- return AttenuatedDelayLineOut(&State->Late.Delay[index],
- State->Offset - State->Late.Offset[index],
- State->Late.Coeff[index]);
- }
- // Low-pass filter input/output routine for late reverb.
- static __inline ALfloat LateLowPassInOut(ALverbState *State, ALuint index, ALfloat in)
- {
- State->Late.LpSample[index] = in +
- ((State->Late.LpSample[index] - in) * State->Late.LpCoeff[index]);
- return State->Late.LpSample[index];
- }
- // Given four decorrelated input samples, this function produces four-channel
- // output for the late reverb.
- static __inline ALvoid LateReverb(ALverbState *State, ALfloat *in, ALfloat *out)
- {
- ALfloat d[4], f[4];
- // Obtain the decayed results of the cyclical delay lines, and add the
- // corresponding input channels. Then pass the results through the
- // low-pass filters.
- // This is where the feed-back cycles from line 0 to 1 to 3 to 2 and back
- // to 0.
- d[0] = LateLowPassInOut(State, 2, in[2] + LateDelayLineOut(State, 2));
- d[1] = LateLowPassInOut(State, 0, in[0] + LateDelayLineOut(State, 0));
- d[2] = LateLowPassInOut(State, 3, in[3] + LateDelayLineOut(State, 3));
- d[3] = LateLowPassInOut(State, 1, in[1] + LateDelayLineOut(State, 1));
- // To help increase diffusion, run each line through an all-pass filter.
- // When there is no diffusion, the shortest all-pass filter will feed the
- // shortest delay line.
- d[0] = LateAllPassInOut(State, 0, d[0]);
- d[1] = LateAllPassInOut(State, 1, d[1]);
- d[2] = LateAllPassInOut(State, 2, d[2]);
- d[3] = LateAllPassInOut(State, 3, d[3]);
- /* Late reverb is done with a modified feed-back delay network (FDN)
- * topology. Four input lines are each fed through their own all-pass
- * filter and then into the mixing matrix. The four outputs of the
- * mixing matrix are then cycled back to the inputs. Each output feeds
- * a different input to form a circlular feed cycle.
- *
- * The mixing matrix used is a 4D skew-symmetric rotation matrix derived
- * using a single unitary rotational parameter:
- *
- * [ d, a, b, c ] 1 = a^2 + b^2 + c^2 + d^2
- * [ -a, d, c, -b ]
- * [ -b, -c, d, a ]
- * [ -c, b, -a, d ]
- *
- * The rotation is constructed from the effect's diffusion parameter,
- * yielding: 1 = x^2 + 3 y^2; where a, b, and c are the coefficient y
- * with differing signs, and d is the coefficient x. The matrix is thus:
- *
- * [ x, y, -y, y ] n = sqrt(matrix_order - 1)
- * [ -y, x, y, y ] t = diffusion_parameter * atan(n)
- * [ y, -y, x, y ] x = cos(t)
- * [ -y, -y, -y, x ] y = sin(t) / n
- *
- * To reduce the number of multiplies, the x coefficient is applied with
- * the cyclical delay line coefficients. Thus only the y coefficient is
- * applied when mixing, and is modified to be: y / x.
- */
- f[0] = d[0] + (State->Late.MixCoeff * ( d[1] - d[2] + d[3]));
- f[1] = d[1] + (State->Late.MixCoeff * (-d[0] + d[2] + d[3]));
- f[2] = d[2] + (State->Late.MixCoeff * ( d[0] - d[1] + d[3]));
- f[3] = d[3] + (State->Late.MixCoeff * (-d[0] - d[1] - d[2]));
- // Output the results of the matrix for all four channels, attenuated by
- // the late reverb gain (which is attenuated by the 'x' mix coefficient).
- out[0] = State->Late.Gain * f[0];
- out[1] = State->Late.Gain * f[1];
- out[2] = State->Late.Gain * f[2];
- out[3] = State->Late.Gain * f[3];
- // Re-feed the cyclical delay lines.
- DelayLineIn(&State->Late.Delay[0], State->Offset, f[0]);
- DelayLineIn(&State->Late.Delay[1], State->Offset, f[1]);
- DelayLineIn(&State->Late.Delay[2], State->Offset, f[2]);
- DelayLineIn(&State->Late.Delay[3], State->Offset, f[3]);
- }
- // Given an input sample, this function mixes echo into the four-channel late
- // reverb.
- static __inline ALvoid EAXEcho(ALverbState *State, ALfloat in, ALfloat *late)
- {
- ALfloat out, feed;
- // Get the latest attenuated echo sample for output.
- feed = AttenuatedDelayLineOut(&State->Echo.Delay,
- State->Offset - State->Echo.Offset,
- State->Echo.Coeff);
- // Mix the output into the late reverb channels.
- out = State->Echo.MixCoeff[0] * feed;
- late[0] = (State->Echo.MixCoeff[1] * late[0]) + out;
- late[1] = (State->Echo.MixCoeff[1] * late[1]) + out;
- late[2] = (State->Echo.MixCoeff[1] * late[2]) + out;
- late[3] = (State->Echo.MixCoeff[1] * late[3]) + out;
- // Mix the energy-attenuated input with the output and pass it through
- // the echo low-pass filter.
- feed += State->Echo.DensityGain * in;
- feed += ((State->Echo.LpSample - feed) * State->Echo.LpCoeff);
- State->Echo.LpSample = feed;
- // Then the echo all-pass filter.
- feed = AllpassInOut(&State->Echo.ApDelay,
- State->Offset - State->Echo.ApOffset,
- State->Offset, feed, State->Echo.ApFeedCoeff,
- State->Echo.ApCoeff);
- // Feed the delay with the mixed and filtered sample.
- DelayLineIn(&State->Echo.Delay, State->Offset, feed);
- }
- // Perform the non-EAX reverb pass on a given input sample, resulting in
- // four-channel output.
- static __inline ALvoid VerbPass(ALverbState *State, ALfloat in, ALfloat *early, ALfloat *late)
- {
- ALfloat feed, taps[4];
- // Low-pass filter the incoming sample.
- in = lpFilter2P(&State->LpFilter, 0, in);
- // Feed the initial delay line.
- DelayLineIn(&State->Delay, State->Offset, in);
- // Calculate the early reflection from the first delay tap.
- in = DelayLineOut(&State->Delay, State->Offset - State->DelayTap[0]);
- EarlyReflection(State, in, early);
- // Feed the decorrelator from the energy-attenuated output of the second
- // delay tap.
- in = DelayLineOut(&State->Delay, State->Offset - State->DelayTap[1]);
- feed = in * State->Late.DensityGain;
- DelayLineIn(&State->Decorrelator, State->Offset, feed);
- // Calculate the late reverb from the decorrelator taps.
- taps[0] = feed;
- taps[1] = DelayLineOut(&State->Decorrelator, State->Offset - State->DecoTap[0]);
- taps[2] = DelayLineOut(&State->Decorrelator, State->Offset - State->DecoTap[1]);
- taps[3] = DelayLineOut(&State->Decorrelator, State->Offset - State->DecoTap[2]);
- LateReverb(State, taps, late);
- // Step all delays forward one sample.
- State->Offset++;
- }
- // Perform the EAX reverb pass on a given input sample, resulting in four-
- // channel output.
- static __inline ALvoid EAXVerbPass(ALverbState *State, ALfloat in, ALfloat *early, ALfloat *late)
- {
- ALfloat feed, taps[4];
- // Low-pass filter the incoming sample.
- in = lpFilter2P(&State->LpFilter, 0, in);
- // Perform any modulation on the input.
- in = EAXModulation(State, in);
- // Feed the initial delay line.
- DelayLineIn(&State->Delay, State->Offset, in);
- // Calculate the early reflection from the first delay tap.
- in = DelayLineOut(&State->Delay, State->Offset - State->DelayTap[0]);
- EarlyReflection(State, in, early);
- // Feed the decorrelator from the energy-attenuated output of the second
- // delay tap.
- in = DelayLineOut(&State->Delay, State->Offset - State->DelayTap[1]);
- feed = in * State->Late.DensityGain;
- DelayLineIn(&State->Decorrelator, State->Offset, feed);
- // Calculate the late reverb from the decorrelator taps.
- taps[0] = feed;
- taps[1] = DelayLineOut(&State->Decorrelator, State->Offset - State->DecoTap[0]);
- taps[2] = DelayLineOut(&State->Decorrelator, State->Offset - State->DecoTap[1]);
- taps[3] = DelayLineOut(&State->Decorrelator, State->Offset - State->DecoTap[2]);
- LateReverb(State, taps, late);
- // Calculate and mix in any echo.
- EAXEcho(State, in, late);
- // Step all delays forward one sample.
- State->Offset++;
- }
- // This destroys the reverb state. It should be called only when the effect
- // slot has a different (or no) effect loaded over the reverb effect.
- static ALvoid VerbDestroy(ALeffectState *effect)
- {
- ALverbState *State = (ALverbState*)effect;
- if(State)
- {
- free(State->SampleBuffer);
- State->SampleBuffer = NULL;
- free(State);
- }
- }
- // This updates the device-dependant reverb state. This is called on
- // initialization and any time the device parameters (eg. playback frequency,
- // or format) have been changed.
- static ALboolean VerbDeviceUpdate(ALeffectState *effect, ALCdevice *Device)
- {
- ALverbState *State = (ALverbState*)effect;
- ALuint frequency = Device->Frequency, index;
- // Allocate the delay lines.
- if(!AllocLines(AL_FALSE, frequency, State))
- return AL_FALSE;
- State->Scale = aluSqrt(Device->NumChan / 8.0f);
- // The early reflection and late all-pass filter line lengths are static,
- // so their offsets only need to be calculated once.
- for(index = 0;index < 4;index++)
- {
- State->Early.Offset[index] = (ALuint)(EARLY_LINE_LENGTH[index] *
- frequency);
- State->Late.ApOffset[index] = (ALuint)(ALLPASS_LINE_LENGTH[index] *
- frequency);
- }
- return AL_TRUE;
- }
- // This updates the device-dependant EAX reverb state. This is called on
- // initialization and any time the device parameters (eg. playback frequency,
- // format) have been changed.
- static ALboolean EAXVerbDeviceUpdate(ALeffectState *effect, ALCdevice *Device)
- {
- ALverbState *State = (ALverbState*)effect;
- ALuint frequency = Device->Frequency, index;
- // Allocate the delay lines.
- if(!AllocLines(AL_TRUE, frequency, State))
- return AL_FALSE;
- State->Scale = aluSqrt(Device->NumChan / 8.0f);
- // Calculate the modulation filter coefficient. Notice that the exponent
- // is calculated given the current sample rate. This ensures that the
- // resulting filter response over time is consistent across all sample
- // rates.
- State->Mod.Coeff = aluPow(MODULATION_FILTER_COEFF,
- MODULATION_FILTER_CONST / frequency);
- // The early reflection and late all-pass filter line lengths are static,
- // so their offsets only need to be calculated once.
- for(index = 0;index < 4;index++)
- {
- State->Early.Offset[index] = (ALuint)(EARLY_LINE_LENGTH[index] *
- frequency);
- State->Late.ApOffset[index] = (ALuint)(ALLPASS_LINE_LENGTH[index] *
- frequency);
- }
- // The echo all-pass filter line length is static, so its offset only
- // needs to be calculated once.
- State->Echo.ApOffset = (ALuint)(ECHO_ALLPASS_LENGTH * frequency);
- return AL_TRUE;
- }
- // This updates the reverb state. This is called any time the reverb effect
- // is loaded into a slot.
- static ALvoid VerbUpdate(ALeffectState *effect, ALCcontext *Context, const ALeffect *Effect)
- {
- ALverbState *State = (ALverbState*)effect;
- ALuint frequency = Context->Device->Frequency;
- ALfloat cw, x, y, hfRatio;
- // Calculate the master low-pass filter (from the master effect HF gain).
- cw = CalcI3DL2HFreq(Effect->Reverb.HFReference, frequency);
- // This is done with 2 chained 1-pole filters, so no need to square g.
- State->LpFilter.coeff = lpCoeffCalc(Effect->Reverb.GainHF, cw);
- // Update the initial effect delay.
- UpdateDelayLine(Effect->Reverb.ReflectionsDelay,
- Effect->Reverb.LateReverbDelay, frequency, State);
- // Update the early lines.
- UpdateEarlyLines(Effect->Reverb.Gain, Effect->Reverb.ReflectionsGain,
- Effect->Reverb.LateReverbDelay, State);
- // Update the decorrelator.
- UpdateDecorrelator(Effect->Reverb.Density, frequency, State);
- // Get the mixing matrix coefficients (x and y).
- CalcMatrixCoeffs(Effect->Reverb.Diffusion, &x, &y);
- // Then divide x into y to simplify the matrix calculation.
- State->Late.MixCoeff = y / x;
- // If the HF limit parameter is flagged, calculate an appropriate limit
- // based on the air absorption parameter.
- hfRatio = Effect->Reverb.DecayHFRatio;
- if(Effect->Reverb.DecayHFLimit && Effect->Reverb.AirAbsorptionGainHF < 1.0f)
- hfRatio = CalcLimitedHfRatio(hfRatio, Effect->Reverb.AirAbsorptionGainHF,
- Effect->Reverb.DecayTime);
- // Update the late lines.
- UpdateLateLines(Effect->Reverb.Gain, Effect->Reverb.LateReverbGain,
- x, Effect->Reverb.Density, Effect->Reverb.DecayTime,
- Effect->Reverb.Diffusion, hfRatio, cw, frequency, State);
- }
- // This updates the EAX reverb state. This is called any time the EAX reverb
- // effect is loaded into a slot.
- static ALvoid EAXVerbUpdate(ALeffectState *effect, ALCcontext *Context, const ALeffect *Effect)
- {
- ALverbState *State = (ALverbState*)effect;
- ALuint frequency = Context->Device->Frequency;
- ALfloat cw, x, y, hfRatio;
- // Calculate the master low-pass filter (from the master effect HF gain).
- cw = CalcI3DL2HFreq(Effect->Reverb.HFReference, frequency);
- // This is done with 2 chained 1-pole filters, so no need to square g.
- State->LpFilter.coeff = lpCoeffCalc(Effect->Reverb.GainHF, cw);
- // Update the modulator line.
- UpdateModulator(Effect->Reverb.ModulationTime,
- Effect->Reverb.ModulationDepth, frequency, State);
- // Update the initial effect delay.
- UpdateDelayLine(Effect->Reverb.ReflectionsDelay,
- Effect->Reverb.LateReverbDelay, frequency, State);
- // Update the early lines.
- UpdateEarlyLines(Effect->Reverb.Gain, Effect->Reverb.ReflectionsGain,
- Effect->Reverb.LateReverbDelay, State);
- // Update the decorrelator.
- UpdateDecorrelator(Effect->Reverb.Density, frequency, State);
- // Get the mixing matrix coefficients (x and y).
- CalcMatrixCoeffs(Effect->Reverb.Diffusion, &x, &y);
- // Then divide x into y to simplify the matrix calculation.
- State->Late.MixCoeff = y / x;
- // If the HF limit parameter is flagged, calculate an appropriate limit
- // based on the air absorption parameter.
- hfRatio = Effect->Reverb.DecayHFRatio;
- if(Effect->Reverb.DecayHFLimit && Effect->Reverb.AirAbsorptionGainHF < 1.0f)
- hfRatio = CalcLimitedHfRatio(hfRatio, Effect->Reverb.AirAbsorptionGainHF,
- Effect->Reverb.DecayTime);
- // Update the late lines.
- UpdateLateLines(Effect->Reverb.Gain, Effect->Reverb.LateReverbGain,
- x, Effect->Reverb.Density, Effect->Reverb.DecayTime,
- Effect->Reverb.Diffusion, hfRatio, cw, frequency, State);
- // Update the echo line.
- UpdateEchoLine(Effect->Reverb.Gain, Effect->Reverb.LateReverbGain,
- Effect->Reverb.EchoTime, Effect->Reverb.DecayTime,
- Effect->Reverb.Diffusion, Effect->Reverb.EchoDepth,
- hfRatio, cw, frequency, State);
- // Update early and late 3D panning.
- Update3DPanning(Effect->Reverb.ReflectionsPan, Effect->Reverb.LateReverbPan,
- Context->Device->PanningLUT, State);
- }
- // This processes the reverb state, given the input samples and an output
- // buffer.
- static ALvoid VerbProcess(ALeffectState *effect, const ALeffectslot *Slot, ALuint SamplesToDo, const ALfloat *SamplesIn, ALfloat (*SamplesOut)[OUTPUTCHANNELS])
- {
- ALverbState *State = (ALverbState*)effect;
- ALuint index;
- ALfloat early[4], late[4], out[4];
- ALfloat gain = Slot->Gain * State->Scale;
- for(index = 0;index < SamplesToDo;index++)
- {
- // Process reverb for this sample.
- VerbPass(State, SamplesIn[index], early, late);
- // Mix early reflections and late reverb.
- out[0] = (early[0] + late[0]) * gain;
- out[1] = (early[1] + late[1]) * gain;
- out[2] = (early[2] + late[2]) * gain;
- out[3] = (early[3] + late[3]) * gain;
- // Output the results.
- SamplesOut[index][FRONT_LEFT] += out[0];
- SamplesOut[index][FRONT_RIGHT] += out[1];
- SamplesOut[index][FRONT_CENTER] += out[3];
- SamplesOut[index][SIDE_LEFT] += out[0];
- SamplesOut[index][SIDE_RIGHT] += out[1];
- SamplesOut[index][BACK_LEFT] += out[0];
- SamplesOut[index][BACK_RIGHT] += out[1];
- SamplesOut[index][BACK_CENTER] += out[2];
- }
- }
- // This processes the EAX reverb state, given the input samples and an output
- // buffer.
- static ALvoid EAXVerbProcess(ALeffectState *effect, const ALeffectslot *Slot, ALuint SamplesToDo, const ALfloat *SamplesIn, ALfloat (*SamplesOut)[OUTPUTCHANNELS])
- {
- ALverbState *State = (ALverbState*)effect;
- ALuint index;
- ALfloat early[4], late[4];
- ALfloat gain = Slot->Gain * State->Scale;
- for(index = 0;index < SamplesToDo;index++)
- {
- // Process reverb for this sample.
- EAXVerbPass(State, SamplesIn[index], early, late);
- // Unfortunately, while the number and configuration of gains for
- // panning adjust according to OUTPUTCHANNELS, the output from the
- // reverb engine is not so scalable.
- SamplesOut[index][FRONT_LEFT] +=
- (State->Early.PanGain[FRONT_LEFT]*early[0] +
- State->Late.PanGain[FRONT_LEFT]*late[0]) * gain;
- SamplesOut[index][FRONT_RIGHT] +=
- (State->Early.PanGain[FRONT_RIGHT]*early[1] +
- State->Late.PanGain[FRONT_RIGHT]*late[1]) * gain;
- SamplesOut[index][FRONT_CENTER] +=
- (State->Early.PanGain[FRONT_CENTER]*early[3] +
- State->Late.PanGain[FRONT_CENTER]*late[3]) * gain;
- SamplesOut[index][SIDE_LEFT] +=
- (State->Early.PanGain[SIDE_LEFT]*early[0] +
- State->Late.PanGain[SIDE_LEFT]*late[0]) * gain;
- SamplesOut[index][SIDE_RIGHT] +=
- (State->Early.PanGain[SIDE_RIGHT]*early[1] +
- State->Late.PanGain[SIDE_RIGHT]*late[1]) * gain;
- SamplesOut[index][BACK_LEFT] +=
- (State->Early.PanGain[BACK_LEFT]*early[0] +
- State->Late.PanGain[BACK_LEFT]*late[0]) * gain;
- SamplesOut[index][BACK_RIGHT] +=
- (State->Early.PanGain[BACK_RIGHT]*early[1] +
- State->Late.PanGain[BACK_RIGHT]*late[1]) * gain;
- SamplesOut[index][BACK_CENTER] +=
- (State->Early.PanGain[BACK_CENTER]*early[2] +
- State->Late.PanGain[BACK_CENTER]*late[2]) * gain;
- }
- }
- // This creates the reverb state. It should be called only when the reverb
- // effect is loaded into a slot that doesn't already have a reverb effect.
- ALeffectState *VerbCreate(void)
- {
- ALverbState *State = NULL;
- ALuint index;
- State = malloc(sizeof(ALverbState));
- if(!State)
- return NULL;
- State->state.Destroy = VerbDestroy;
- State->state.DeviceUpdate = VerbDeviceUpdate;
- State->state.Update = VerbUpdate;
- State->state.Process = VerbProcess;
- State->TotalSamples = 0;
- State->SampleBuffer = NULL;
- State->LpFilter.coeff = 0.0f;
- State->LpFilter.history[0] = 0.0f;
- State->LpFilter.history[1] = 0.0f;
- State->Mod.Delay.Mask = 0;
- State->Mod.Delay.Line = NULL;
- State->Mod.Index = 0;
- State->Mod.Range = 1;
- State->Mod.Depth = 0.0f;
- State->Mod.Coeff = 0.0f;
- State->Mod.Filter = 0.0f;
- State->Delay.Mask = 0;
- State->Delay.Line = NULL;
- State->DelayTap[0] = 0;
- State->DelayTap[1] = 0;
- State->Early.Gain = 0.0f;
- for(index = 0;index < 4;index++)
- {
- State->Early.Coeff[index] = 0.0f;
- State->Early.Delay[index].Mask = 0;
- State->Early.Delay[index].Line = NULL;
- State->Early.Offset[index] = 0;
- }
- State->Decorrelator.Mask = 0;
- State->Decorrelator.Line = NULL;
- State->DecoTap[0] = 0;
- State->DecoTap[1] = 0;
- State->DecoTap[2] = 0;
- State->Late.Gain = 0.0f;
- State->Late.DensityGain = 0.0f;
- State->Late.ApFeedCoeff = 0.0f;
- State->Late.MixCoeff = 0.0f;
- for(index = 0;index < 4;index++)
- {
- State->Late.ApCoeff[index] = 0.0f;
- State->Late.ApDelay[index].Mask = 0;
- State->Late.ApDelay[index].Line = NULL;
- State->Late.ApOffset[index] = 0;
- State->Late.Coeff[index] = 0.0f;
- State->Late.Delay[index].Mask = 0;
- State->Late.Delay[index].Line = NULL;
- State->Late.Offset[index] = 0;
- State->Late.LpCoeff[index] = 0.0f;
- State->Late.LpSample[index] = 0.0f;
- }
- for(index = 0;index < OUTPUTCHANNELS;index++)
- {
- State->Early.PanGain[index] = 0.0f;
- State->Late.PanGain[index] = 0.0f;
- }
- State->Echo.DensityGain = 0.0f;
- State->Echo.Delay.Mask = 0;
- State->Echo.Delay.Line = NULL;
- State->Echo.ApDelay.Mask = 0;
- State->Echo.ApDelay.Line = NULL;
- State->Echo.Coeff = 0.0f;
- State->Echo.ApFeedCoeff = 0.0f;
- State->Echo.ApCoeff = 0.0f;
- State->Echo.Offset = 0;
- State->Echo.ApOffset = 0;
- State->Echo.LpCoeff = 0.0f;
- State->Echo.LpSample = 0.0f;
- State->Echo.MixCoeff[0] = 0.0f;
- State->Echo.MixCoeff[1] = 0.0f;
- State->Offset = 0;
- State->Scale = 1.0f;
- return &State->state;
- }
- ALeffectState *EAXVerbCreate(void)
- {
- ALeffectState *State = VerbCreate();
- if(State)
- {
- State->DeviceUpdate = EAXVerbDeviceUpdate;
- State->Update = EAXVerbUpdate;
- State->Process = EAXVerbProcess;
- }
- return State;
- }
|