12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303 |
- /*
- ** 2001 September 15
- **
- ** The author disclaims copyright to this source code. In place of
- ** a legal notice, here is a blessing:
- **
- ** May you do good and not evil.
- ** May you find forgiveness for yourself and forgive others.
- ** May you share freely, never taking more than you give.
- **
- *************************************************************************
- ** The code in this file implements execution method of the
- ** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c")
- ** handles housekeeping details such as creating and deleting
- ** VDBE instances. This file is solely interested in executing
- ** the VDBE program.
- **
- ** In the external interface, an "sqlite3_stmt*" is an opaque pointer
- ** to a VDBE.
- **
- ** The SQL parser generates a program which is then executed by
- ** the VDBE to do the work of the SQL statement. VDBE programs are
- ** similar in form to assembly language. The program consists of
- ** a linear sequence of operations. Each operation has an opcode
- ** and 3 operands. Operands P1 and P2 are integers. Operand P3
- ** is a null-terminated string. The P2 operand must be non-negative.
- ** Opcodes will typically ignore one or more operands. Many opcodes
- ** ignore all three operands.
- **
- ** Computation results are stored on a stack. Each entry on the
- ** stack is either an integer, a null-terminated string, a floating point
- ** number, or the SQL "NULL" value. An inplicit conversion from one
- ** type to the other occurs as necessary.
- **
- ** Most of the code in this file is taken up by the sqlite3VdbeExec()
- ** function which does the work of interpreting a VDBE program.
- ** But other routines are also provided to help in building up
- ** a program instruction by instruction.
- **
- ** Various scripts scan this source file in order to generate HTML
- ** documentation, headers files, or other derived files. The formatting
- ** of the code in this file is, therefore, important. See other comments
- ** in this file for details. If in doubt, do not deviate from existing
- ** commenting and indentation practices when changing or adding code.
- **
- ** $Id: vdbe.c,v 1.660 2007/12/13 21:54:11 drh Exp $
- */
- #include "sqliteInt.h"
- #include <ctype.h>
- #include "vdbeInt.h"
- /*
- ** The following global variable is incremented every time a cursor
- ** moves, either by the OP_MoveXX, OP_Next, or OP_Prev opcodes. The test
- ** procedures use this information to make sure that indices are
- ** working correctly. This variable has no function other than to
- ** help verify the correct operation of the library.
- */
- #ifdef SQLITE_TEST
- int sqlite3_search_count = 0;
- #endif
- /*
- ** When this global variable is positive, it gets decremented once before
- ** each instruction in the VDBE. When reaches zero, the u1.isInterrupted
- ** field of the sqlite3 structure is set in order to simulate and interrupt.
- **
- ** This facility is used for testing purposes only. It does not function
- ** in an ordinary build.
- */
- #ifdef SQLITE_TEST
- int sqlite3_interrupt_count = 0;
- #endif
- /*
- ** The next global variable is incremented each type the OP_Sort opcode
- ** is executed. The test procedures use this information to make sure that
- ** sorting is occurring or not occuring at appropriate times. This variable
- ** has no function other than to help verify the correct operation of the
- ** library.
- */
- #ifdef SQLITE_TEST
- int sqlite3_sort_count = 0;
- #endif
- /*
- ** The next global variable records the size of the largest MEM_Blob
- ** or MEM_Str that has appeared on the VDBE stack. The test procedures
- ** use this information to make sure that the zero-blob functionality
- ** is working correctly. This variable has no function other than to
- ** help verify the correct operation of the library.
- */
- #ifdef SQLITE_TEST
- int sqlite3_max_blobsize = 0;
- #endif
- /*
- ** Release the memory associated with the given stack level. This
- ** leaves the Mem.flags field in an inconsistent state.
- */
- #define Release(P) if((P)->flags&MEM_Dyn){ sqlite3VdbeMemRelease(P); }
- /*
- ** Convert the given stack entity into a string if it isn't one
- ** already. Return non-zero if a malloc() fails.
- */
- #define Stringify(P, enc) \
- if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \
- { goto no_mem; }
- /*
- ** The header of a record consists of a sequence variable-length integers.
- ** These integers are almost always small and are encoded as a single byte.
- ** The following macro takes advantage this fact to provide a fast decode
- ** of the integers in a record header. It is faster for the common case
- ** where the integer is a single byte. It is a little slower when the
- ** integer is two or more bytes. But overall it is faster.
- **
- ** The following expressions are equivalent:
- **
- ** x = sqlite3GetVarint32( A, &B );
- **
- ** x = GetVarint( A, B );
- **
- */
- #define GetVarint(A,B) ((B = *(A))<=0x7f ? 1 : sqlite3GetVarint32(A, &B))
- /*
- ** An ephemeral string value (signified by the MEM_Ephem flag) contains
- ** a pointer to a dynamically allocated string where some other entity
- ** is responsible for deallocating that string. Because the stack entry
- ** does not control the string, it might be deleted without the stack
- ** entry knowing it.
- **
- ** This routine converts an ephemeral string into a dynamically allocated
- ** string that the stack entry itself controls. In other words, it
- ** converts an MEM_Ephem string into an MEM_Dyn string.
- */
- #define Deephemeralize(P) \
- if( ((P)->flags&MEM_Ephem)!=0 \
- && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
- /*
- ** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*)
- ** P if required.
- */
- #define ExpandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0)
- /*
- ** Argument pMem points at a memory cell that will be passed to a
- ** user-defined function or returned to the user as the result of a query.
- ** The second argument, 'db_enc' is the text encoding used by the vdbe for
- ** stack variables. This routine sets the pMem->enc and pMem->type
- ** variables used by the sqlite3_value_*() routines.
- */
- #define storeTypeInfo(A,B) _storeTypeInfo(A)
- static void _storeTypeInfo(Mem *pMem){
- int flags = pMem->flags;
- if( flags & MEM_Null ){
- pMem->type = SQLITE_NULL;
- }
- else if( flags & MEM_Int ){
- pMem->type = SQLITE_INTEGER;
- }
- else if( flags & MEM_Real ){
- pMem->type = SQLITE_FLOAT;
- }
- else if( flags & MEM_Str ){
- pMem->type = SQLITE_TEXT;
- }else{
- pMem->type = SQLITE_BLOB;
- }
- }
- /*
- ** Pop the stack N times.
- */
- static void popStack(Mem **ppTos, int N){
- Mem *pTos = *ppTos;
- while( N>0 ){
- N--;
- Release(pTos);
- pTos--;
- }
- *ppTos = pTos;
- }
- /*
- ** Allocate cursor number iCur. Return a pointer to it. Return NULL
- ** if we run out of memory.
- */
- static Cursor *allocateCursor(Vdbe *p, int iCur, int iDb){
- Cursor *pCx;
- assert( iCur<p->nCursor );
- if( p->apCsr[iCur] ){
- sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
- }
- p->apCsr[iCur] = pCx = sqlite3MallocZero( sizeof(Cursor) );
- if( pCx ){
- pCx->iDb = iDb;
- }
- return pCx;
- }
- /*
- ** Try to convert a value into a numeric representation if we can
- ** do so without loss of information. In other words, if the string
- ** looks like a number, convert it into a number. If it does not
- ** look like a number, leave it alone.
- */
- static void applyNumericAffinity(Mem *pRec){
- if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){
- int realnum;
- sqlite3VdbeMemNulTerminate(pRec);
- if( (pRec->flags&MEM_Str)
- && sqlite3IsNumber(pRec->z, &realnum, pRec->enc) ){
- i64 value;
- sqlite3VdbeChangeEncoding(pRec, SQLITE_UTF8);
- if( !realnum && sqlite3Atoi64(pRec->z, &value) ){
- sqlite3VdbeMemRelease(pRec);
- pRec->u.i = value;
- pRec->flags = MEM_Int;
- }else{
- sqlite3VdbeMemRealify(pRec);
- }
- }
- }
- }
- /*
- ** Processing is determine by the affinity parameter:
- **
- ** SQLITE_AFF_INTEGER:
- ** SQLITE_AFF_REAL:
- ** SQLITE_AFF_NUMERIC:
- ** Try to convert pRec to an integer representation or a
- ** floating-point representation if an integer representation
- ** is not possible. Note that the integer representation is
- ** always preferred, even if the affinity is REAL, because
- ** an integer representation is more space efficient on disk.
- **
- ** SQLITE_AFF_TEXT:
- ** Convert pRec to a text representation.
- **
- ** SQLITE_AFF_NONE:
- ** No-op. pRec is unchanged.
- */
- static void applyAffinity(
- Mem *pRec, /* The value to apply affinity to */
- char affinity, /* The affinity to be applied */
- u8 enc /* Use this text encoding */
- ){
- if( affinity==SQLITE_AFF_TEXT ){
- /* Only attempt the conversion to TEXT if there is an integer or real
- ** representation (blob and NULL do not get converted) but no string
- ** representation.
- */
- if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
- sqlite3VdbeMemStringify(pRec, enc);
- }
- pRec->flags &= ~(MEM_Real|MEM_Int);
- }else if( affinity!=SQLITE_AFF_NONE ){
- assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
- || affinity==SQLITE_AFF_NUMERIC );
- applyNumericAffinity(pRec);
- if( pRec->flags & MEM_Real ){
- sqlite3VdbeIntegerAffinity(pRec);
- }
- }
- }
- /*
- ** Try to convert the type of a function argument or a result column
- ** into a numeric representation. Use either INTEGER or REAL whichever
- ** is appropriate. But only do the conversion if it is possible without
- ** loss of information and return the revised type of the argument.
- **
- ** This is an EXPERIMENTAL api and is subject to change or removal.
- */
- int sqlite3_value_numeric_type(sqlite3_value *pVal){
- Mem *pMem = (Mem*)pVal;
- applyNumericAffinity(pMem);
- storeTypeInfo(pMem, 0);
- return pMem->type;
- }
- /*
- ** Exported version of applyAffinity(). This one works on sqlite3_value*,
- ** not the internal Mem* type.
- */
- void sqlite3ValueApplyAffinity(
- sqlite3_value *pVal,
- u8 affinity,
- u8 enc
- ){
- applyAffinity((Mem *)pVal, affinity, enc);
- }
- #ifdef SQLITE_DEBUG
- /*
- ** Write a nice string representation of the contents of cell pMem
- ** into buffer zBuf, length nBuf.
- */
- void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
- char *zCsr = zBuf;
- int f = pMem->flags;
- static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
- if( f&MEM_Blob ){
- int i;
- char c;
- if( f & MEM_Dyn ){
- c = 'z';
- assert( (f & (MEM_Static|MEM_Ephem))==0 );
- }else if( f & MEM_Static ){
- c = 't';
- assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
- }else if( f & MEM_Ephem ){
- c = 'e';
- assert( (f & (MEM_Static|MEM_Dyn))==0 );
- }else{
- c = 's';
- }
- sqlite3_snprintf(100, zCsr, "%c", c);
- zCsr += strlen(zCsr);
- sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
- zCsr += strlen(zCsr);
- for(i=0; i<16 && i<pMem->n; i++){
- sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
- zCsr += strlen(zCsr);
- }
- for(i=0; i<16 && i<pMem->n; i++){
- char z = pMem->z[i];
- if( z<32 || z>126 ) *zCsr++ = '.';
- else *zCsr++ = z;
- }
- sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
- zCsr += strlen(zCsr);
- if( f & MEM_Zero ){
- sqlite3_snprintf(100, zCsr,"+%lldz",pMem->u.i);
- zCsr += strlen(zCsr);
- }
- *zCsr = '\0';
- }else if( f & MEM_Str ){
- int j, k;
- zBuf[0] = ' ';
- if( f & MEM_Dyn ){
- zBuf[1] = 'z';
- assert( (f & (MEM_Static|MEM_Ephem))==0 );
- }else if( f & MEM_Static ){
- zBuf[1] = 't';
- assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
- }else if( f & MEM_Ephem ){
- zBuf[1] = 'e';
- assert( (f & (MEM_Static|MEM_Dyn))==0 );
- }else{
- zBuf[1] = 's';
- }
- k = 2;
- sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
- k += strlen(&zBuf[k]);
- zBuf[k++] = '[';
- for(j=0; j<15 && j<pMem->n; j++){
- u8 c = pMem->z[j];
- if( c>=0x20 && c<0x7f ){
- zBuf[k++] = c;
- }else{
- zBuf[k++] = '.';
- }
- }
- zBuf[k++] = ']';
- sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
- k += strlen(&zBuf[k]);
- zBuf[k++] = 0;
- }
- }
- #endif
- #ifdef VDBE_PROFILE
- /*
- ** The following routine only works on pentium-class processors.
- ** It uses the RDTSC opcode to read the cycle count value out of the
- ** processor and returns that value. This can be used for high-res
- ** profiling.
- */
- __inline__ unsigned long long int hwtime(void){
- unsigned long long int x;
- __asm__("rdtsc\n\t"
- "mov %%edx, %%ecx\n\t"
- :"=A" (x));
- return x;
- }
- #endif
- /*
- ** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
- ** sqlite3_interrupt() routine has been called. If it has been, then
- ** processing of the VDBE program is interrupted.
- **
- ** This macro added to every instruction that does a jump in order to
- ** implement a loop. This test used to be on every single instruction,
- ** but that meant we more testing that we needed. By only testing the
- ** flag on jump instructions, we get a (small) speed improvement.
- */
- #define CHECK_FOR_INTERRUPT \
- if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
- /*
- ** Execute as much of a VDBE program as we can then return.
- **
- ** sqlite3VdbeMakeReady() must be called before this routine in order to
- ** close the program with a final OP_Halt and to set up the callbacks
- ** and the error message pointer.
- **
- ** Whenever a row or result data is available, this routine will either
- ** invoke the result callback (if there is one) or return with
- ** SQLITE_ROW.
- **
- ** If an attempt is made to open a locked database, then this routine
- ** will either invoke the busy callback (if there is one) or it will
- ** return SQLITE_BUSY.
- **
- ** If an error occurs, an error message is written to memory obtained
- ** from sqlite3_malloc() and p->zErrMsg is made to point to that memory.
- ** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
- **
- ** If the callback ever returns non-zero, then the program exits
- ** immediately. There will be no error message but the p->rc field is
- ** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
- **
- ** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this
- ** routine to return SQLITE_ERROR.
- **
- ** Other fatal errors return SQLITE_ERROR.
- **
- ** After this routine has finished, sqlite3VdbeFinalize() should be
- ** used to clean up the mess that was left behind.
- */
- int sqlite3VdbeExec(
- Vdbe *p /* The VDBE */
- ){
- int pc; /* The program counter */
- Op *pOp; /* Current operation */
- int rc = SQLITE_OK; /* Value to return */
- sqlite3 *db = p->db; /* The database */
- u8 encoding = ENC(db); /* The database encoding */
- Mem *pTos; /* Top entry in the operand stack */
- #ifdef VDBE_PROFILE
- unsigned long long start; /* CPU clock count at start of opcode */
- int origPc; /* Program counter at start of opcode */
- #endif
- #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
- int nProgressOps = 0; /* Opcodes executed since progress callback. */
- #endif
- #ifndef NDEBUG
- Mem *pStackLimit;
- #endif
- if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE;
- assert( db->magic==SQLITE_MAGIC_BUSY );
- pTos = p->pTos;
- sqlite3BtreeMutexArrayEnter(&p->aMutex);
- if( p->rc==SQLITE_NOMEM ){
- /* This happens if a malloc() inside a call to sqlite3_column_text() or
- ** sqlite3_column_text16() failed. */
- goto no_mem;
- }
- assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
- p->rc = SQLITE_OK;
- assert( p->explain==0 );
- if( p->popStack ){
- popStack(&pTos, p->popStack);
- p->popStack = 0;
- }
- p->resOnStack = 0;
- db->busyHandler.nBusy = 0;
- CHECK_FOR_INTERRUPT;
- sqlite3VdbeIOTraceSql(p);
- #ifdef SQLITE_DEBUG
- if( (p->db->flags & SQLITE_VdbeListing)!=0
- || sqlite3OsAccess(db->pVfs, "vdbe_explain", SQLITE_ACCESS_EXISTS)
- ){
- int i;
- printf("VDBE Program Listing:\n");
- sqlite3VdbePrintSql(p);
- for(i=0; i<p->nOp; i++){
- sqlite3VdbePrintOp(stdout, i, &p->aOp[i]);
- }
- }
- if( sqlite3OsAccess(db->pVfs, "vdbe_trace", SQLITE_ACCESS_EXISTS) ){
- p->trace = stdout;
- }
- #endif
- for(pc=p->pc; rc==SQLITE_OK; pc++){
- assert( pc>=0 && pc<p->nOp );
- assert( pTos<=&p->aStack[pc] );
- if( db->mallocFailed ) goto no_mem;
- #ifdef VDBE_PROFILE
- origPc = pc;
- start = hwtime();
- #endif
- pOp = &p->aOp[pc];
- /* Only allow tracing if SQLITE_DEBUG is defined.
- */
- #ifdef SQLITE_DEBUG
- if( p->trace ){
- if( pc==0 ){
- printf("VDBE Execution Trace:\n");
- sqlite3VdbePrintSql(p);
- }
- sqlite3VdbePrintOp(p->trace, pc, pOp);
- }
- if( p->trace==0 && pc==0
- && sqlite3OsAccess(db->pVfs, "vdbe_sqltrace", SQLITE_ACCESS_EXISTS) ){
- sqlite3VdbePrintSql(p);
- }
- #endif
-
- /* Check to see if we need to simulate an interrupt. This only happens
- ** if we have a special test build.
- */
- #ifdef SQLITE_TEST
- if( sqlite3_interrupt_count>0 ){
- sqlite3_interrupt_count--;
- if( sqlite3_interrupt_count==0 ){
- sqlite3_interrupt(db);
- }
- }
- #endif
- #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
- /* Call the progress callback if it is configured and the required number
- ** of VDBE ops have been executed (either since this invocation of
- ** sqlite3VdbeExec() or since last time the progress callback was called).
- ** If the progress callback returns non-zero, exit the virtual machine with
- ** a return code SQLITE_ABORT.
- */
- if( db->xProgress ){
- if( db->nProgressOps==nProgressOps ){
- int prc;
- if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
- prc =db->xProgress(db->pProgressArg);
- if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
- if( prc!=0 ){
- rc = SQLITE_INTERRUPT;
- goto vdbe_halt;
- }
- nProgressOps = 0;
- }
- nProgressOps++;
- }
- #endif
- #ifndef NDEBUG
- /* This is to check that the return value of static function
- ** opcodeNoPush() (see vdbeaux.c) returns values that match the
- ** implementation of the virtual machine in this file. If
- ** opcodeNoPush() returns non-zero, then the stack is guarenteed
- ** not to grow when the opcode is executed. If it returns zero, then
- ** the stack may grow by at most 1.
- **
- ** The global wrapper function sqlite3VdbeOpcodeUsesStack() is not
- ** available if NDEBUG is defined at build time.
- */
- pStackLimit = pTos;
- if( !sqlite3VdbeOpcodeNoPush(pOp->opcode) ){
- pStackLimit++;
- }
- #endif
- switch( pOp->opcode ){
- /*****************************************************************************
- ** What follows is a massive switch statement where each case implements a
- ** separate instruction in the virtual machine. If we follow the usual
- ** indentation conventions, each case should be indented by 6 spaces. But
- ** that is a lot of wasted space on the left margin. So the code within
- ** the switch statement will break with convention and be flush-left. Another
- ** big comment (similar to this one) will mark the point in the code where
- ** we transition back to normal indentation.
- **
- ** The formatting of each case is important. The makefile for SQLite
- ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
- ** file looking for lines that begin with "case OP_". The opcodes.h files
- ** will be filled with #defines that give unique integer values to each
- ** opcode and the opcodes.c file is filled with an array of strings where
- ** each string is the symbolic name for the corresponding opcode. If the
- ** case statement is followed by a comment of the form "/# same as ... #/"
- ** that comment is used to determine the particular value of the opcode.
- **
- ** If a comment on the same line as the "case OP_" construction contains
- ** the word "no-push", then the opcode is guarenteed not to grow the
- ** vdbe stack when it is executed. See function opcode() in
- ** vdbeaux.c for details.
- **
- ** Documentation about VDBE opcodes is generated by scanning this file
- ** for lines of that contain "Opcode:". That line and all subsequent
- ** comment lines are used in the generation of the opcode.html documentation
- ** file.
- **
- ** SUMMARY:
- **
- ** Formatting is important to scripts that scan this file.
- ** Do not deviate from the formatting style currently in use.
- **
- *****************************************************************************/
- /* Opcode: Goto * P2 *
- **
- ** An unconditional jump to address P2.
- ** The next instruction executed will be
- ** the one at index P2 from the beginning of
- ** the program.
- */
- case OP_Goto: { /* no-push */
- CHECK_FOR_INTERRUPT;
- pc = pOp->p2 - 1;
- break;
- }
- /* Opcode: Gosub * P2 *
- **
- ** Push the current address plus 1 onto the return address stack
- ** and then jump to address P2.
- **
- ** The return address stack is of limited depth. If too many
- ** OP_Gosub operations occur without intervening OP_Returns, then
- ** the return address stack will fill up and processing will abort
- ** with a fatal error.
- */
- case OP_Gosub: { /* no-push */
- assert( p->returnDepth<sizeof(p->returnStack)/sizeof(p->returnStack[0]) );
- p->returnStack[p->returnDepth++] = pc+1;
- pc = pOp->p2 - 1;
- break;
- }
- /* Opcode: Return * * *
- **
- ** Jump immediately to the next instruction after the last unreturned
- ** OP_Gosub. If an OP_Return has occurred for all OP_Gosubs, then
- ** processing aborts with a fatal error.
- */
- case OP_Return: { /* no-push */
- assert( p->returnDepth>0 );
- p->returnDepth--;
- pc = p->returnStack[p->returnDepth] - 1;
- break;
- }
- /* Opcode: Halt P1 P2 P3
- **
- ** Exit immediately. All open cursors, Fifos, etc are closed
- ** automatically.
- **
- ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
- ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
- ** For errors, it can be some other value. If P1!=0 then P2 will determine
- ** whether or not to rollback the current transaction. Do not rollback
- ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
- ** then back out all changes that have occurred during this execution of the
- ** VDBE, but do not rollback the transaction.
- **
- ** If P3 is not null then it is an error message string.
- **
- ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
- ** every program. So a jump past the last instruction of the program
- ** is the same as executing Halt.
- */
- case OP_Halt: { /* no-push */
- p->pTos = pTos;
- p->rc = pOp->p1;
- p->pc = pc;
- p->errorAction = pOp->p2;
- if( pOp->p3 ){
- sqlite3SetString(&p->zErrMsg, pOp->p3, (char*)0);
- }
- rc = sqlite3VdbeHalt(p);
- assert( rc==SQLITE_BUSY || rc==SQLITE_OK );
- if( rc==SQLITE_BUSY ){
- p->rc = rc = SQLITE_BUSY;
- }else{
- rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
- }
- goto vdbe_return;
- }
- /* Opcode: StackDepth P1 * *
- **
- ** If P1 is less than zero, then store the current stack depth
- ** in P1. If P1 is zero or greater, verify that the current stack
- ** depth is equal to P1 and throw an exception if it is not.
- **
- ** This opcode is used for internal consistency checking.
- */
- case OP_StackDepth: { /* no-push */
- int n = pTos - p->aStack + 1;
- if( pOp->p1<0 ){
- pOp->p1 = n;
- }else if( pOp->p1!=n ){
- p->pTos = pTos;
- p->rc = rc = SQLITE_INTERNAL;
- p->pc = pc;
- p->errorAction = OE_Rollback;
- sqlite3SetString(&p->zErrMsg, "internal error: VDBE stack leak", (char*)0);
- goto vdbe_return;
- }
- break;
- }
- /* Opcode: Integer P1 * *
- **
- ** The 32-bit integer value P1 is pushed onto the stack.
- */
- case OP_Integer: {
- pTos++;
- pTos->flags = MEM_Int;
- pTos->u.i = pOp->p1;
- break;
- }
- /* Opcode: Int64 * * P3
- **
- ** P3 is a pointer to a 64-bit integer value.
- ** Push that value onto the stack.
- */
- case OP_Int64: {
- pTos++;
- assert( pOp->p3!=0 );
- pTos->flags = MEM_Int;
- memcpy(&pTos->u.i, pOp->p3, 8);
- break;
- }
- /* Opcode: Real * * P3
- **
- ** P3 is a pointer to a 64-bit floating point value. Push that value
- ** onto the stack.
- */
- case OP_Real: { /* same as TK_FLOAT, */
- pTos++;
- pTos->flags = MEM_Real;
- memcpy(&pTos->r, pOp->p3, 8);
- break;
- }
- /* Opcode: String8 * * P3
- **
- ** P3 points to a nul terminated UTF-8 string. This opcode is transformed
- ** into an OP_String before it is executed for the first time.
- */
- case OP_String8: { /* same as TK_STRING */
- assert( pOp->p3!=0 );
- pOp->opcode = OP_String;
- pOp->p1 = strlen(pOp->p3);
- assert( SQLITE_MAX_SQL_LENGTH <= SQLITE_MAX_LENGTH );
- assert( pOp->p1 <= SQLITE_MAX_LENGTH );
- #ifndef SQLITE_OMIT_UTF16
- if( encoding!=SQLITE_UTF8 ){
- pTos++;
- sqlite3VdbeMemSetStr(pTos, pOp->p3, -1, SQLITE_UTF8, SQLITE_STATIC);
- if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pTos, encoding) ) goto no_mem;
- if( SQLITE_OK!=sqlite3VdbeMemDynamicify(pTos) ) goto no_mem;
- pTos->flags &= ~(MEM_Dyn);
- pTos->flags |= MEM_Static;
- if( pOp->p3type==P3_DYNAMIC ){
- sqlite3_free(pOp->p3);
- }
- pOp->p3type = P3_DYNAMIC;
- pOp->p3 = pTos->z;
- pOp->p1 = pTos->n;
- assert( pOp->p1 <= SQLITE_MAX_LENGTH ); /* Due to SQLITE_MAX_SQL_LENGTH */
- break;
- }
- #endif
- /* Otherwise fall through to the next case, OP_String */
- }
-
- /* Opcode: String P1 * P3
- **
- ** The string value P3 of length P1 (bytes) is pushed onto the stack.
- */
- case OP_String: {
- assert( pOp->p1 <= SQLITE_MAX_LENGTH ); /* Due to SQLITE_MAX_SQL_LENGTH */
- pTos++;
- assert( pOp->p3!=0 );
- pTos->flags = MEM_Str|MEM_Static|MEM_Term;
- pTos->z = pOp->p3;
- pTos->n = pOp->p1;
- pTos->enc = encoding;
- break;
- }
- /* Opcode: Null * * *
- **
- ** Push a NULL onto the stack.
- */
- case OP_Null: {
- pTos++;
- pTos->flags = MEM_Null;
- pTos->n = 0;
- break;
- }
- #ifndef SQLITE_OMIT_BLOB_LITERAL
- /* Opcode: HexBlob * * P3
- **
- ** P3 is an UTF-8 SQL hex encoding of a blob. The blob is pushed onto the
- ** vdbe stack.
- **
- ** The first time this instruction executes, in transforms itself into a
- ** 'Blob' opcode with a binary blob as P3.
- */
- case OP_HexBlob: { /* same as TK_BLOB */
- pOp->opcode = OP_Blob;
- pOp->p1 = strlen(pOp->p3)/2;
- assert( SQLITE_MAX_SQL_LENGTH <= SQLITE_MAX_LENGTH );
- assert( pOp->p1 <= SQLITE_MAX_LENGTH );
- if( pOp->p1 ){
- char *zBlob = sqlite3HexToBlob(db, pOp->p3);
- if( !zBlob ) goto no_mem;
- if( pOp->p3type==P3_DYNAMIC ){
- sqlite3_free(pOp->p3);
- }
- pOp->p3 = zBlob;
- pOp->p3type = P3_DYNAMIC;
- }else{
- if( pOp->p3type==P3_DYNAMIC ){
- sqlite3_free(pOp->p3);
- }
- pOp->p3type = P3_STATIC;
- pOp->p3 = "";
- }
- /* Fall through to the next case, OP_Blob. */
- }
- /* Opcode: Blob P1 * P3
- **
- ** P3 points to a blob of data P1 bytes long. Push this
- ** value onto the stack. This instruction is not coded directly
- ** by the compiler. Instead, the compiler layer specifies
- ** an OP_HexBlob opcode, with the hex string representation of
- ** the blob as P3. This opcode is transformed to an OP_Blob
- ** the first time it is executed.
- */
- case OP_Blob: {
- pTos++;
- assert( pOp->p1 <= SQLITE_MAX_LENGTH ); /* Due to SQLITE_MAX_SQL_LENGTH */
- sqlite3VdbeMemSetStr(pTos, pOp->p3, pOp->p1, 0, 0);
- pTos->enc = encoding;
- break;
- }
- #endif /* SQLITE_OMIT_BLOB_LITERAL */
- /* Opcode: Variable P1 * *
- **
- ** Push the value of variable P1 onto the stack. A variable is
- ** an unknown in the original SQL string as handed to sqlite3_compile().
- ** Any occurance of the '?' character in the original SQL is considered
- ** a variable. Variables in the SQL string are number from left to
- ** right beginning with 1. The values of variables are set using the
- ** sqlite3_bind() API.
- */
- case OP_Variable: {
- int j = pOp->p1 - 1;
- Mem *pVar;
- assert( j>=0 && j<p->nVar );
- pVar = &p->aVar[j];
- if( sqlite3VdbeMemTooBig(pVar) ){
- goto too_big;
- }
- pTos++;
- sqlite3VdbeMemShallowCopy(pTos, &p->aVar[j], MEM_Static);
- break;
- }
- /* Opcode: Pop P1 * *
- **
- ** P1 elements are popped off of the top of stack and discarded.
- */
- case OP_Pop: { /* no-push */
- assert( pOp->p1>=0 );
- popStack(&pTos, pOp->p1);
- assert( pTos>=&p->aStack[-1] );
- break;
- }
- /* Opcode: Dup P1 P2 *
- **
- ** A copy of the P1-th element of the stack
- ** is made and pushed onto the top of the stack.
- ** The top of the stack is element 0. So the
- ** instruction "Dup 0 0 0" will make a copy of the
- ** top of the stack.
- **
- ** If the content of the P1-th element is a dynamically
- ** allocated string, then a new copy of that string
- ** is made if P2==0. If P2!=0, then just a pointer
- ** to the string is copied.
- **
- ** Also see the Pull instruction.
- */
- case OP_Dup: {
- Mem *pFrom = &pTos[-pOp->p1];
- assert( pFrom<=pTos && pFrom>=p->aStack );
- pTos++;
- sqlite3VdbeMemShallowCopy(pTos, pFrom, MEM_Ephem);
- if( pOp->p2 ){
- Deephemeralize(pTos);
- }
- break;
- }
- /* Opcode: Pull P1 * *
- **
- ** The P1-th element is removed from its current location on
- ** the stack and pushed back on top of the stack. The
- ** top of the stack is element 0, so "Pull 0 0 0" is
- ** a no-op. "Pull 1 0 0" swaps the top two elements of
- ** the stack.
- **
- ** See also the Dup instruction.
- */
- case OP_Pull: { /* no-push */
- Mem *pFrom = &pTos[-pOp->p1];
- int i;
- Mem ts;
- ts = *pFrom;
- Deephemeralize(pTos);
- for(i=0; i<pOp->p1; i++, pFrom++){
- Deephemeralize(&pFrom[1]);
- assert( (pFrom[1].flags & MEM_Ephem)==0 );
- *pFrom = pFrom[1];
- if( pFrom->flags & MEM_Short ){
- assert( pFrom->flags & (MEM_Str|MEM_Blob) );
- assert( pFrom->z==pFrom[1].zShort );
- pFrom->z = pFrom->zShort;
- }
- }
- *pTos = ts;
- if( pTos->flags & MEM_Short ){
- assert( pTos->flags & (MEM_Str|MEM_Blob) );
- assert( pTos->z==pTos[-pOp->p1].zShort );
- pTos->z = pTos->zShort;
- }
- break;
- }
- /* Opcode: Push P1 * *
- **
- ** Overwrite the value of the P1-th element down on the
- ** stack (P1==0 is the top of the stack) with the value
- ** of the top of the stack. Then pop the top of the stack.
- */
- case OP_Push: { /* no-push */
- Mem *pTo = &pTos[-pOp->p1];
- assert( pTo>=p->aStack );
- sqlite3VdbeMemMove(pTo, pTos);
- pTos--;
- break;
- }
- /* Opcode: Callback P1 * *
- **
- ** The top P1 values on the stack represent a single result row from
- ** a query. This opcode causes the sqlite3_step() call to terminate
- ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
- ** structure to provide access to the top P1 values as the result
- ** row. When the sqlite3_step() function is run again, the top P1
- ** values will be automatically popped from the stack before the next
- ** instruction executes.
- */
- case OP_Callback: { /* no-push */
- Mem *pMem;
- Mem *pFirstColumn;
- assert( p->nResColumn==pOp->p1 );
- /* Data in the pager might be moved or changed out from under us
- ** in between the return from this sqlite3_step() call and the
- ** next call to sqlite3_step(). So deephermeralize everything on
- ** the stack. Note that ephemeral data is never stored in memory
- ** cells so we do not have to worry about them.
- */
- pFirstColumn = &pTos[0-pOp->p1];
- for(pMem = p->aStack; pMem<pFirstColumn; pMem++){
- Deephemeralize(pMem);
- }
- /* Invalidate all ephemeral cursor row caches */
- p->cacheCtr = (p->cacheCtr + 2)|1;
- /* Make sure the results of the current row are \000 terminated
- ** and have an assigned type. The results are deephemeralized as
- ** as side effect.
- */
- for(; pMem<=pTos; pMem++ ){
- sqlite3VdbeMemNulTerminate(pMem);
- storeTypeInfo(pMem, encoding);
- }
- /* Set up the statement structure so that it will pop the current
- ** results from the stack when the statement returns.
- */
- p->resOnStack = 1;
- p->nCallback++;
- p->popStack = pOp->p1;
- p->pc = pc + 1;
- p->pTos = pTos;
- rc = SQLITE_ROW;
- goto vdbe_return;
- }
- /* Opcode: Concat P1 P2 *
- **
- ** Look at the first P1+2 elements of the stack. Append them all
- ** together with the lowest element first. The original P1+2 elements
- ** are popped from the stack if P2==0 and retained if P2==1. If
- ** any element of the stack is NULL, then the result is NULL.
- **
- ** When P1==1, this routine makes a copy of the top stack element
- ** into memory obtained from sqlite3_malloc().
- */
- case OP_Concat: { /* same as TK_CONCAT */
- char *zNew;
- i64 nByte;
- int nField;
- int i, j;
- Mem *pTerm;
- /* Loop through the stack elements to see how long the result will be. */
- nField = pOp->p1 + 2;
- pTerm = &pTos[1-nField];
- nByte = 0;
- for(i=0; i<nField; i++, pTerm++){
- assert( pOp->p2==0 || (pTerm->flags&MEM_Str) );
- if( pTerm->flags&MEM_Null ){
- nByte = -1;
- break;
- }
- ExpandBlob(pTerm);
- Stringify(pTerm, encoding);
- nByte += pTerm->n;
- }
- if( nByte<0 ){
- /* If nByte is less than zero, then there is a NULL value on the stack.
- ** In this case just pop the values off the stack (if required) and
- ** push on a NULL.
- */
- if( pOp->p2==0 ){
- popStack(&pTos, nField);
- }
- pTos++;
- pTos->flags = MEM_Null;
- }else{
- /* Otherwise malloc() space for the result and concatenate all the
- ** stack values.
- */
- if( nByte+2>SQLITE_MAX_LENGTH ){
- goto too_big;
- }
- zNew = sqlite3DbMallocRaw(db, nByte+2 );
- if( zNew==0 ) goto no_mem;
- j = 0;
- pTerm = &pTos[1-nField];
- for(i=j=0; i<nField; i++, pTerm++){
- int n = pTerm->n;
- assert( pTerm->flags & (MEM_Str|MEM_Blob) );
- memcpy(&zNew[j], pTerm->z, n);
- j += n;
- }
- zNew[j] = 0;
- zNew[j+1] = 0;
- assert( j==nByte );
- if( pOp->p2==0 ){
- popStack(&pTos, nField);
- }
- pTos++;
- pTos->n = j;
- pTos->flags = MEM_Str|MEM_Dyn|MEM_Term;
- pTos->xDel = 0;
- pTos->enc = encoding;
- pTos->z = zNew;
- }
- break;
- }
- /* Opcode: Add * * *
- **
- ** Pop the top two elements from the stack, add them together,
- ** and push the result back onto the stack. If either element
- ** is a string then it is converted to a double using the atof()
- ** function before the addition.
- ** If either operand is NULL, the result is NULL.
- */
- /* Opcode: Multiply * * *
- **
- ** Pop the top two elements from the stack, multiply them together,
- ** and push the result back onto the stack. If either element
- ** is a string then it is converted to a double using the atof()
- ** function before the multiplication.
- ** If either operand is NULL, the result is NULL.
- */
- /* Opcode: Subtract * * *
- **
- ** Pop the top two elements from the stack, subtract the
- ** first (what was on top of the stack) from the second (the
- ** next on stack)
- ** and push the result back onto the stack. If either element
- ** is a string then it is converted to a double using the atof()
- ** function before the subtraction.
- ** If either operand is NULL, the result is NULL.
- */
- /* Opcode: Divide * * *
- **
- ** Pop the top two elements from the stack, divide the
- ** first (what was on top of the stack) from the second (the
- ** next on stack)
- ** and push the result back onto the stack. If either element
- ** is a string then it is converted to a double using the atof()
- ** function before the division. Division by zero returns NULL.
- ** If either operand is NULL, the result is NULL.
- */
- /* Opcode: Remainder * * *
- **
- ** Pop the top two elements from the stack, divide the
- ** first (what was on top of the stack) from the second (the
- ** next on stack)
- ** and push the remainder after division onto the stack. If either element
- ** is a string then it is converted to a double using the atof()
- ** function before the division. Division by zero returns NULL.
- ** If either operand is NULL, the result is NULL.
- */
- case OP_Add: /* same as TK_PLUS, no-push */
- case OP_Subtract: /* same as TK_MINUS, no-push */
- case OP_Multiply: /* same as TK_STAR, no-push */
- case OP_Divide: /* same as TK_SLASH, no-push */
- case OP_Remainder: { /* same as TK_REM, no-push */
- Mem *pNos = &pTos[-1];
- int flags;
- assert( pNos>=p->aStack );
- flags = pTos->flags | pNos->flags;
- if( (flags & MEM_Null)!=0 ){
- Release(pTos);
- pTos--;
- Release(pTos);
- pTos->flags = MEM_Null;
- }else if( (pTos->flags & pNos->flags & MEM_Int)==MEM_Int ){
- i64 a, b;
- a = pTos->u.i;
- b = pNos->u.i;
- switch( pOp->opcode ){
- case OP_Add: b += a; break;
- case OP_Subtract: b -= a; break;
- case OP_Multiply: b *= a; break;
- case OP_Divide: {
- if( a==0 ) goto divide_by_zero;
- /* Dividing the largest possible negative 64-bit integer (1<<63) by
- ** -1 returns an integer to large to store in a 64-bit data-type. On
- ** some architectures, the value overflows to (1<<63). On others,
- ** a SIGFPE is issued. The following statement normalizes this
- ** behaviour so that all architectures behave as if integer
- ** overflow occured.
- */
- if( a==-1 && b==(((i64)1)<<63) ) a = 1;
- b /= a;
- break;
- }
- default: {
- if( a==0 ) goto divide_by_zero;
- if( a==-1 ) a = 1;
- b %= a;
- break;
- }
- }
- Release(pTos);
- pTos--;
- Release(pTos);
- pTos->u.i = b;
- pTos->flags = MEM_Int;
- }else{
- double a, b;
- a = sqlite3VdbeRealValue(pTos);
- b = sqlite3VdbeRealValue(pNos);
- switch( pOp->opcode ){
- case OP_Add: b += a; break;
- case OP_Subtract: b -= a; break;
- case OP_Multiply: b *= a; break;
- case OP_Divide: {
- if( a==0.0 ) goto divide_by_zero;
- b /= a;
- break;
- }
- default: {
- i64 ia = (i64)a;
- i64 ib = (i64)b;
- if( ia==0 ) goto divide_by_zero;
- if( ia==-1 ) ia = 1;
- b = ib % ia;
- break;
- }
- }
- if( sqlite3_isnan(b) ){
- goto divide_by_zero;
- }
- Release(pTos);
- pTos--;
- Release(pTos);
- pTos->r = b;
- pTos->flags = MEM_Real;
- if( (flags & MEM_Real)==0 ){
- sqlite3VdbeIntegerAffinity(pTos);
- }
- }
- break;
- divide_by_zero:
- Release(pTos);
- pTos--;
- Release(pTos);
- pTos->flags = MEM_Null;
- break;
- }
- /* Opcode: CollSeq * * P3
- **
- ** P3 is a pointer to a CollSeq struct. If the next call to a user function
- ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
- ** be returned. This is used by the built-in min(), max() and nullif()
- ** functions.
- **
- ** The interface used by the implementation of the aforementioned functions
- ** to retrieve the collation sequence set by this opcode is not available
- ** publicly, only to user functions defined in func.c.
- */
- case OP_CollSeq: { /* no-push */
- assert( pOp->p3type==P3_COLLSEQ );
- break;
- }
- /* Opcode: Function P1 P2 P3
- **
- ** Invoke a user function (P3 is a pointer to a Function structure that
- ** defines the function) with P2 arguments taken from the stack. Pop all
- ** arguments from the stack and push back the result.
- **
- ** P1 is a 32-bit bitmask indicating whether or not each argument to the
- ** function was determined to be constant at compile time. If the first
- ** argument was constant then bit 0 of P1 is set. This is used to determine
- ** whether meta data associated with a user function argument using the
- ** sqlite3_set_auxdata() API may be safely retained until the next
- ** invocation of this opcode.
- **
- ** See also: AggStep and AggFinal
- */
- case OP_Function: {
- int i;
- Mem *pArg;
- sqlite3_context ctx;
- sqlite3_value **apVal;
- int n = pOp->p2;
- apVal = p->apArg;
- assert( apVal || n==0 );
- pArg = &pTos[1-n];
- for(i=0; i<n; i++, pArg++){
- apVal[i] = pArg;
- storeTypeInfo(pArg, encoding);
- }
- assert( pOp->p3type==P3_FUNCDEF || pOp->p3type==P3_VDBEFUNC );
- if( pOp->p3type==P3_FUNCDEF ){
- ctx.pFunc = (FuncDef*)pOp->p3;
- ctx.pVdbeFunc = 0;
- }else{
- ctx.pVdbeFunc = (VdbeFunc*)pOp->p3;
- ctx.pFunc = ctx.pVdbeFunc->pFunc;
- }
- ctx.s.flags = MEM_Null;
- ctx.s.z = 0;
- ctx.s.xDel = 0;
- ctx.s.db = db;
- ctx.isError = 0;
- if( ctx.pFunc->needCollSeq ){
- assert( pOp>p->aOp );
- assert( pOp[-1].p3type==P3_COLLSEQ );
- assert( pOp[-1].opcode==OP_CollSeq );
- ctx.pColl = (CollSeq *)pOp[-1].p3;
- }
- if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
- (*ctx.pFunc->xFunc)(&ctx, n, apVal);
- if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
- if( db->mallocFailed ){
- /* Even though a malloc() has failed, the implementation of the
- ** user function may have called an sqlite3_result_XXX() function
- ** to return a value. The following call releases any resources
- ** associated with such a value.
- **
- ** Note: Maybe MemRelease() should be called if sqlite3SafetyOn()
- ** fails also (the if(...) statement above). But if people are
- ** misusing sqlite, they have bigger problems than a leaked value.
- */
- sqlite3VdbeMemRelease(&ctx.s);
- goto no_mem;
- }
- popStack(&pTos, n);
- /* If any auxilary data functions have been called by this user function,
- ** immediately call the destructor for any non-static values.
- */
- if( ctx.pVdbeFunc ){
- sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1);
- pOp->p3 = (char *)ctx.pVdbeFunc;
- pOp->p3type = P3_VDBEFUNC;
- }
- /* If the function returned an error, throw an exception */
- if( ctx.isError ){
- sqlite3SetString(&p->zErrMsg, sqlite3_value_text(&ctx.s), (char*)0);
- rc = SQLITE_ERROR;
- }
- /* Copy the result of the function to the top of the stack */
- sqlite3VdbeChangeEncoding(&ctx.s, encoding);
- pTos++;
- pTos->flags = 0;
- sqlite3VdbeMemMove(pTos, &ctx.s);
- if( sqlite3VdbeMemTooBig(pTos) ){
- goto too_big;
- }
- break;
- }
- /* Opcode: BitAnd * * *
- **
- ** Pop the top two elements from the stack. Convert both elements
- ** to integers. Push back onto the stack the bit-wise AND of the
- ** two elements.
- ** If either operand is NULL, the result is NULL.
- */
- /* Opcode: BitOr * * *
- **
- ** Pop the top two elements from the stack. Convert both elements
- ** to integers. Push back onto the stack the bit-wise OR of the
- ** two elements.
- ** If either operand is NULL, the result is NULL.
- */
- /* Opcode: ShiftLeft * * *
- **
- ** Pop the top two elements from the stack. Convert both elements
- ** to integers. Push back onto the stack the second element shifted
- ** left by N bits where N is the top element on the stack.
- ** If either operand is NULL, the result is NULL.
- */
- /* Opcode: ShiftRight * * *
- **
- ** Pop the top two elements from the stack. Convert both elements
- ** to integers. Push back onto the stack the second element shifted
- ** right by N bits where N is the top element on the stack.
- ** If either operand is NULL, the result is NULL.
- */
- case OP_BitAnd: /* same as TK_BITAND, no-push */
- case OP_BitOr: /* same as TK_BITOR, no-push */
- case OP_ShiftLeft: /* same as TK_LSHIFT, no-push */
- case OP_ShiftRight: { /* same as TK_RSHIFT, no-push */
- Mem *pNos = &pTos[-1];
- i64 a, b;
- assert( pNos>=p->aStack );
- if( (pTos->flags | pNos->flags) & MEM_Null ){
- popStack(&pTos, 2);
- pTos++;
- pTos->flags = MEM_Null;
- break;
- }
- a = sqlite3VdbeIntValue(pNos);
- b = sqlite3VdbeIntValue(pTos);
- switch( pOp->opcode ){
- case OP_BitAnd: a &= b; break;
- case OP_BitOr: a |= b; break;
- case OP_ShiftLeft: a <<= b; break;
- case OP_ShiftRight: a >>= b; break;
- default: /* CANT HAPPEN */ break;
- }
- Release(pTos);
- pTos--;
- Release(pTos);
- pTos->u.i = a;
- pTos->flags = MEM_Int;
- break;
- }
- /* Opcode: AddImm P1 * *
- **
- ** Add the value P1 to whatever is on top of the stack. The result
- ** is always an integer.
- **
- ** To force the top of the stack to be an integer, just add 0.
- */
- case OP_AddImm: { /* no-push */
- assert( pTos>=p->aStack );
- sqlite3VdbeMemIntegerify(pTos);
- pTos->u.i += pOp->p1;
- break;
- }
- /* Opcode: ForceInt P1 P2 *
- **
- ** Convert the top of the stack into an integer. If the current top of
- ** the stack is not numeric (meaning that is is a NULL or a string that
- ** does not look like an integer or floating point number) then pop the
- ** stack and jump to P2. If the top of the stack is numeric then
- ** convert it into the least integer that is greater than or equal to its
- ** current value if P1==0, or to the least integer that is strictly
- ** greater than its current value if P1==1.
- */
- case OP_ForceInt: { /* no-push */
- i64 v;
- assert( pTos>=p->aStack );
- applyAffinity(pTos, SQLITE_AFF_NUMERIC, encoding);
- if( (pTos->flags & (MEM_Int|MEM_Real))==0 ){
- Release(pTos);
- pTos--;
- pc = pOp->p2 - 1;
- break;
- }
- if( pTos->flags & MEM_Int ){
- v = pTos->u.i + (pOp->p1!=0);
- }else{
- /* FIX ME: should this not be assert( pTos->flags & MEM_Real ) ??? */
- sqlite3VdbeMemRealify(pTos);
- v = (int)pTos->r;
- if( pTos->r>(double)v ) v++;
- if( pOp->p1 && pTos->r==(double)v ) v++;
- }
- Release(pTos);
- pTos->u.i = v;
- pTos->flags = MEM_Int;
- break;
- }
- /* Opcode: MustBeInt P1 P2 *
- **
- ** Force the top of the stack to be an integer. If the top of the
- ** stack is not an integer and cannot be converted into an integer
- ** without data loss, then jump immediately to P2, or if P2==0
- ** raise an SQLITE_MISMATCH exception.
- **
- ** If the top of the stack is not an integer and P2 is not zero and
- ** P1 is 1, then the stack is popped. In all other cases, the depth
- ** of the stack is unchanged.
- */
- case OP_MustBeInt: { /* no-push */
- assert( pTos>=p->aStack );
- applyAffinity(pTos, SQLITE_AFF_NUMERIC, encoding);
- if( (pTos->flags & MEM_Int)==0 ){
- if( pOp->p2==0 ){
- rc = SQLITE_MISMATCH;
- goto abort_due_to_error;
- }else{
- if( pOp->p1 ) popStack(&pTos, 1);
- pc = pOp->p2 - 1;
- }
- }else{
- Release(pTos);
- pTos->flags = MEM_Int;
- }
- break;
- }
- /* Opcode: RealAffinity * * *
- **
- ** If the top of the stack is an integer, convert it to a real value.
- **
- ** This opcode is used when extracting information from a column that
- ** has REAL affinity. Such column values may still be stored as
- ** integers, for space efficiency, but after extraction we want them
- ** to have only a real value.
- */
- case OP_RealAffinity: { /* no-push */
- assert( pTos>=p->aStack );
- if( pTos->flags & MEM_Int ){
- sqlite3VdbeMemRealify(pTos);
- }
- break;
- }
- #ifndef SQLITE_OMIT_CAST
- /* Opcode: ToText * * *
- **
- ** Force the value on the top of the stack to be text.
- ** If the value is numeric, convert it to a string using the
- ** equivalent of printf(). Blob values are unchanged and
- ** are afterwards simply interpreted as text.
- **
- ** A NULL value is not changed by this routine. It remains NULL.
- */
- case OP_ToText: { /* same as TK_TO_TEXT, no-push */
- assert( pTos>=p->aStack );
- if( pTos->flags & MEM_Null ) break;
- assert( MEM_Str==(MEM_Blob>>3) );
- pTos->flags |= (pTos->flags&MEM_Blob)>>3;
- applyAffinity(pTos, SQLITE_AFF_TEXT, encoding);
- rc = ExpandBlob(pTos);
- assert( pTos->flags & MEM_Str );
- pTos->flags &= ~(MEM_Int|MEM_Real|MEM_Blob);
- break;
- }
- /* Opcode: ToBlob * * *
- **
- ** Force the value on the top of the stack to be a BLOB.
- ** If the value is numeric, convert it to a string first.
- ** Strings are simply reinterpreted as blobs with no change
- ** to the underlying data.
- **
- ** A NULL value is not changed by this routine. It remains NULL.
- */
- case OP_ToBlob: { /* same as TK_TO_BLOB, no-push */
- assert( pTos>=p->aStack );
- if( pTos->flags & MEM_Null ) break;
- if( (pTos->flags & MEM_Blob)==0 ){
- applyAffinity(pTos, SQLITE_AFF_TEXT, encoding);
- assert( pTos->flags & MEM_Str );
- pTos->flags |= MEM_Blob;
- }
- pTos->flags &= ~(MEM_Int|MEM_Real|MEM_Str);
- break;
- }
- /* Opcode: ToNumeric * * *
- **
- ** Force the value on the top of the stack to be numeric (either an
- ** integer or a floating-point number.)
- ** If the value is text or blob, try to convert it to an using the
- ** equivalent of atoi() or atof() and store 0 if no such conversion
- ** is possible.
- **
- ** A NULL value is not changed by this routine. It remains NULL.
- */
- case OP_ToNumeric: { /* same as TK_TO_NUMERIC, no-push */
- assert( pTos>=p->aStack );
- if( (pTos->flags & (MEM_Null|MEM_Int|MEM_Real))==0 ){
- sqlite3VdbeMemNumerify(pTos);
- }
- break;
- }
- #endif /* SQLITE_OMIT_CAST */
- /* Opcode: ToInt * * *
- **
- ** Force the value on the top of the stack to be an integer. If
- ** The value is currently a real number, drop its fractional part.
- ** If the value is text or blob, try to convert it to an integer using the
- ** equivalent of atoi() and store 0 if no such conversion is possible.
- **
- ** A NULL value is not changed by this routine. It remains NULL.
- */
- case OP_ToInt: { /* same as TK_TO_INT, no-push */
- assert( pTos>=p->aStack );
- if( (pTos->flags & MEM_Null)==0 ){
- sqlite3VdbeMemIntegerify(pTos);
- }
- break;
- }
- #ifndef SQLITE_OMIT_CAST
- /* Opcode: ToReal * * *
- **
- ** Force the value on the top of the stack to be a floating point number.
- ** If The value is currently an integer, convert it.
- ** If the value is text or blob, try to convert it to an integer using the
- ** equivalent of atoi() and store 0 if no such conversion is possible.
- **
- ** A NULL value is not changed by this routine. It remains NULL.
- */
- case OP_ToReal: { /* same as TK_TO_REAL, no-push */
- assert( pTos>=p->aStack );
- if( (pTos->flags & MEM_Null)==0 ){
- sqlite3VdbeMemRealify(pTos);
- }
- break;
- }
- #endif /* SQLITE_OMIT_CAST */
- /* Opcode: Eq P1 P2 P3
- **
- ** Pop the top two elements from the stack. If they are equal, then
- ** jump to instruction P2. Otherwise, continue to the next instruction.
- **
- ** If the 0x100 bit of P1 is true and either operand is NULL then take the
- ** jump. If the 0x100 bit of P1 is clear then fall thru if either operand
- ** is NULL.
- **
- ** If the 0x200 bit of P1 is set and either operand is NULL then
- ** both operands are converted to integers prior to comparison.
- ** NULL operands are converted to zero and non-NULL operands are
- ** converted to 1. Thus, for example, with 0x200 set, NULL==NULL is true
- ** whereas it would normally be NULL. Similarly, NULL==123 is false when
- ** 0x200 is set but is NULL when the 0x200 bit of P1 is clear.
- **
- ** The least significant byte of P1 (mask 0xff) must be an affinity character -
- ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
- ** to coerce both values
- ** according to the affinity before the comparison is made. If the byte is
- ** 0x00, then numeric affinity is used.
- **
- ** Once any conversions have taken place, and neither value is NULL,
- ** the values are compared. If both values are blobs, or both are text,
- ** then memcmp() is used to determine the results of the comparison. If
- ** both values are numeric, then a numeric comparison is used. If the
- ** two values are of different types, then they are inequal.
- **
- ** If P2 is zero, do not jump. Instead, push an integer 1 onto the
- ** stack if the jump would have been taken, or a 0 if not. Push a
- ** NULL if either operand was NULL.
- **
- ** If P3 is not NULL it is a pointer to a collating sequence (a CollSeq
- ** structure) that defines how to compare text.
- */
- /* Opcode: Ne P1 P2 P3
- **
- ** This works just like the Eq opcode except that the jump is taken if
- ** the operands from the stack are not equal. See the Eq opcode for
- ** additional information.
- */
- /* Opcode: Lt P1 P2 P3
- **
- ** This works just like the Eq opcode except that the jump is taken if
- ** the 2nd element down on the stack is less than the top of the stack.
- ** See the Eq opcode for additional information.
- */
- /* Opcode: Le P1 P2 P3
- **
- ** This works just like the Eq opcode except that the jump is taken if
- ** the 2nd element down on the stack is less than or equal to the
- ** top of the stack. See the Eq opcode for additional information.
- */
- /* Opcode: Gt P1 P2 P3
- **
- ** This works just like the Eq opcode except that the jump is taken if
- ** the 2nd element down on the stack is greater than the top of the stack.
- ** See the Eq opcode for additional information.
- */
- /* Opcode: Ge P1 P2 P3
- **
- ** This works just like the Eq opcode except that the jump is taken if
- ** the 2nd element down on the stack is greater than or equal to the
- ** top of the stack. See the Eq opcode for additional information.
- */
- case OP_Eq: /* same as TK_EQ, no-push */
- case OP_Ne: /* same as TK_NE, no-push */
- case OP_Lt: /* same as TK_LT, no-push */
- case OP_Le: /* same as TK_LE, no-push */
- case OP_Gt: /* same as TK_GT, no-push */
- case OP_Ge: { /* same as TK_GE, no-push */
- Mem *pNos;
- int flags;
- int res;
- char affinity;
- pNos = &pTos[-1];
- flags = pTos->flags|pNos->flags;
- /* If either value is a NULL P2 is not zero, take the jump if the least
- ** significant byte of P1 is true. If P2 is zero, then push a NULL onto
- ** the stack.
- */
- if( flags&MEM_Null ){
- if( (pOp->p1 & 0x200)!=0 ){
- /* The 0x200 bit of P1 means, roughly "do not treat NULL as the
- ** magic SQL value it normally is - treat it as if it were another
- ** integer".
- **
- ** With 0x200 set, if either operand is NULL then both operands
- ** are converted to integers prior to being passed down into the
- ** normal comparison logic below. NULL operands are converted to
- ** zero and non-NULL operands are converted to 1. Thus, for example,
- ** with 0x200 set, NULL==NULL is true whereas it would normally
- ** be NULL. Similarly, NULL!=123 is true.
- */
- sqlite3VdbeMemSetInt64(pTos, (pTos->flags & MEM_Null)==0);
- sqlite3VdbeMemSetInt64(pNos, (pNos->flags & MEM_Null)==0);
- }else{
- /* If the 0x200 bit of P1 is clear and either operand is NULL then
- ** the result is always NULL. The jump is taken if the 0x100 bit
- ** of P1 is set.
- */
- popStack(&pTos, 2);
- if( pOp->p2 ){
- if( pOp->p1 & 0x100 ){
- pc = pOp->p2-1;
- }
- }else{
- pTos++;
- pTos->flags = MEM_Null;
- }
- break;
- }
- }
- affinity = pOp->p1 & 0xFF;
- if( affinity ){
- applyAffinity(pNos, affinity, encoding);
- applyAffinity(pTos, affinity, encoding);
- }
- assert( pOp->p3type==P3_COLLSEQ || pOp->p3==0 );
- ExpandBlob(pNos);
- ExpandBlob(pTos);
- res = sqlite3MemCompare(pNos, pTos, (CollSeq*)pOp->p3);
- switch( pOp->opcode ){
- case OP_Eq: res = res==0; break;
- case OP_Ne: res = res!=0; break;
- case OP_Lt: res = res<0; break;
- case OP_Le: res = res<=0; break;
- case OP_Gt: res = res>0; break;
- default: res = res>=0; break;
- }
- popStack(&pTos, 2);
- if( pOp->p2 ){
- if( res ){
- pc = pOp->p2-1;
- }
- }else{
- pTos++;
- pTos->flags = MEM_Int;
- pTos->u.i = res;
- }
- break;
- }
- /* Opcode: And * * *
- **
- ** Pop two values off the stack. Take the logical AND of the
- ** two values and push the resulting boolean value back onto the
- ** stack.
- */
- /* Opcode: Or * * *
- **
- ** Pop two values off the stack. Take the logical OR of the
- ** two values and push the resulting boolean value back onto the
- ** stack.
- */
- case OP_And: /* same as TK_AND, no-push */
- case OP_Or: { /* same as TK_OR, no-push */
- Mem *pNos = &pTos[-1];
- int v1, v2; /* 0==TRUE, 1==FALSE, 2==UNKNOWN or NULL */
- assert( pNos>=p->aStack );
- if( pTos->flags & MEM_Null ){
- v1 = 2;
- }else{
- sqlite3VdbeMemIntegerify(pTos);
- v1 = pTos->u.i==0;
- }
- if( pNos->flags & MEM_Null ){
- v2 = 2;
- }else{
- sqlite3VdbeMemIntegerify(pNos);
- v2 = pNos->u.i==0;
- }
- if( pOp->opcode==OP_And ){
- static const unsigned char and_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
- v1 = and_logic[v1*3+v2];
- }else{
- static const unsigned char or_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
- v1 = or_logic[v1*3+v2];
- }
- popStack(&pTos, 2);
- pTos++;
- if( v1==2 ){
- pTos->flags = MEM_Null;
- }else{
- pTos->u.i = v1==0;
- pTos->flags = MEM_Int;
- }
- break;
- }
- /* Opcode: Negative * * *
- **
- ** Treat the top of the stack as a numeric quantity. Replace it
- ** with its additive inverse. If the top of the stack is NULL
- ** its value is unchanged.
- */
- /* Opcode: AbsValue * * *
- **
- ** Treat the top of the stack as a numeric quantity. Replace it
- ** with its absolute value. If the top of the stack is NULL
- ** its value is unchanged.
- */
- case OP_Negative: /* same as TK_UMINUS, no-push */
- case OP_AbsValue: {
- assert( pTos>=p->aStack );
- if( (pTos->flags & (MEM_Real|MEM_Int|MEM_Null))==0 ){
- sqlite3VdbeMemNumerify(pTos);
- }
- if( pTos->flags & MEM_Real ){
- Release(pTos);
- if( pOp->opcode==OP_Negative || pTos->r<0.0 ){
- pTos->r = -pTos->r;
- }
- pTos->flags = MEM_Real;
- }else if( pTos->flags & MEM_Int ){
- Release(pTos);
- if( pOp->opcode==OP_Negative || pTos->u.i<0 ){
- pTos->u.i = -pTos->u.i;
- }
- pTos->flags = MEM_Int;
- }
- break;
- }
- /* Opcode: Not * * *
- **
- ** Interpret the top of the stack as a boolean value. Replace it
- ** with its complement. If the top of the stack is NULL its value
- ** is unchanged.
- */
- case OP_Not: { /* same as TK_NOT, no-push */
- assert( pTos>=p->aStack );
- if( pTos->flags & MEM_Null ) break; /* Do nothing to NULLs */
- sqlite3VdbeMemIntegerify(pTos);
- assert( (pTos->flags & MEM_Dyn)==0 );
- pTos->u.i = !pTos->u.i;
- pTos->flags = MEM_Int;
- break;
- }
- /* Opcode: BitNot * * *
- **
- ** Interpret the top of the stack as an value. Replace it
- ** with its ones-complement. If the top of the stack is NULL its
- ** value is unchanged.
- */
- case OP_BitNot: { /* same as TK_BITNOT, no-push */
- assert( pTos>=p->aStack );
- if( pTos->flags & MEM_Null ) break; /* Do nothing to NULLs */
- sqlite3VdbeMemIntegerify(pTos);
- assert( (pTos->flags & MEM_Dyn)==0 );
- pTos->u.i = ~pTos->u.i;
- pTos->flags = MEM_Int;
- break;
- }
- /* Opcode: Noop * * *
- **
- ** Do nothing. This instruction is often useful as a jump
- ** destination.
- */
- /*
- ** The magic Explain opcode are only inserted when explain==2 (which
- ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
- ** This opcode records information from the optimizer. It is the
- ** the same as a no-op. This opcodesnever appears in a real VM program.
- */
- case OP_Explain:
- case OP_Noop: { /* no-push */
- break;
- }
- /* Opcode: If P1 P2 *
- **
- ** Pop a single boolean from the stack. If the boolean popped is
- ** true, then jump to p2. Otherwise continue to the next instruction.
- ** An integer is false if zero and true otherwise. A string is
- ** false if it has zero length and true otherwise.
- **
- ** If the value popped of the stack is NULL, then take the jump if P1
- ** is true and fall through if P1 is false.
- */
- /* Opcode: IfNot P1 P2 *
- **
- ** Pop a single boolean from the stack. If the boolean popped is
- ** false, then jump to p2. Otherwise continue to the next instruction.
- ** An integer is false if zero and true otherwise. A string is
- ** false if it has zero length and true otherwise.
- **
- ** If the value popped of the stack is NULL, then take the jump if P1
- ** is true and fall through if P1 is false.
- */
- case OP_If: /* no-push */
- case OP_IfNot: { /* no-push */
- int c;
- assert( pTos>=p->aStack );
- if( pTos->flags & MEM_Null ){
- c = pOp->p1;
- }else{
- #ifdef SQLITE_OMIT_FLOATING_POINT
- c = sqlite3VdbeIntValue(pTos);
- #else
- c = sqlite3VdbeRealValue(pTos)!=0.0;
- #endif
- if( pOp->opcode==OP_IfNot ) c = !c;
- }
- Release(pTos);
- pTos--;
- if( c ) pc = pOp->p2-1;
- break;
- }
- /* Opcode: IsNull P1 P2 *
- **
- ** Check the top of the stack and jump to P2 if the top of the stack
- ** is NULL. If P1 is positive, then pop P1 elements from the stack
- ** regardless of whether or not the jump is taken. If P1 is negative,
- ** pop -P1 elements from the stack only if the jump is taken and leave
- ** the stack unchanged if the jump is not taken.
- */
- case OP_IsNull: { /* same as TK_ISNULL, no-push */
- if( pTos->flags & MEM_Null ){
- pc = pOp->p2-1;
- if( pOp->p1<0 ){
- popStack(&pTos, -pOp->p1);
- }
- }
- if( pOp->p1>0 ){
- popStack(&pTos, pOp->p1);
- }
- break;
- }
- /* Opcode: NotNull P1 P2 *
- **
- ** Jump to P2 if the top abs(P1) values on the stack are all not NULL.
- ** Regardless of whether or not the jump is taken, pop the stack
- ** P1 times if P1 is greater than zero. But if P1 is negative,
- ** leave the stack unchanged.
- */
- case OP_NotNull: { /* same as TK_NOTNULL, no-push */
- int i, cnt;
- cnt = pOp->p1;
- if( cnt<0 ) cnt = -cnt;
- assert( &pTos[1-cnt] >= p->aStack );
- for(i=0; i<cnt && (pTos[1+i-cnt].flags & MEM_Null)==0; i++){}
- if( i>=cnt ) pc = pOp->p2-1;
- if( pOp->p1>0 ) popStack(&pTos, cnt);
- break;
- }
- /* Opcode: SetNumColumns P1 P2 *
- **
- ** Before the OP_Column opcode can be executed on a cursor, this
- ** opcode must be called to set the number of fields in the table.
- **
- ** This opcode sets the number of columns for cursor P1 to P2.
- **
- ** If OP_KeyAsData is to be applied to cursor P1, it must be executed
- ** before this op-code.
- */
- case OP_SetNumColumns: { /* no-push */
- Cursor *pC;
- assert( (pOp->p1)<p->nCursor );
- assert( p->apCsr[pOp->p1]!=0 );
- pC = p->apCsr[pOp->p1];
- pC->nField = pOp->p2;
- break;
- }
- /* Opcode: Column P1 P2 P3
- **
- ** Interpret the data that cursor P1 points to as a structure built using
- ** the MakeRecord instruction. (See the MakeRecord opcode for additional
- ** information about the format of the data.) Push onto the stack the value
- ** of the P2-th column contained in the data. If there are less that (P2+1)
- ** values in the record, push a NULL onto the stack.
- **
- ** If the KeyAsData opcode has previously executed on this cursor, then the
- ** field might be extracted from the key rather than the data.
- **
- ** If the column contains fewer than P2 fields, then push a NULL. Or
- ** if P3 is of type P3_MEM, then push the P3 value. The P3 value will
- ** be default value for a column that has been added using the ALTER TABLE
- ** ADD COLUMN command. If P3 is an ordinary string, just push a NULL.
- ** When P3 is a string it is really just a comment describing the value
- ** to be pushed, not a default value.
- */
- case OP_Column: {
- u32 payloadSize; /* Number of bytes in the record */
- int p1 = pOp->p1; /* P1 value of the opcode */
- int p2 = pOp->p2; /* column number to retrieve */
- Cursor *pC = 0; /* The VDBE cursor */
- char *zRec; /* Pointer to complete record-data */
- BtCursor *pCrsr; /* The BTree cursor */
- u32 *aType; /* aType[i] holds the numeric type of the i-th column */
- u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
- u32 nField; /* number of fields in the record */
- int len; /* The length of the serialized data for the column */
- int i; /* Loop counter */
- char *zData; /* Part of the record being decoded */
- Mem sMem; /* For storing the record being decoded */
- sMem.flags = 0;
- assert( p1<p->nCursor );
- pTos++;
- pTos->flags = MEM_Null;
- /* This block sets the variable payloadSize to be the total number of
- ** bytes in the record.
- **
- ** zRec is set to be the complete text of the record if it is available.
- ** The complete record text is always available for pseudo-tables
- ** If the record is stored in a cursor, the complete record text
- ** might be available in the pC->aRow cache. Or it might not be.
- ** If the data is unavailable, zRec is set to NULL.
- **
- ** We also compute the number of columns in the record. For cursors,
- ** the number of columns is stored in the Cursor.nField element. For
- ** records on the stack, the next entry down on the stack is an integer
- ** which is the number of records.
- */
- pC = p->apCsr[p1];
- assert( pC!=0 );
- #ifndef SQLITE_OMIT_VIRTUALTABLE
- assert( pC->pVtabCursor==0 );
- #endif
- if( pC->pCursor!=0 ){
- /* The record is stored in a B-Tree */
- rc = sqlite3VdbeCursorMoveto(pC);
- if( rc ) goto abort_due_to_error;
- zRec = 0;
- pCrsr = pC->pCursor;
- if( pC->nullRow ){
- payloadSize = 0;
- }else if( pC->cacheStatus==p->cacheCtr ){
- payloadSize = pC->payloadSize;
- zRec = (char*)pC->aRow;
- }else if( pC->isIndex ){
- i64 payloadSize64;
- sqlite3BtreeKeySize(pCrsr, &payloadSize64);
- payloadSize = payloadSize64;
- }else{
- sqlite3BtreeDataSize(pCrsr, &payloadSize);
- }
- nField = pC->nField;
- }else if( pC->pseudoTable ){
- /* The record is the sole entry of a pseudo-table */
- payloadSize = pC->nData;
- zRec = pC->pData;
- pC->cacheStatus = CACHE_STALE;
- assert( payloadSize==0 || zRec!=0 );
- nField = pC->nField;
- pCrsr = 0;
- }else{
- zRec = 0;
- payloadSize = 0;
- pCrsr = 0;
- nField = 0;
- }
- /* If payloadSize is 0, then just push a NULL onto the stack. */
- if( payloadSize==0 ){
- assert( pTos->flags==MEM_Null );
- break;
- }
- if( payloadSize>SQLITE_MAX_LENGTH ){
- goto too_big;
- }
- assert( p2<nField );
- /* Read and parse the table header. Store the results of the parse
- ** into the record header cache fields of the cursor.
- */
- if( pC && pC->cacheStatus==p->cacheCtr ){
- aType = pC->aType;
- aOffset = pC->aOffset;
- }else{
- u8 *zIdx; /* Index into header */
- u8 *zEndHdr; /* Pointer to first byte after the header */
- u32 offset; /* Offset into the data */
- int szHdrSz; /* Size of the header size field at start of record */
- int avail; /* Number of bytes of available data */
- aType = pC->aType;
- if( aType==0 ){
- pC->aType = aType = sqlite3DbMallocRaw(db, 2*nField*sizeof(aType) );
- }
- if( aType==0 ){
- goto no_mem;
- }
- pC->aOffset = aOffset = &aType[nField];
- pC->payloadSize = payloadSize;
- pC->cacheStatus = p->cacheCtr;
- /* Figure out how many bytes are in the header */
- if( zRec ){
- zData = zRec;
- }else{
- if( pC->isIndex ){
- zData = (char*)sqlite3BtreeKeyFetch(pCrsr, &avail);
- }else{
- zData = (char*)sqlite3BtreeDataFetch(pCrsr, &avail);
- }
- /* If KeyFetch()/DataFetch() managed to get the entire payload,
- ** save the payload in the pC->aRow cache. That will save us from
- ** having to make additional calls to fetch the content portion of
- ** the record.
- */
- if( avail>=payloadSize ){
- zRec = zData;
- pC->aRow = (u8*)zData;
- }else{
- pC->aRow = 0;
- }
- }
- /* The following assert is true in all cases accept when
- ** the database file has been corrupted externally.
- ** assert( zRec!=0 || avail>=payloadSize || avail>=9 ); */
- szHdrSz = GetVarint((u8*)zData, offset);
- /* The KeyFetch() or DataFetch() above are fast and will get the entire
- ** record header in most cases. But they will fail to get the complete
- ** record header if the record header does not fit on a single page
- ** in the B-Tree. When that happens, use sqlite3VdbeMemFromBtree() to
- ** acquire the complete header text.
- */
- if( !zRec && avail<offset ){
- rc = sqlite3VdbeMemFromBtree(pCrsr, 0, offset, pC->isIndex, &sMem);
- if( rc!=SQLITE_OK ){
- goto op_column_out;
- }
- zData = sMem.z;
- }
- zEndHdr = (u8 *)&zData[offset];
- zIdx = (u8 *)&zData[szHdrSz];
- /* Scan the header and use it to fill in the aType[] and aOffset[]
- ** arrays. aType[i] will contain the type integer for the i-th
- ** column and aOffset[i] will contain the offset from the beginning
- ** of the record to the start of the data for the i-th column
- */
- for(i=0; i<nField; i++){
- if( zIdx<zEndHdr ){
- aOffset[i] = offset;
- zIdx += GetVarint(zIdx, aType[i]);
- offset += sqlite3VdbeSerialTypeLen(aType[i]);
- }else{
- /* If i is less that nField, then there are less fields in this
- ** record than SetNumColumns indicated there are columns in the
- ** table. Set the offset for any extra columns not present in
- ** the record to 0. This tells code below to push a NULL onto the
- ** stack instead of deserializing a value from the record.
- */
- aOffset[i] = 0;
- }
- }
- Release(&sMem);
- sMem.flags = MEM_Null;
- /* If we have read more header data than was contained in the header,
- ** or if the end of the last field appears to be past the end of the
- ** record, then we must be dealing with a corrupt database.
- */
- if( zIdx>zEndHdr || offset>payloadSize ){
- rc = SQLITE_CORRUPT_BKPT;
- goto op_column_out;
- }
- }
- /* Get the column information. If aOffset[p2] is non-zero, then
- ** deserialize the value from the record. If aOffset[p2] is zero,
- ** then there are not enough fields in the record to satisfy the
- ** request. In this case, set the value NULL or to P3 if P3 is
- ** a pointer to a Mem object.
- */
- if( aOffset[p2] ){
- assert( rc==SQLITE_OK );
- if( zRec ){
- zData = &zRec[aOffset[p2]];
- }else{
- len = sqlite3VdbeSerialTypeLen(aType[p2]);
- rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex, &sMem);
- if( rc!=SQLITE_OK ){
- goto op_column_out;
- }
- zData = sMem.z;
- }
- sqlite3VdbeSerialGet((u8*)zData, aType[p2], pTos);
- pTos->enc = encoding;
- }else{
- if( pOp->p3type==P3_MEM ){
- sqlite3VdbeMemShallowCopy(pTos, (Mem *)(pOp->p3), MEM_Static);
- }else{
- pTos->flags = MEM_Null;
- }
- }
- /* If we dynamically allocated space to hold the data (in the
- ** sqlite3VdbeMemFromBtree() call above) then transfer control of that
- ** dynamically allocated space over to the pTos structure.
- ** This prevents a memory copy.
- */
- if( (sMem.flags & MEM_Dyn)!=0 ){
- assert( pTos->flags & MEM_Ephem );
- assert( pTos->flags & (MEM_Str|MEM_Blob) );
- assert( pTos->z==sMem.z );
- assert( sMem.flags & MEM_Term );
- pTos->flags &= ~MEM_Ephem;
- pTos->flags |= MEM_Dyn|MEM_Term;
- }
- /* pTos->z might be pointing to sMem.zShort[]. Fix that so that we
- ** can abandon sMem */
- rc = sqlite3VdbeMemMakeWriteable(pTos);
- op_column_out:
- break;
- }
- /* Opcode: MakeRecord P1 P2 P3
- **
- ** Convert the top abs(P1) entries of the stack into a single entry
- ** suitable for use as a data record in a database table or as a key
- ** in an index. The details of the format are irrelavant as long as
- ** the OP_Column opcode can decode the record later and as long as the
- ** sqlite3VdbeRecordCompare function will correctly compare two encoded
- ** records. Refer to source code comments for the details of the record
- ** format.
- **
- ** The original stack entries are popped from the stack if P1>0 but
- ** remain on the stack if P1<0.
- **
- ** If P2 is not zero and one or more of the entries are NULL, then jump
- ** to the address given by P2. This feature can be used to skip a
- ** uniqueness test on indices.
- **
- ** P3 may be a string that is P1 characters long. The nth character of the
- ** string indicates the column affinity that should be used for the nth
- ** field of the index key (i.e. the first character of P3 corresponds to the
- ** lowest element on the stack).
- **
- ** The mapping from character to affinity is given by the SQLITE_AFF_
- ** macros defined in sqliteInt.h.
- **
- ** If P3 is NULL then all index fields have the affinity NONE.
- **
- ** See also OP_MakeIdxRec
- */
- /* Opcode: MakeIdxRec P1 P2 P3
- **
- ** This opcode works just OP_MakeRecord except that it reads an extra
- ** integer from the stack (thus reading a total of abs(P1+1) entries)
- ** and appends that extra integer to the end of the record as a varint.
- ** This results in an index key.
- */
- case OP_MakeIdxRec:
- case OP_MakeRecord: {
- /* Assuming the record contains N fields, the record format looks
- ** like this:
- **
- ** ------------------------------------------------------------------------
- ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
- ** ------------------------------------------------------------------------
- **
- ** Data(0) is taken from the lowest element of the stack and data(N-1) is
- ** the top of the stack.
- **
- ** Each type field is a varint representing the serial type of the
- ** corresponding data element (see sqlite3VdbeSerialType()). The
- ** hdr-size field is also a varint which is the offset from the beginning
- ** of the record to data0.
- */
- u8 *zNewRecord; /* A buffer to hold the data for the new record */
- Mem *pRec; /* The new record */
- Mem *pRowid = 0; /* Rowid appended to the new record */
- u64 nData = 0; /* Number of bytes of data space */
- int nHdr = 0; /* Number of bytes of header space */
- u64 nByte = 0; /* Data space required for this record */
- int nZero = 0; /* Number of zero bytes at the end of the record */
- int nVarint; /* Number of bytes in a varint */
- u32 serial_type; /* Type field */
- int containsNull = 0; /* True if any of the data fields are NULL */
- Mem *pData0; /* Bottom of the stack */
- int leaveOnStack; /* If true, leave the entries on the stack */
- int nField; /* Number of fields in the record */
- int jumpIfNull; /* Jump here if non-zero and any entries are NULL. */
- int addRowid; /* True to append a rowid column at the end */
- char *zAffinity; /* The affinity string for the record */
- int file_format; /* File format to use for encoding */
- int i; /* Space used in zNewRecord[] */
- char zTemp[NBFS]; /* Space to hold small records */
- leaveOnStack = ((pOp->p1<0)?1:0);
- nField = pOp->p1 * (leaveOnStack?-1:1);
- jumpIfNull = pOp->p2;
- addRowid = pOp->opcode==OP_MakeIdxRec;
- zAffinity = pOp->p3;
- pData0 = &pTos[1-nField];
- assert( pData0>=p->aStack );
- containsNull = 0;
- file_format = p->minWriteFileFormat;
- /* Loop through the elements that will make up the record to figure
- ** out how much space is required for the new record.
- */
- for(pRec=pData0; pRec<=pTos; pRec++){
- int len;
- if( zAffinity ){
- applyAffinity(pRec, zAffinity[pRec-pData0], encoding);
- }
- if( pRec->flags&MEM_Null ){
- containsNull = 1;
- }
- if( pRec->flags&MEM_Zero && pRec->n>0 ){
- ExpandBlob(pRec);
- }
- serial_type = sqlite3VdbeSerialType(pRec, file_format);
- len = sqlite3VdbeSerialTypeLen(serial_type);
- nData += len;
- nHdr += sqlite3VarintLen(serial_type);
- if( pRec->flags & MEM_Zero ){
- /* Only pure zero-filled BLOBs can be input to this Opcode.
- ** We do not allow blobs with a prefix and a zero-filled tail. */
- nZero += pRec->u.i;
- }else if( len ){
- nZero = 0;
- }
- }
- /* If we have to append a varint rowid to this record, set pRowid
- ** to the value of the rowid and increase nByte by the amount of space
- ** required to store it.
- */
- if( addRowid ){
- pRowid = &pTos[0-nField];
- assert( pRowid>=p->aStack );
- sqlite3VdbeMemIntegerify(pRowid);
- serial_type = sqlite3VdbeSerialType(pRowid, 0);
- nData += sqlite3VdbeSerialTypeLen(serial_type);
- nHdr += sqlite3VarintLen(serial_type);
- nZero = 0;
- }
- /* Add the initial header varint and total the size */
- nHdr += nVarint = sqlite3VarintLen(nHdr);
- if( nVarint<sqlite3VarintLen(nHdr) ){
- nHdr++;
- }
- nByte = nHdr+nData-nZero;
- if( nByte>SQLITE_MAX_LENGTH ){
- goto too_big;
- }
- /* Allocate space for the new record. */
- if( nByte>sizeof(zTemp) ){
- zNewRecord = sqlite3DbMallocRaw(db, nByte);
- if( !zNewRecord ){
- goto no_mem;
- }
- }else{
- zNewRecord = (u8*)zTemp;
- }
- /* Write the record */
- i = sqlite3PutVarint(zNewRecord, nHdr);
- for(pRec=pData0; pRec<=pTos; pRec++){
- serial_type = sqlite3VdbeSerialType(pRec, file_format);
- i += sqlite3PutVarint(&zNewRecord[i], serial_type); /* serial type */
- }
- if( addRowid ){
- i += sqlite3PutVarint(&zNewRecord[i], sqlite3VdbeSerialType(pRowid, 0));
- }
- for(pRec=pData0; pRec<=pTos; pRec++){ /* serial data */
- i += sqlite3VdbeSerialPut(&zNewRecord[i], nByte-i, pRec, file_format);
- }
- if( addRowid ){
- i += sqlite3VdbeSerialPut(&zNewRecord[i], nByte-i, pRowid, 0);
- }
- assert( i==nByte );
- /* Pop entries off the stack if required. Push the new record on. */
- if( !leaveOnStack ){
- popStack(&pTos, nField+addRowid);
- }
- pTos++;
- pTos->n = nByte;
- if( nByte<=sizeof(zTemp) ){
- assert( zNewRecord==(unsigned char *)zTemp );
- pTos->z = pTos->zShort;
- memcpy(pTos->zShort, zTemp, nByte);
- pTos->flags = MEM_Blob | MEM_Short;
- }else{
- assert( zNewRecord!=(unsigned char *)zTemp );
- pTos->z = (char*)zNewRecord;
- pTos->flags = MEM_Blob | MEM_Dyn;
- pTos->xDel = 0;
- }
- if( nZero ){
- pTos->u.i = nZero;
- pTos->flags |= MEM_Zero;
- }
- pTos->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */
- /* If a NULL was encountered and jumpIfNull is non-zero, take the jump. */
- if( jumpIfNull && containsNull ){
- pc = jumpIfNull - 1;
- }
- break;
- }
- /* Opcode: Statement P1 * *
- **
- ** Begin an individual statement transaction which is part of a larger
- ** BEGIN..COMMIT transaction. This is needed so that the statement
- ** can be rolled back after an error without having to roll back the
- ** entire transaction. The statement transaction will automatically
- ** commit when the VDBE halts.
- **
- ** The statement is begun on the database file with index P1. The main
- ** database file has an index of 0 and the file used for temporary tables
- ** has an index of 1.
- */
- case OP_Statement: { /* no-push */
- int i = pOp->p1;
- Btree *pBt;
- if( i>=0 && i<db->nDb && (pBt = db->aDb[i].pBt)!=0
- && (db->autoCommit==0 || db->activeVdbeCnt>1) ){
- assert( sqlite3BtreeIsInTrans(pBt) );
- assert( (p->btreeMask & (1<<i))!=0 );
- if( !sqlite3BtreeIsInStmt(pBt) ){
- rc = sqlite3BtreeBeginStmt(pBt);
- p->openedStatement = 1;
- }
- }
- break;
- }
- /* Opcode: AutoCommit P1 P2 *
- **
- ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
- ** back any currently active btree transactions. If there are any active
- ** VMs (apart from this one), then the COMMIT or ROLLBACK statement fails.
- **
- ** This instruction causes the VM to halt.
- */
- case OP_AutoCommit: { /* no-push */
- u8 i = pOp->p1;
- u8 rollback = pOp->p2;
- assert( i==1 || i==0 );
- assert( i==1 || rollback==0 );
- assert( db->activeVdbeCnt>0 ); /* At least this one VM is active */
- if( db->activeVdbeCnt>1 && i && !db->autoCommit ){
- /* If this instruction implements a COMMIT or ROLLBACK, other VMs are
- ** still running, and a transaction is active, return an error indicating
- ** that the other VMs must complete first.
- */
- sqlite3SetString(&p->zErrMsg, "cannot ", rollback?"rollback":"commit",
- " transaction - SQL statements in progress", (char*)0);
- rc = SQLITE_ERROR;
- }else if( i!=db->autoCommit ){
- if( pOp->p2 ){
- assert( i==1 );
- sqlite3RollbackAll(db);
- db->autoCommit = 1;
- }else{
- db->autoCommit = i;
- if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
- p->pTos = pTos;
- p->pc = pc;
- db->autoCommit = 1-i;
- p->rc = rc = SQLITE_BUSY;
- goto vdbe_return;
- }
- }
- if( p->rc==SQLITE_OK ){
- rc = SQLITE_DONE;
- }else{
- rc = SQLITE_ERROR;
- }
- goto vdbe_return;
- }else{
- sqlite3SetString(&p->zErrMsg,
- (!i)?"cannot start a transaction within a transaction":(
- (rollback)?"cannot rollback - no transaction is active":
- "cannot commit - no transaction is active"), (char*)0);
-
- rc = SQLITE_ERROR;
- }
- break;
- }
- /* Opcode: Transaction P1 P2 *
- **
- ** Begin a transaction. The transaction ends when a Commit or Rollback
- ** opcode is encountered. Depending on the ON CONFLICT setting, the
- ** transaction might also be rolled back if an error is encountered.
- **
- ** P1 is the index of the database file on which the transaction is
- ** started. Index 0 is the main database file and index 1 is the
- ** file used for temporary tables.
- **
- ** If P2 is non-zero, then a write-transaction is started. A RESERVED lock is
- ** obtained on the database file when a write-transaction is started. No
- ** other process can start another write transaction while this transaction is
- ** underway. Starting a write transaction also creates a rollback journal. A
- ** write transaction must be started before any changes can be made to the
- ** database. If P2 is 2 or greater then an EXCLUSIVE lock is also obtained
- ** on the file.
- **
- ** If P2 is zero, then a read-lock is obtained on the database file.
- */
- case OP_Transaction: { /* no-push */
- int i = pOp->p1;
- Btree *pBt;
- assert( i>=0 && i<db->nDb );
- assert( (p->btreeMask & (1<<i))!=0 );
- pBt = db->aDb[i].pBt;
- if( pBt ){
- rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
- if( rc==SQLITE_BUSY ){
- p->pc = pc;
- p->rc = rc = SQLITE_BUSY;
- p->pTos = pTos;
- goto vdbe_return;
- }
- if( rc!=SQLITE_OK && rc!=SQLITE_READONLY /* && rc!=SQLITE_BUSY */ ){
- goto abort_due_to_error;
- }
- }
- break;
- }
- /* Opcode: ReadCookie P1 P2 *
- **
- ** Read cookie number P2 from database P1 and push it onto the stack.
- ** P2==0 is the schema version. P2==1 is the database format.
- ** P2==2 is the recommended pager cache size, and so forth. P1==0 is
- ** the main database file and P1==1 is the database file used to store
- ** temporary tables.
- **
- ** If P1 is negative, then this is a request to read the size of a
- ** databases free-list. P2 must be set to 1 in this case. The actual
- ** database accessed is ((P1+1)*-1). For example, a P1 parameter of -1
- ** corresponds to database 0 ("main"), a P1 of -2 is database 1 ("temp").
- **
- ** There must be a read-lock on the database (either a transaction
- ** must be started or there must be an open cursor) before
- ** executing this instruction.
- */
- case OP_ReadCookie: {
- int iMeta;
- int iDb = pOp->p1;
- int iCookie = pOp->p2;
- assert( pOp->p2<SQLITE_N_BTREE_META );
- if( iDb<0 ){
- iDb = (-1*(iDb+1));
- iCookie *= -1;
- }
- assert( iDb>=0 && iDb<db->nDb );
- assert( db->aDb[iDb].pBt!=0 );
- assert( (p->btreeMask & (1<<iDb))!=0 );
- /* The indexing of meta values at the schema layer is off by one from
- ** the indexing in the btree layer. The btree considers meta[0] to
- ** be the number of free pages in the database (a read-only value)
- ** and meta[1] to be the schema cookie. The schema layer considers
- ** meta[1] to be the schema cookie. So we have to shift the index
- ** by one in the following statement.
- */
- rc = sqlite3BtreeGetMeta(db->aDb[iDb].pBt, 1 + iCookie, (u32 *)&iMeta);
- pTos++;
- pTos->u.i = iMeta;
- pTos->flags = MEM_Int;
- break;
- }
- /* Opcode: SetCookie P1 P2 *
- **
- ** Write the top of the stack into cookie number P2 of database P1.
- ** P2==0 is the schema version. P2==1 is the database format.
- ** P2==2 is the recommended pager cache size, and so forth. P1==0 is
- ** the main database file and P1==1 is the database file used to store
- ** temporary tables.
- **
- ** A transaction must be started before executing this opcode.
- */
- case OP_SetCookie: { /* no-push */
- Db *pDb;
- assert( pOp->p2<SQLITE_N_BTREE_META );
- assert( pOp->p1>=0 && pOp->p1<db->nDb );
- assert( (p->btreeMask & (1<<pOp->p1))!=0 );
- pDb = &db->aDb[pOp->p1];
- assert( pDb->pBt!=0 );
- assert( pTos>=p->aStack );
- sqlite3VdbeMemIntegerify(pTos);
- /* See note about index shifting on OP_ReadCookie */
- rc = sqlite3BtreeUpdateMeta(pDb->pBt, 1+pOp->p2, (int)pTos->u.i);
- if( pOp->p2==0 ){
- /* When the schema cookie changes, record the new cookie internally */
- pDb->pSchema->schema_cookie = pTos->u.i;
- db->flags |= SQLITE_InternChanges;
- }else if( pOp->p2==1 ){
- /* Record changes in the file format */
- pDb->pSchema->file_format = pTos->u.i;
- }
- assert( (pTos->flags & MEM_Dyn)==0 );
- pTos--;
- if( pOp->p1==1 ){
- /* Invalidate all prepared statements whenever the TEMP database
- ** schema is changed. Ticket #1644 */
- sqlite3ExpirePreparedStatements(db);
- }
- break;
- }
- /* Opcode: VerifyCookie P1 P2 *
- **
- ** Check the value of global database parameter number 0 (the
- ** schema version) and make sure it is equal to P2.
- ** P1 is the database number which is 0 for the main database file
- ** and 1 for the file holding temporary tables and some higher number
- ** for auxiliary databases.
- **
- ** The cookie changes its value whenever the database schema changes.
- ** This operation is used to detect when that the cookie has changed
- ** and that the current process needs to reread the schema.
- **
- ** Either a transaction needs to have been started or an OP_Open needs
- ** to be executed (to establish a read lock) before this opcode is
- ** invoked.
- */
- case OP_VerifyCookie: { /* no-push */
- int iMeta;
- Btree *pBt;
- assert( pOp->p1>=0 && pOp->p1<db->nDb );
- assert( (p->btreeMask & (1<<pOp->p1))!=0 );
- pBt = db->aDb[pOp->p1].pBt;
- if( pBt ){
- rc = sqlite3BtreeGetMeta(pBt, 1, (u32 *)&iMeta);
- }else{
- rc = SQLITE_OK;
- iMeta = 0;
- }
- if( rc==SQLITE_OK && iMeta!=pOp->p2 ){
- sqlite3_free(p->zErrMsg);
- p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
- /* If the schema-cookie from the database file matches the cookie
- ** stored with the in-memory representation of the schema, do
- ** not reload the schema from the database file.
- **
- ** If virtual-tables are in use, this is not just an optimisation.
- ** Often, v-tables store their data in other SQLite tables, which
- ** are queried from within xNext() and other v-table methods using
- ** prepared queries. If such a query is out-of-date, we do not want to
- ** discard the database schema, as the user code implementing the
- ** v-table would have to be ready for the sqlite3_vtab structure itself
- ** to be invalidated whenever sqlite3_step() is called from within
- ** a v-table method.
- */
- if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
- sqlite3ResetInternalSchema(db, pOp->p1);
- }
- sqlite3ExpirePreparedStatements(db);
- rc = SQLITE_SCHEMA;
- }
- break;
- }
- /* Opcode: OpenRead P1 P2 P3
- **
- ** Open a read-only cursor for the database table whose root page is
- ** P2 in a database file. The database file is determined by an
- ** integer from the top of the stack. 0 means the main database and
- ** 1 means the database used for temporary tables. Give the new
- ** cursor an identifier of P1. The P1 values need not be contiguous
- ** but all P1 values should be small integers. It is an error for
- ** P1 to be negative.
- **
- ** If P2==0 then take the root page number from the next of the stack.
- **
- ** There will be a read lock on the database whenever there is an
- ** open cursor. If the database was unlocked prior to this instruction
- ** then a read lock is acquired as part of this instruction. A read
- ** lock allows other processes to read the database but prohibits
- ** any other process from modifying the database. The read lock is
- ** released when all cursors are closed. If this instruction attempts
- ** to get a read lock but fails, the script terminates with an
- ** SQLITE_BUSY error code.
- **
- ** The P3 value is a pointer to a KeyInfo structure that defines the
- ** content and collating sequence of indices. P3 is NULL for cursors
- ** that are not pointing to indices.
- **
- ** See also OpenWrite.
- */
- /* Opcode: OpenWrite P1 P2 P3
- **
- ** Open a read/write cursor named P1 on the table or index whose root
- ** page is P2. If P2==0 then take the root page number from the stack.
- **
- ** The P3 value is a pointer to a KeyInfo structure that defines the
- ** content and collating sequence of indices. P3 is NULL for cursors
- ** that are not pointing to indices.
- **
- ** This instruction works just like OpenRead except that it opens the cursor
- ** in read/write mode. For a given table, there can be one or more read-only
- ** cursors or a single read/write cursor but not both.
- **
- ** See also OpenRead.
- */
- case OP_OpenRead: /* no-push */
- case OP_OpenWrite: { /* no-push */
- int i = pOp->p1;
- int p2 = pOp->p2;
- int wrFlag;
- Btree *pX;
- int iDb;
- Cursor *pCur;
- Db *pDb;
-
- assert( pTos>=p->aStack );
- sqlite3VdbeMemIntegerify(pTos);
- iDb = pTos->u.i;
- assert( (pTos->flags & MEM_Dyn)==0 );
- pTos--;
- assert( iDb>=0 && iDb<db->nDb );
- assert( (p->btreeMask & (1<<iDb))!=0 );
- pDb = &db->aDb[iDb];
- pX = pDb->pBt;
- assert( pX!=0 );
- if( pOp->opcode==OP_OpenWrite ){
- wrFlag = 1;
- if( pDb->pSchema->file_format < p->minWriteFileFormat ){
- p->minWriteFileFormat = pDb->pSchema->file_format;
- }
- }else{
- wrFlag = 0;
- }
- if( p2<=0 ){
- assert( pTos>=p->aStack );
- sqlite3VdbeMemIntegerify(pTos);
- p2 = pTos->u.i;
- assert( (pTos->flags & MEM_Dyn)==0 );
- pTos--;
- assert( p2>=2 );
- }
- assert( i>=0 );
- pCur = allocateCursor(p, i, iDb);
- if( pCur==0 ) goto no_mem;
- pCur->nullRow = 1;
- if( pX==0 ) break;
- /* We always provide a key comparison function. If the table being
- ** opened is of type INTKEY, the comparision function will be ignored. */
- rc = sqlite3BtreeCursor(pX, p2, wrFlag,
- sqlite3VdbeRecordCompare, pOp->p3,
- &pCur->pCursor);
- if( pOp->p3type==P3_KEYINFO ){
- pCur->pKeyInfo = (KeyInfo*)pOp->p3;
- pCur->pIncrKey = &pCur->pKeyInfo->incrKey;
- pCur->pKeyInfo->enc = ENC(p->db);
- }else{
- pCur->pKeyInfo = 0;
- pCur->pIncrKey = &pCur->bogusIncrKey;
- }
- switch( rc ){
- case SQLITE_BUSY: {
- p->pc = pc;
- p->rc = rc = SQLITE_BUSY;
- p->pTos = &pTos[1 + (pOp->p2<=0)]; /* Operands must remain on stack */
- goto vdbe_return;
- }
- case SQLITE_OK: {
- int flags = sqlite3BtreeFlags(pCur->pCursor);
- /* Sanity checking. Only the lower four bits of the flags byte should
- ** be used. Bit 3 (mask 0x08) is unpreditable. The lower 3 bits
- ** (mask 0x07) should be either 5 (intkey+leafdata for tables) or
- ** 2 (zerodata for indices). If these conditions are not met it can
- ** only mean that we are dealing with a corrupt database file
- */
- if( (flags & 0xf0)!=0 || ((flags & 0x07)!=5 && (flags & 0x07)!=2) ){
- rc = SQLITE_CORRUPT_BKPT;
- goto abort_due_to_error;
- }
- pCur->isTable = (flags & BTREE_INTKEY)!=0;
- pCur->isIndex = (flags & BTREE_ZERODATA)!=0;
- /* If P3==0 it means we are expected to open a table. If P3!=0 then
- ** we expect to be opening an index. If this is not what happened,
- ** then the database is corrupt
- */
- if( (pCur->isTable && pOp->p3type==P3_KEYINFO)
- || (pCur->isIndex && pOp->p3type!=P3_KEYINFO) ){
- rc = SQLITE_CORRUPT_BKPT;
- goto abort_due_to_error;
- }
- break;
- }
- case SQLITE_EMPTY: {
- pCur->isTable = pOp->p3type!=P3_KEYINFO;
- pCur->isIndex = !pCur->isTable;
- rc = SQLITE_OK;
- break;
- }
- default: {
- goto abort_due_to_error;
- }
- }
- break;
- }
- /* Opcode: OpenEphemeral P1 P2 P3
- **
- ** Open a new cursor P1 to a transient table.
- ** The cursor is always opened read/write even if
- ** the main database is read-only. The transient or virtual
- ** table is deleted automatically when the cursor is closed.
- **
- ** P2 is the number of columns in the virtual table.
- ** The cursor points to a BTree table if P3==0 and to a BTree index
- ** if P3 is not 0. If P3 is not NULL, it points to a KeyInfo structure
- ** that defines the format of keys in the index.
- **
- ** This opcode was once called OpenTemp. But that created
- ** confusion because the term "temp table", might refer either
- ** to a TEMP table at the SQL level, or to a table opened by
- ** this opcode. Then this opcode was call OpenVirtual. But
- ** that created confusion with the whole virtual-table idea.
- */
- case OP_OpenEphemeral: { /* no-push */
- int i = pOp->p1;
- Cursor *pCx;
- static const int openFlags =
- SQLITE_OPEN_READWRITE |
- SQLITE_OPEN_CREATE |
- SQLITE_OPEN_EXCLUSIVE |
- SQLITE_OPEN_DELETEONCLOSE |
- SQLITE_OPEN_TRANSIENT_DB;
- assert( i>=0 );
- pCx = allocateCursor(p, i, -1);
- if( pCx==0 ) goto no_mem;
- pCx->nullRow = 1;
- rc = sqlite3BtreeFactory(db, 0, 1, SQLITE_DEFAULT_TEMP_CACHE_SIZE, openFlags,
- &pCx->pBt);
- if( rc==SQLITE_OK ){
- rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
- }
- if( rc==SQLITE_OK ){
- /* If a transient index is required, create it by calling
- ** sqlite3BtreeCreateTable() with the BTREE_ZERODATA flag before
- ** opening it. If a transient table is required, just use the
- ** automatically created table with root-page 1 (an INTKEY table).
- */
- if( pOp->p3 ){
- int pgno;
- assert( pOp->p3type==P3_KEYINFO );
- rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_ZERODATA);
- if( rc==SQLITE_OK ){
- assert( pgno==MASTER_ROOT+1 );
- rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, sqlite3VdbeRecordCompare,
- pOp->p3, &pCx->pCursor);
- pCx->pKeyInfo = (KeyInfo*)pOp->p3;
- pCx->pKeyInfo->enc = ENC(p->db);
- pCx->pIncrKey = &pCx->pKeyInfo->incrKey;
- }
- pCx->isTable = 0;
- }else{
- rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, 0, &pCx->pCursor);
- pCx->isTable = 1;
- pCx->pIncrKey = &pCx->bogusIncrKey;
- }
- }
- pCx->nField = pOp->p2;
- pCx->isIndex = !pCx->isTable;
- break;
- }
- /* Opcode: OpenPseudo P1 * *
- **
- ** Open a new cursor that points to a fake table that contains a single
- ** row of data. Any attempt to write a second row of data causes the
- ** first row to be deleted. All data is deleted when the cursor is
- ** closed.
- **
- ** A pseudo-table created by this opcode is useful for holding the
- ** NEW or OLD tables in a trigger. Also used to hold the a single
- ** row output from the sorter so that the row can be decomposed into
- ** individual columns using the OP_Column opcode.
- */
- case OP_OpenPseudo: { /* no-push */
- int i = pOp->p1;
- Cursor *pCx;
- assert( i>=0 );
- pCx = allocateCursor(p, i, -1);
- if( pCx==0 ) goto no_mem;
- pCx->nullRow = 1;
- pCx->pseudoTable = 1;
- pCx->pIncrKey = &pCx->bogusIncrKey;
- pCx->isTable = 1;
- pCx->isIndex = 0;
- break;
- }
- /* Opcode: Close P1 * *
- **
- ** Close a cursor previously opened as P1. If P1 is not
- ** currently open, this instruction is a no-op.
- */
- case OP_Close: { /* no-push */
- int i = pOp->p1;
- if( i>=0 && i<p->nCursor ){
- sqlite3VdbeFreeCursor(p, p->apCsr[i]);
- p->apCsr[i] = 0;
- }
- break;
- }
- /* Opcode: MoveGe P1 P2 *
- **
- ** Pop the top of the stack and use its value as a key. Reposition
- ** cursor P1 so that it points to the smallest entry that is greater
- ** than or equal to the key that was popped ffrom the stack.
- ** If there are no records greater than or equal to the key and P2
- ** is not zero, then jump to P2.
- **
- ** See also: Found, NotFound, Distinct, MoveLt, MoveGt, MoveLe
- */
- /* Opcode: MoveGt P1 P2 *
- **
- ** Pop the top of the stack and use its value as a key. Reposition
- ** cursor P1 so that it points to the smallest entry that is greater
- ** than the key from the stack.
- ** If there are no records greater than the key and P2 is not zero,
- ** then jump to P2.
- **
- ** See also: Found, NotFound, Distinct, MoveLt, MoveGe, MoveLe
- */
- /* Opcode: MoveLt P1 P2 *
- **
- ** Pop the top of the stack and use its value as a key. Reposition
- ** cursor P1 so that it points to the largest entry that is less
- ** than the key from the stack.
- ** If there are no records less than the key and P2 is not zero,
- ** then jump to P2.
- **
- ** See also: Found, NotFound, Distinct, MoveGt, MoveGe, MoveLe
- */
- /* Opcode: MoveLe P1 P2 *
- **
- ** Pop the top of the stack and use its value as a key. Reposition
- ** cursor P1 so that it points to the largest entry that is less than
- ** or equal to the key that was popped from the stack.
- ** If there are no records less than or eqal to the key and P2 is not zero,
- ** then jump to P2.
- **
- ** See also: Found, NotFound, Distinct, MoveGt, MoveGe, MoveLt
- */
- case OP_MoveLt: /* no-push */
- case OP_MoveLe: /* no-push */
- case OP_MoveGe: /* no-push */
- case OP_MoveGt: { /* no-push */
- int i = pOp->p1;
- Cursor *pC;
- assert( pTos>=p->aStack );
- assert( i>=0 && i<p->nCursor );
- pC = p->apCsr[i];
- assert( pC!=0 );
- if( pC->pCursor!=0 ){
- int res, oc;
- oc = pOp->opcode;
- pC->nullRow = 0;
- *pC->pIncrKey = oc==OP_MoveGt || oc==OP_MoveLe;
- if( pC->isTable ){
- i64 iKey;
- sqlite3VdbeMemIntegerify(pTos);
- iKey = intToKey(pTos->u.i);
- if( pOp->p2==0 && pOp->opcode==OP_MoveGe ){
- pC->movetoTarget = iKey;
- pC->deferredMoveto = 1;
- assert( (pTos->flags & MEM_Dyn)==0 );
- pTos--;
- break;
- }
- rc = sqlite3BtreeMoveto(pC->pCursor, 0, (u64)iKey, 0, &res);
- if( rc!=SQLITE_OK ){
- goto abort_due_to_error;
- }
- pC->lastRowid = pTos->u.i;
- pC->rowidIsValid = res==0;
- }else{
- assert( pTos->flags & MEM_Blob );
- ExpandBlob(pTos);
- rc = sqlite3BtreeMoveto(pC->pCursor, pTos->z, pTos->n, 0, &res);
- if( rc!=SQLITE_OK ){
- goto abort_due_to_error;
- }
- pC->rowidIsValid = 0;
- }
- pC->deferredMoveto = 0;
- pC->cacheStatus = CACHE_STALE;
- *pC->pIncrKey = 0;
- #ifdef SQLITE_TEST
- sqlite3_search_count++;
- #endif
- if( oc==OP_MoveGe || oc==OP_MoveGt ){
- if( res<0 ){
- rc = sqlite3BtreeNext(pC->pCursor, &res);
- if( rc!=SQLITE_OK ) goto abort_due_to_error;
- pC->rowidIsValid = 0;
- }else{
- res = 0;
- }
- }else{
- assert( oc==OP_MoveLt || oc==OP_MoveLe );
- if( res>=0 ){
- rc = sqlite3BtreePrevious(pC->pCursor, &res);
- if( rc!=SQLITE_OK ) goto abort_due_to_error;
- pC->rowidIsValid = 0;
- }else{
- /* res might be negative because the table is empty. Check to
- ** see if this is the case.
- */
- res = sqlite3BtreeEof(pC->pCursor);
- }
- }
- if( res ){
- if( pOp->p2>0 ){
- pc = pOp->p2 - 1;
- }else{
- pC->nullRow = 1;
- }
- }
- }
- Release(pTos);
- pTos--;
- break;
- }
- /* Opcode: Distinct P1 P2 *
- **
- ** Use the top of the stack as a record created using MakeRecord. P1 is a
- ** cursor on a table that declared as an index. If that table contains an
- ** entry that matches the top of the stack fall thru. If the top of the stack
- ** matches no entry in P1 then jump to P2.
- **
- ** The cursor is left pointing at the matching entry if it exists. The
- ** record on the top of the stack is not popped.
- **
- ** This instruction is similar to NotFound except that this operation
- ** does not pop the key from the stack.
- **
- ** The instruction is used to implement the DISTINCT operator on SELECT
- ** statements. The P1 table is not a true index but rather a record of
- ** all results that have produced so far.
- **
- ** See also: Found, NotFound, MoveTo, IsUnique, NotExists
- */
- /* Opcode: Found P1 P2 *
- **
- ** Top of the stack holds a blob constructed by MakeRecord. P1 is an index.
- ** If an entry that matches the top of the stack exists in P1 then
- ** jump to P2. If the top of the stack does not match any entry in P1
- ** then fall thru. The P1 cursor is left pointing at the matching entry
- ** if it exists. The blob is popped off the top of the stack.
- **
- ** This instruction is used to implement the IN operator where the
- ** left-hand side is a SELECT statement. P1 may be a true index, or it
- ** may be a temporary index that holds the results of the SELECT
- ** statement.
- **
- ** This instruction checks if index P1 contains a record for which
- ** the first N serialised values exactly match the N serialised values
- ** in the record on the stack, where N is the total number of values in
- ** the stack record (stack record is a prefix of the P1 record).
- **
- ** See also: Distinct, NotFound, MoveTo, IsUnique, NotExists
- */
- /* Opcode: NotFound P1 P2 *
- **
- ** The top of the stack holds a blob constructed by MakeRecord. P1 is
- ** an index. If no entry exists in P1 that matches the blob then jump
- ** to P2. If an entry does existing, fall through. The cursor is left
- ** pointing to the entry that matches. The blob is popped from the stack.
- **
- ** The difference between this operation and Distinct is that
- ** Distinct does not pop the key from the stack.
- **
- ** See also: Distinct, Found, MoveTo, NotExists, IsUnique
- */
- case OP_Distinct: /* no-push */
- case OP_NotFound: /* no-push */
- case OP_Found: { /* no-push */
- int i = pOp->p1;
- int alreadyExists = 0;
- Cursor *pC;
- assert( pTos>=p->aStack );
- assert( i>=0 && i<p->nCursor );
- assert( p->apCsr[i]!=0 );
- if( (pC = p->apCsr[i])->pCursor!=0 ){
- int res;
- assert( pC->isTable==0 );
- assert( pTos->flags & MEM_Blob );
- Stringify(pTos, encoding);
- if( pOp->opcode==OP_Found ){
- pC->pKeyInfo->prefixIsEqual = 1;
- }
- rc = sqlite3BtreeMoveto(pC->pCursor, pTos->z, pTos->n, 0, &res);
- pC->pKeyInfo->prefixIsEqual = 0;
- if( rc!=SQLITE_OK ){
- break;
- }
- alreadyExists = (res==0);
- pC->deferredMoveto = 0;
- pC->cacheStatus = CACHE_STALE;
- }
- if( pOp->opcode==OP_Found ){
- if( alreadyExists ) pc = pOp->p2 - 1;
- }else{
- if( !alreadyExists ) pc = pOp->p2 - 1;
- }
- if( pOp->opcode!=OP_Distinct ){
- Release(pTos);
- pTos--;
- }
- break;
- }
- /* Opcode: IsUnique P1 P2 *
- **
- ** The top of the stack is an integer record number. Call this
- ** record number R. The next on the stack is an index key created
- ** using MakeIdxRec. Call it K. This instruction pops R from the
- ** stack but it leaves K unchanged.
- **
- ** P1 is an index. So it has no data and its key consists of a
- ** record generated by OP_MakeRecord where the last field is the
- ** rowid of the entry that the index refers to.
- **
- ** This instruction asks if there is an entry in P1 where the
- ** fields matches K but the rowid is different from R.
- ** If there is no such entry, then there is an immediate
- ** jump to P2. If any entry does exist where the index string
- ** matches K but the record number is not R, then the record
- ** number for that entry is pushed onto the stack and control
- ** falls through to the next instruction.
- **
- ** See also: Distinct, NotFound, NotExists, Found
- */
- case OP_IsUnique: { /* no-push */
- int i = pOp->p1;
- Mem *pNos = &pTos[-1];
- Cursor *pCx;
- BtCursor *pCrsr;
- i64 R;
- /* Pop the value R off the top of the stack
- */
- assert( pNos>=p->aStack );
- sqlite3VdbeMemIntegerify(pTos);
- R = pTos->u.i;
- assert( (pTos->flags & MEM_Dyn)==0 );
- pTos--;
- assert( i>=0 && i<p->nCursor );
- pCx = p->apCsr[i];
- assert( pCx!=0 );
- pCrsr = pCx->pCursor;
- if( pCrsr!=0 ){
- int res;
- i64 v; /* The record number on the P1 entry that matches K */
- char *zKey; /* The value of K */
- int nKey; /* Number of bytes in K */
- int len; /* Number of bytes in K without the rowid at the end */
- int szRowid; /* Size of the rowid column at the end of zKey */
- /* Make sure K is a string and make zKey point to K
- */
- assert( pNos->flags & MEM_Blob );
- Stringify(pNos, encoding);
- zKey = pNos->z;
- nKey = pNos->n;
- szRowid = sqlite3VdbeIdxRowidLen((u8*)zKey);
- len = nKey-szRowid;
- /* Search for an entry in P1 where all but the last four bytes match K.
- ** If there is no such entry, jump immediately to P2.
- */
- assert( pCx->deferredMoveto==0 );
- pCx->cacheStatus = CACHE_STALE;
- rc = sqlite3BtreeMoveto(pCrsr, zKey, len, 0, &res);
- if( rc!=SQLITE_OK ){
- goto abort_due_to_error;
- }
- if( res<0 ){
- rc = sqlite3BtreeNext(pCrsr, &res);
- if( res ){
- pc = pOp->p2 - 1;
- break;
- }
- }
- rc = sqlite3VdbeIdxKeyCompare(pCx, len, (u8*)zKey, &res);
- if( rc!=SQLITE_OK ) goto abort_due_to_error;
- if( res>0 ){
- pc = pOp->p2 - 1;
- break;
- }
- /* At this point, pCrsr is pointing to an entry in P1 where all but
- ** the final entry (the rowid) matches K. Check to see if the
- ** final rowid column is different from R. If it equals R then jump
- ** immediately to P2.
- */
- rc = sqlite3VdbeIdxRowid(pCrsr, &v);
- if( rc!=SQLITE_OK ){
- goto abort_due_to_error;
- }
- if( v==R ){
- pc = pOp->p2 - 1;
- break;
- }
- /* The final varint of the key is different from R. Push it onto
- ** the stack. (The record number of an entry that violates a UNIQUE
- ** constraint.)
- */
- pTos++;
- pTos->u.i = v;
- pTos->flags = MEM_Int;
- }
- break;
- }
- /* Opcode: NotExists P1 P2 *
- **
- ** Use the top of the stack as a integer key. If a record with that key
- ** does not exist in table of P1, then jump to P2. If the record
- ** does exist, then fall thru. The cursor is left pointing to the
- ** record if it exists. The integer key is popped from the stack.
- **
- ** The difference between this operation and NotFound is that this
- ** operation assumes the key is an integer and that P1 is a table whereas
- ** NotFound assumes key is a blob constructed from MakeRecord and
- ** P1 is an index.
- **
- ** See also: Distinct, Found, MoveTo, NotFound, IsUnique
- */
- case OP_NotExists: { /* no-push */
- int i = pOp->p1;
- Cursor *pC;
- BtCursor *pCrsr;
- assert( pTos>=p->aStack );
- assert( i>=0 && i<p->nCursor );
- assert( p->apCsr[i]!=0 );
- if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
- int res;
- u64 iKey;
- assert( pTos->flags & MEM_Int );
- assert( p->apCsr[i]->isTable );
- iKey = intToKey(pTos->u.i);
- rc = sqlite3BtreeMoveto(pCrsr, 0, iKey, 0,&res);
- pC->lastRowid = pTos->u.i;
- pC->rowidIsValid = res==0;
- pC->nullRow = 0;
- pC->cacheStatus = CACHE_STALE;
- /* res might be uninitialized if rc!=SQLITE_OK. But if rc!=SQLITE_OK
- ** processing is about to abort so we really do not care whether or not
- ** the following jump is taken. (In other words, do not stress over
- ** the error that valgrind sometimes shows on the next statement when
- ** running ioerr.test and similar failure-recovery test scripts.) */
- if( res!=0 ){
- pc = pOp->p2 - 1;
- pC->rowidIsValid = 0;
- }
- }
- Release(pTos);
- pTos--;
- break;
- }
- /* Opcode: Sequence P1 * *
- **
- ** Push an integer onto the stack which is the next available
- ** sequence number for cursor P1. The sequence number on the
- ** cursor is incremented after the push.
- */
- case OP_Sequence: {
- int i = pOp->p1;
- assert( pTos>=p->aStack );
- assert( i>=0 && i<p->nCursor );
- assert( p->apCsr[i]!=0 );
- pTos++;
- pTos->u.i = p->apCsr[i]->seqCount++;
- pTos->flags = MEM_Int;
- break;
- }
- /* Opcode: NewRowid P1 P2 *
- **
- ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
- ** The record number is not previously used as a key in the database
- ** table that cursor P1 points to. The new record number is pushed
- ** onto the stack.
- **
- ** If P2>0 then P2 is a memory cell that holds the largest previously
- ** generated record number. No new record numbers are allowed to be less
- ** than this value. When this value reaches its maximum, a SQLITE_FULL
- ** error is generated. The P2 memory cell is updated with the generated
- ** record number. This P2 mechanism is used to help implement the
- ** AUTOINCREMENT feature.
- */
- case OP_NewRowid: {
- int i = pOp->p1;
- i64 v = 0;
- Cursor *pC;
- assert( i>=0 && i<p->nCursor );
- assert( p->apCsr[i]!=0 );
- if( (pC = p->apCsr[i])->pCursor==0 ){
- /* The zero initialization above is all that is needed */
- }else{
- /* The next rowid or record number (different terms for the same
- ** thing) is obtained in a two-step algorithm.
- **
- ** First we attempt to find the largest existing rowid and add one
- ** to that. But if the largest existing rowid is already the maximum
- ** positive integer, we have to fall through to the second
- ** probabilistic algorithm
- **
- ** The second algorithm is to select a rowid at random and see if
- ** it already exists in the table. If it does not exist, we have
- ** succeeded. If the random rowid does exist, we select a new one
- ** and try again, up to 1000 times.
- **
- ** For a table with less than 2 billion entries, the probability
- ** of not finding a unused rowid is about 1.0e-300. This is a
- ** non-zero probability, but it is still vanishingly small and should
- ** never cause a problem. You are much, much more likely to have a
- ** hardware failure than for this algorithm to fail.
- **
- ** The analysis in the previous paragraph assumes that you have a good
- ** source of random numbers. Is a library function like lrand48()
- ** good enough? Maybe. Maybe not. It's hard to know whether there
- ** might be subtle bugs is some implementations of lrand48() that
- ** could cause problems. To avoid uncertainty, SQLite uses its own
- ** random number generator based on the RC4 algorithm.
- **
- ** To promote locality of reference for repetitive inserts, the
- ** first few attempts at chosing a random rowid pick values just a little
- ** larger than the previous rowid. This has been shown experimentally
- ** to double the speed of the COPY operation.
- */
- int res, rx=SQLITE_OK, cnt;
- i64 x;
- cnt = 0;
- if( (sqlite3BtreeFlags(pC->pCursor)&(BTREE_INTKEY|BTREE_ZERODATA)) !=
- BTREE_INTKEY ){
- rc = SQLITE_CORRUPT_BKPT;
- goto abort_due_to_error;
- }
- assert( (sqlite3BtreeFlags(pC->pCursor) & BTREE_INTKEY)!=0 );
- assert( (sqlite3BtreeFlags(pC->pCursor) & BTREE_ZERODATA)==0 );
- #ifdef SQLITE_32BIT_ROWID
- # define MAX_ROWID 0x7fffffff
- #else
- /* Some compilers complain about constants of the form 0x7fffffffffffffff.
- ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
- ** to provide the constant while making all compilers happy.
- */
- # define MAX_ROWID ( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
- #endif
- if( !pC->useRandomRowid ){
- if( pC->nextRowidValid ){
- v = pC->nextRowid;
- }else{
- rc = sqlite3BtreeLast(pC->pCursor, &res);
- if( rc!=SQLITE_OK ){
- goto abort_due_to_error;
- }
- if( res ){
- v = 1;
- }else{
- sqlite3BtreeKeySize(pC->pCursor, &v);
- v = keyToInt(v);
- if( v==MAX_ROWID ){
- pC->useRandomRowid = 1;
- }else{
- v++;
- }
- }
- }
- #ifndef SQLITE_OMIT_AUTOINCREMENT
- if( pOp->p2 ){
- Mem *pMem;
- assert( pOp->p2>0 && pOp->p2<p->nMem ); /* P2 is a valid memory cell */
- pMem = &p->aMem[pOp->p2];
- sqlite3VdbeMemIntegerify(pMem);
- assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P2) holds an integer */
- if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
- rc = SQLITE_FULL;
- goto abort_due_to_error;
- }
- if( v<pMem->u.i+1 ){
- v = pMem->u.i + 1;
- }
- pMem->u.i = v;
- }
- #endif
- if( v<MAX_ROWID ){
- pC->nextRowidValid = 1;
- pC->nextRowid = v+1;
- }else{
- pC->nextRowidValid = 0;
- }
- }
- if( pC->useRandomRowid ){
- assert( pOp->p2==0 ); /* SQLITE_FULL must have occurred prior to this */
- v = db->priorNewRowid;
- cnt = 0;
- do{
- if( v==0 || cnt>2 ){
- sqlite3Randomness(sizeof(v), &v);
- if( cnt<5 ) v &= 0xffffff;
- }else{
- unsigned char r;
- sqlite3Randomness(1, &r);
- v += r + 1;
- }
- if( v==0 ) continue;
- x = intToKey(v);
- rx = sqlite3BtreeMoveto(pC->pCursor, 0, (u64)x, 0, &res);
- cnt++;
- }while( cnt<1000 && rx==SQLITE_OK && res==0 );
- db->priorNewRowid = v;
- if( rx==SQLITE_OK && res==0 ){
- rc = SQLITE_FULL;
- goto abort_due_to_error;
- }
- }
- pC->rowidIsValid = 0;
- pC->deferredMoveto = 0;
- pC->cacheStatus = CACHE_STALE;
- }
- pTos++;
- pTos->u.i = v;
- pTos->flags = MEM_Int;
- break;
- }
- /* Opcode: Insert P1 P2 P3
- **
- ** Write an entry into the table of cursor P1. A new entry is
- ** created if it doesn't already exist or the data for an existing
- ** entry is overwritten. The data is the value on the top of the
- ** stack. The key is the next value down on the stack. The key must
- ** be an integer. The stack is popped twice by this instruction.
- **
- ** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
- ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P2 is set,
- ** then rowid is stored for subsequent return by the
- ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
- **
- ** Parameter P3 may point to a string containing the table-name, or
- ** may be NULL. If it is not NULL, then the update-hook
- ** (sqlite3.xUpdateCallback) is invoked following a successful insert.
- **
- ** This instruction only works on tables. The equivalent instruction
- ** for indices is OP_IdxInsert.
- */
- case OP_Insert: { /* no-push */
- Mem *pNos = &pTos[-1];
- int i = pOp->p1;
- Cursor *pC;
- assert( pNos>=p->aStack );
- assert( i>=0 && i<p->nCursor );
- assert( p->apCsr[i]!=0 );
- if( ((pC = p->apCsr[i])->pCursor!=0 || pC->pseudoTable) ){
- i64 iKey; /* The integer ROWID or key for the record to be inserted */
- assert( pNos->flags & MEM_Int );
- assert( pC->isTable );
- iKey = intToKey(pNos->u.i);
- if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
- if( pOp->p2 & OPFLAG_LASTROWID ) db->lastRowid = pNos->u.i;
- if( pC->nextRowidValid && pNos->u.i>=pC->nextRowid ){
- pC->nextRowidValid = 0;
- }
- if( pTos->flags & MEM_Null ){
- pTos->z = 0;
- pTos->n = 0;
- }else{
- assert( pTos->flags & (MEM_Blob|MEM_Str) );
- }
- if( pC->pseudoTable ){
- sqlite3_free(pC->pData);
- pC->iKey = iKey;
- pC->nData = pTos->n;
- if( pTos->flags & MEM_Dyn ){
- pC->pData = pTos->z;
- pTos->flags = MEM_Null;
- }else{
- pC->pData = sqlite3_malloc( pC->nData+2 );
- if( !pC->pData ) goto no_mem;
- memcpy(pC->pData, pTos->z, pC->nData);
- pC->pData[pC->nData] = 0;
- pC->pData[pC->nData+1] = 0;
- }
- pC->nullRow = 0;
- }else{
- int nZero;
- if( pTos->flags & MEM_Zero ){
- nZero = pTos->u.i;
- }else{
- nZero = 0;
- }
- rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
- pTos->z, pTos->n, nZero,
- pOp->p2 & OPFLAG_APPEND);
- }
-
- pC->rowidIsValid = 0;
- pC->deferredMoveto = 0;
- pC->cacheStatus = CACHE_STALE;
- /* Invoke the update-hook if required. */
- if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p3 ){
- const char *zDb = db->aDb[pC->iDb].zName;
- const char *zTbl = pOp->p3;
- int op = ((pOp->p2 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
- assert( pC->isTable );
- db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
- assert( pC->iDb>=0 );
- }
- }
- popStack(&pTos, 2);
- break;
- }
- /* Opcode: Delete P1 P2 P3
- **
- ** Delete the record at which the P1 cursor is currently pointing.
- **
- ** The cursor will be left pointing at either the next or the previous
- ** record in the table. If it is left pointing at the next record, then
- ** the next Next instruction will be a no-op. Hence it is OK to delete
- ** a record from within an Next loop.
- **
- ** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
- ** incremented (otherwise not).
- **
- ** If P1 is a pseudo-table, then this instruction is a no-op.
- */
- case OP_Delete: { /* no-push */
- int i = pOp->p1;
- Cursor *pC;
- assert( i>=0 && i<p->nCursor );
- pC = p->apCsr[i];
- assert( pC!=0 );
- if( pC->pCursor!=0 ){
- i64 iKey;
- /* If the update-hook will be invoked, set iKey to the rowid of the
- ** row being deleted.
- */
- if( db->xUpdateCallback && pOp->p3 ){
- assert( pC->isTable );
- if( pC->rowidIsValid ){
- iKey = pC->lastRowid;
- }else{
- rc = sqlite3BtreeKeySize(pC->pCursor, &iKey);
- if( rc ){
- goto abort_due_to_error;
- }
- iKey = keyToInt(iKey);
- }
- }
- rc = sqlite3VdbeCursorMoveto(pC);
- if( rc ) goto abort_due_to_error;
- rc = sqlite3BtreeDelete(pC->pCursor);
- pC->nextRowidValid = 0;
- pC->cacheStatus = CACHE_STALE;
- /* Invoke the update-hook if required. */
- if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p3 ){
- const char *zDb = db->aDb[pC->iDb].zName;
- const char *zTbl = pOp->p3;
- db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey);
- assert( pC->iDb>=0 );
- }
- }
- if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
- break;
- }
- /* Opcode: ResetCount P1 * *
- **
- ** This opcode resets the VMs internal change counter to 0. If P1 is true,
- ** then the value of the change counter is copied to the database handle
- ** change counter (returned by subsequent calls to sqlite3_changes())
- ** before it is reset. This is used by trigger programs.
- */
- case OP_ResetCount: { /* no-push */
- if( pOp->p1 ){
- sqlite3VdbeSetChanges(db, p->nChange);
- }
- p->nChange = 0;
- break;
- }
- /* Opcode: RowData P1 * *
- **
- ** Push onto the stack the complete row data for cursor P1.
- ** There is no interpretation of the data. It is just copied
- ** onto the stack exactly as it is found in the database file.
- **
- ** If the cursor is not pointing to a valid row, a NULL is pushed
- ** onto the stack.
- */
- /* Opcode: RowKey P1 * *
- **
- ** Push onto the stack the complete row key for cursor P1.
- ** There is no interpretation of the key. It is just copied
- ** onto the stack exactly as it is found in the database file.
- **
- ** If the cursor is not pointing to a valid row, a NULL is pushed
- ** onto the stack.
- */
- case OP_RowKey:
- case OP_RowData: {
- int i = pOp->p1;
- Cursor *pC;
- u32 n;
- /* Note that RowKey and RowData are really exactly the same instruction */
- pTos++;
- assert( i>=0 && i<p->nCursor );
- pC = p->apCsr[i];
- assert( pC->isTable || pOp->opcode==OP_RowKey );
- assert( pC->isIndex || pOp->opcode==OP_RowData );
- assert( pC!=0 );
- if( pC->nullRow ){
- pTos->flags = MEM_Null;
- }else if( pC->pCursor!=0 ){
- BtCursor *pCrsr = pC->pCursor;
- rc = sqlite3VdbeCursorMoveto(pC);
- if( rc ) goto abort_due_to_error;
- if( pC->nullRow ){
- pTos->flags = MEM_Null;
- break;
- }else if( pC->isIndex ){
- i64 n64;
- assert( !pC->isTable );
- sqlite3BtreeKeySize(pCrsr, &n64);
- if( n64>SQLITE_MAX_LENGTH ){
- goto too_big;
- }
- n = n64;
- }else{
- sqlite3BtreeDataSize(pCrsr, &n);
- }
- if( n>SQLITE_MAX_LENGTH ){
- goto too_big;
- }
- pTos->n = n;
- if( n<=NBFS ){
- pTos->flags = MEM_Blob | MEM_Short;
- pTos->z = pTos->zShort;
- }else{
- char *z = sqlite3_malloc( n );
- if( z==0 ) goto no_mem;
- pTos->flags = MEM_Blob | MEM_Dyn;
- pTos->xDel = 0;
- pTos->z = z;
- }
- if( pC->isIndex ){
- rc = sqlite3BtreeKey(pCrsr, 0, n, pTos->z);
- }else{
- rc = sqlite3BtreeData(pCrsr, 0, n, pTos->z);
- }
- }else if( pC->pseudoTable ){
- pTos->n = pC->nData;
- assert( pC->nData<=SQLITE_MAX_LENGTH );
- pTos->z = pC->pData;
- pTos->flags = MEM_Blob|MEM_Ephem;
- }else{
- pTos->flags = MEM_Null;
- }
- pTos->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */
- break;
- }
- /* Opcode: Rowid P1 * *
- **
- ** Push onto the stack an integer which is the key of the table entry that
- ** P1 is currently point to.
- */
- case OP_Rowid: {
- int i = pOp->p1;
- Cursor *pC;
- i64 v;
- assert( i>=0 && i<p->nCursor );
- pC = p->apCsr[i];
- assert( pC!=0 );
- rc = sqlite3VdbeCursorMoveto(pC);
- if( rc ) goto abort_due_to_error;
- pTos++;
- if( pC->rowidIsValid ){
- v = pC->lastRowid;
- }else if( pC->pseudoTable ){
- v = keyToInt(pC->iKey);
- }else if( pC->nullRow || pC->pCursor==0 ){
- pTos->flags = MEM_Null;
- break;
- }else{
- assert( pC->pCursor!=0 );
- sqlite3BtreeKeySize(pC->pCursor, &v);
- v = keyToInt(v);
- }
- pTos->u.i = v;
- pTos->flags = MEM_Int;
- break;
- }
- /* Opcode: NullRow P1 * *
- **
- ** Move the cursor P1 to a null row. Any OP_Column operations
- ** that occur while the cursor is on the null row will always push
- ** a NULL onto the stack.
- */
- case OP_NullRow: { /* no-push */
- int i = pOp->p1;
- Cursor *pC;
- assert( i>=0 && i<p->nCursor );
- pC = p->apCsr[i];
- assert( pC!=0 );
- pC->nullRow = 1;
- pC->rowidIsValid = 0;
- break;
- }
- /* Opcode: Last P1 P2 *
- **
- ** The next use of the Rowid or Column or Next instruction for P1
- ** will refer to the last entry in the database table or index.
- ** If the table or index is empty and P2>0, then jump immediately to P2.
- ** If P2 is 0 or if the table or index is not empty, fall through
- ** to the following instruction.
- */
- case OP_Last: { /* no-push */
- int i = pOp->p1;
- Cursor *pC;
- BtCursor *pCrsr;
- assert( i>=0 && i<p->nCursor );
- pC = p->apCsr[i];
- assert( pC!=0 );
- if( (pCrsr = pC->pCursor)!=0 ){
- int res;
- rc = sqlite3BtreeLast(pCrsr, &res);
- pC->nullRow = res;
- pC->deferredMoveto = 0;
- pC->cacheStatus = CACHE_STALE;
- if( res && pOp->p2>0 ){
- pc = pOp->p2 - 1;
- }
- }else{
- pC->nullRow = 0;
- }
- break;
- }
- /* Opcode: Sort P1 P2 *
- **
- ** This opcode does exactly the same thing as OP_Rewind except that
- ** it increments an undocumented global variable used for testing.
- **
- ** Sorting is accomplished by writing records into a sorting index,
- ** then rewinding that index and playing it back from beginning to
- ** end. We use the OP_Sort opcode instead of OP_Rewind to do the
- ** rewinding so that the global variable will be incremented and
- ** regression tests can determine whether or not the optimizer is
- ** correctly optimizing out sorts.
- */
- case OP_Sort: { /* no-push */
- #ifdef SQLITE_TEST
- sqlite3_sort_count++;
- sqlite3_search_count--;
- #endif
- /* Fall through into OP_Rewind */
- }
- /* Opcode: Rewind P1 P2 *
- **
- ** The next use of the Rowid or Column or Next instruction for P1
- ** will refer to the first entry in the database table or index.
- ** If the table or index is empty and P2>0, then jump immediately to P2.
- ** If P2 is 0 or if the table or index is not empty, fall through
- ** to the following instruction.
- */
- case OP_Rewind: { /* no-push */
- int i = pOp->p1;
- Cursor *pC;
- BtCursor *pCrsr;
- int res;
- assert( i>=0 && i<p->nCursor );
- pC = p->apCsr[i];
- assert( pC!=0 );
- if( (pCrsr = pC->pCursor)!=0 ){
- rc = sqlite3BtreeFirst(pCrsr, &res);
- pC->atFirst = res==0;
- pC->deferredMoveto = 0;
- pC->cacheStatus = CACHE_STALE;
- }else{
- res = 1;
- }
- pC->nullRow = res;
- if( res && pOp->p2>0 ){
- pc = pOp->p2 - 1;
- }
- break;
- }
- /* Opcode: Next P1 P2 *
- **
- ** Advance cursor P1 so that it points to the next key/data pair in its
- ** table or index. If there are no more key/value pairs then fall through
- ** to the following instruction. But if the cursor advance was successful,
- ** jump immediately to P2.
- **
- ** See also: Prev
- */
- /* Opcode: Prev P1 P2 *
- **
- ** Back up cursor P1 so that it points to the previous key/data pair in its
- ** table or index. If there is no previous key/value pairs then fall through
- ** to the following instruction. But if the cursor backup was successful,
- ** jump immediately to P2.
- */
- case OP_Prev: /* no-push */
- case OP_Next: { /* no-push */
- Cursor *pC;
- BtCursor *pCrsr;
- CHECK_FOR_INTERRUPT;
- assert( pOp->p1>=0 && pOp->p1<p->nCursor );
- pC = p->apCsr[pOp->p1];
- if( pC==0 ){
- break; /* See ticket #2273 */
- }
- if( (pCrsr = pC->pCursor)!=0 ){
- int res;
- if( pC->nullRow ){
- res = 1;
- }else{
- assert( pC->deferredMoveto==0 );
- rc = pOp->opcode==OP_Next ? sqlite3BtreeNext(pCrsr, &res) :
- sqlite3BtreePrevious(pCrsr, &res);
- pC->nullRow = res;
- pC->cacheStatus = CACHE_STALE;
- }
- if( res==0 ){
- pc = pOp->p2 - 1;
- #ifdef SQLITE_TEST
- sqlite3_search_count++;
- #endif
- }
- }else{
- pC->nullRow = 1;
- }
- pC->rowidIsValid = 0;
- break;
- }
- /* Opcode: IdxInsert P1 P2 *
- **
- ** The top of the stack holds a SQL index key made using either the
- ** MakeIdxRec or MakeRecord instructions. This opcode writes that key
- ** into the index P1. Data for the entry is nil.
- **
- ** P2 is a flag that provides a hint to the b-tree layer that this
- ** insert is likely to be an append.
- **
- ** This instruction only works for indices. The equivalent instruction
- ** for tables is OP_Insert.
- */
- case OP_IdxInsert: { /* no-push */
- int i = pOp->p1;
- Cursor *pC;
- BtCursor *pCrsr;
- assert( pTos>=p->aStack );
- assert( i>=0 && i<p->nCursor );
- assert( p->apCsr[i]!=0 );
- assert( pTos->flags & MEM_Blob );
- if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
- assert( pC->isTable==0 );
- rc = ExpandBlob(pTos);
- if( rc==SQLITE_OK ){
- int nKey = pTos->n;
- const char *zKey = pTos->z;
- rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p2);
- assert( pC->deferredMoveto==0 );
- pC->cacheStatus = CACHE_STALE;
- }
- }
- Release(pTos);
- pTos--;
- break;
- }
- /* Opcode: IdxDelete P1 * *
- **
- ** The top of the stack is an index key built using the either the
- ** MakeIdxRec or MakeRecord opcodes.
- ** This opcode removes that entry from the index.
- */
- case OP_IdxDelete: { /* no-push */
- int i = pOp->p1;
- Cursor *pC;
- BtCursor *pCrsr;
- assert( pTos>=p->aStack );
- assert( pTos->flags & MEM_Blob );
- assert( i>=0 && i<p->nCursor );
- assert( p->apCsr[i]!=0 );
- if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
- int res;
- rc = sqlite3BtreeMoveto(pCrsr, pTos->z, pTos->n, 0, &res);
- if( rc==SQLITE_OK && res==0 ){
- rc = sqlite3BtreeDelete(pCrsr);
- }
- assert( pC->deferredMoveto==0 );
- pC->cacheStatus = CACHE_STALE;
- }
- Release(pTos);
- pTos--;
- break;
- }
- /* Opcode: IdxRowid P1 * *
- **
- ** Push onto the stack an integer which is the last entry in the record at
- ** the end of the index key pointed to by cursor P1. This integer should be
- ** the rowid of the table entry to which this index entry points.
- **
- ** See also: Rowid, MakeIdxRec.
- */
- case OP_IdxRowid: {
- int i = pOp->p1;
- BtCursor *pCrsr;
- Cursor *pC;
- assert( i>=0 && i<p->nCursor );
- assert( p->apCsr[i]!=0 );
- pTos++;
- pTos->flags = MEM_Null;
- if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
- i64 rowid;
- assert( pC->deferredMoveto==0 );
- assert( pC->isTable==0 );
- if( pC->nullRow ){
- pTos->flags = MEM_Null;
- }else{
- rc = sqlite3VdbeIdxRowid(pCrsr, &rowid);
- if( rc!=SQLITE_OK ){
- goto abort_due_to_error;
- }
- pTos->flags = MEM_Int;
- pTos->u.i = rowid;
- }
- }
- break;
- }
- /* Opcode: IdxGT P1 P2 *
- **
- ** The top of the stack is an index entry that omits the ROWID. Compare
- ** the top of stack against the index that P1 is currently pointing to.
- ** Ignore the ROWID on the P1 index.
- **
- ** The top of the stack might have fewer columns that P1.
- **
- ** If the P1 index entry is greater than the top of the stack
- ** then jump to P2. Otherwise fall through to the next instruction.
- ** In either case, the stack is popped once.
- */
- /* Opcode: IdxGE P1 P2 P3
- **
- ** The top of the stack is an index entry that omits the ROWID. Compare
- ** the top of stack against the index that P1 is currently pointing to.
- ** Ignore the ROWID on the P1 index.
- **
- ** If the P1 index entry is greater than or equal to the top of the stack
- ** then jump to P2. Otherwise fall through to the next instruction.
- ** In either case, the stack is popped once.
- **
- ** If P3 is the "+" string (or any other non-NULL string) then the
- ** index taken from the top of the stack is temporarily increased by
- ** an epsilon prior to the comparison. This make the opcode work
- ** like IdxGT except that if the key from the stack is a prefix of
- ** the key in the cursor, the result is false whereas it would be
- ** true with IdxGT.
- */
- /* Opcode: IdxLT P1 P2 P3
- **
- ** The top of the stack is an index entry that omits the ROWID. Compare
- ** the top of stack against the index that P1 is currently pointing to.
- ** Ignore the ROWID on the P1 index.
- **
- ** If the P1 index entry is less than the top of the stack
- ** then jump to P2. Otherwise fall through to the next instruction.
- ** In either case, the stack is popped once.
- **
- ** If P3 is the "+" string (or any other non-NULL string) then the
- ** index taken from the top of the stack is temporarily increased by
- ** an epsilon prior to the comparison. This makes the opcode work
- ** like IdxLE.
- */
- case OP_IdxLT: /* no-push */
- case OP_IdxGT: /* no-push */
- case OP_IdxGE: { /* no-push */
- int i= pOp->p1;
- Cursor *pC;
- assert( i>=0 && i<p->nCursor );
- assert( p->apCsr[i]!=0 );
- assert( pTos>=p->aStack );
- if( (pC = p->apCsr[i])->pCursor!=0 ){
- int res;
-
- assert( pTos->flags & MEM_Blob ); /* Created using OP_MakeRecord */
- assert( pC->deferredMoveto==0 );
- ExpandBlob(pTos);
- *pC->pIncrKey = pOp->p3!=0;
- assert( pOp->p3==0 || pOp->opcode!=OP_IdxGT );
- rc = sqlite3VdbeIdxKeyCompare(pC, pTos->n, (u8*)pTos->z, &res);
- *pC->pIncrKey = 0;
- if( rc!=SQLITE_OK ){
- break;
- }
- if( pOp->opcode==OP_IdxLT ){
- res = -res;
- }else if( pOp->opcode==OP_IdxGE ){
- res++;
- }
- if( res>0 ){
- pc = pOp->p2 - 1 ;
- }
- }
- Release(pTos);
- pTos--;
- break;
- }
- /* Opcode: Destroy P1 P2 *
- **
- ** Delete an entire database table or index whose root page in the database
- ** file is given by P1.
- **
- ** The table being destroyed is in the main database file if P2==0. If
- ** P2==1 then the table to be clear is in the auxiliary database file
- ** that is used to store tables create using CREATE TEMPORARY TABLE.
- **
- ** If AUTOVACUUM is enabled then it is possible that another root page
- ** might be moved into the newly deleted root page in order to keep all
- ** root pages contiguous at the beginning of the database. The former
- ** value of the root page that moved - its value before the move occurred -
- ** is pushed onto the stack. If no page movement was required (because
- ** the table being dropped was already the last one in the database) then
- ** a zero is pushed onto the stack. If AUTOVACUUM is disabled
- ** then a zero is pushed onto the stack.
- **
- ** See also: Clear
- */
- case OP_Destroy: {
- int iMoved;
- int iCnt;
- #ifndef SQLITE_OMIT_VIRTUALTABLE
- Vdbe *pVdbe;
- iCnt = 0;
- for(pVdbe=db->pVdbe; pVdbe; pVdbe=pVdbe->pNext){
- if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 ){
- iCnt++;
- }
- }
- #else
- iCnt = db->activeVdbeCnt;
- #endif
- if( iCnt>1 ){
- rc = SQLITE_LOCKED;
- p->errorAction = OE_Abort;
- }else{
- assert( iCnt==1 );
- assert( (p->btreeMask & (1<<pOp->p2))!=0 );
- rc = sqlite3BtreeDropTable(db->aDb[pOp->p2].pBt, pOp->p1, &iMoved);
- pTos++;
- pTos->flags = MEM_Int;
- pTos->u.i = iMoved;
- #ifndef SQLITE_OMIT_AUTOVACUUM
- if( rc==SQLITE_OK && iMoved!=0 ){
- sqlite3RootPageMoved(&db->aDb[pOp->p2], iMoved, pOp->p1);
- }
- #endif
- }
- break;
- }
- /* Opcode: Clear P1 P2 *
- **
- ** Delete all contents of the database table or index whose root page
- ** in the database file is given by P1. But, unlike Destroy, do not
- ** remove the table or index from the database file.
- **
- ** The table being clear is in the main database file if P2==0. If
- ** P2==1 then the table to be clear is in the auxiliary database file
- ** that is used to store tables create using CREATE TEMPORARY TABLE.
- **
- ** See also: Destroy
- */
- case OP_Clear: { /* no-push */
- /* For consistency with the way other features of SQLite operate
- ** with a truncate, we will also skip the update callback.
- */
- #if 0
- Btree *pBt = db->aDb[pOp->p2].pBt;
- if( db->xUpdateCallback && pOp->p3 ){
- const char *zDb = db->aDb[pOp->p2].zName;
- const char *zTbl = pOp->p3;
- BtCursor *pCur = 0;
- int fin = 0;
- rc = sqlite3BtreeCursor(pBt, pOp->p1, 0, 0, 0, &pCur);
- if( rc!=SQLITE_OK ){
- goto abort_due_to_error;
- }
- for(
- rc=sqlite3BtreeFirst(pCur, &fin);
- rc==SQLITE_OK && !fin;
- rc=sqlite3BtreeNext(pCur, &fin)
- ){
- i64 iKey;
- rc = sqlite3BtreeKeySize(pCur, &iKey);
- if( rc ){
- break;
- }
- iKey = keyToInt(iKey);
- db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey);
- }
- sqlite3BtreeCloseCursor(pCur);
- if( rc!=SQLITE_OK ){
- goto abort_due_to_error;
- }
- }
- #endif
- assert( (p->btreeMask & (1<<pOp->p2))!=0 );
- rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, pOp->p1);
- break;
- }
- /* Opcode: CreateTable P1 * *
- **
- ** Allocate a new table in the main database file if P2==0 or in the
- ** auxiliary database file if P2==1. Push the page number
- ** for the root page of the new table onto the stack.
- **
- ** The difference between a table and an index is this: A table must
- ** have a 4-byte integer key and can have arbitrary data. An index
- ** has an arbitrary key but no data.
- **
- ** See also: CreateIndex
- */
- /* Opcode: CreateIndex P1 * *
- **
- ** Allocate a new index in the main database file if P2==0 or in the
- ** auxiliary database file if P2==1. Push the page number of the
- ** root page of the new index onto the stack.
- **
- ** See documentation on OP_CreateTable for additional information.
- */
- case OP_CreateIndex:
- case OP_CreateTable: {
- int pgno;
- int flags;
- Db *pDb;
- assert( pOp->p1>=0 && pOp->p1<db->nDb );
- assert( (p->btreeMask & (1<<pOp->p1))!=0 );
- pDb = &db->aDb[pOp->p1];
- assert( pDb->pBt!=0 );
- if( pOp->opcode==OP_CreateTable ){
- /* flags = BTREE_INTKEY; */
- flags = BTREE_LEAFDATA|BTREE_INTKEY;
- }else{
- flags = BTREE_ZERODATA;
- }
- rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
- pTos++;
- if( rc==SQLITE_OK ){
- pTos->u.i = pgno;
- pTos->flags = MEM_Int;
- }else{
- pTos->flags = MEM_Null;
- }
- break;
- }
- /* Opcode: ParseSchema P1 P2 P3
- **
- ** Read and parse all entries from the SQLITE_MASTER table of database P1
- ** that match the WHERE clause P3. P2 is the "force" flag. Always do
- ** the parsing if P2 is true. If P2 is false, then this routine is a
- ** no-op if the schema is not currently loaded. In other words, if P2
- ** is false, the SQLITE_MASTER table is only parsed if the rest of the
- ** schema is already loaded into the symbol table.
- **
- ** This opcode invokes the parser to create a new virtual machine,
- ** then runs the new virtual machine. It is thus a reentrant opcode.
- */
- case OP_ParseSchema: { /* no-push */
- char *zSql;
- int iDb = pOp->p1;
- const char *zMaster;
- InitData initData;
- assert( iDb>=0 && iDb<db->nDb );
- if( !pOp->p2 && !DbHasProperty(db, iDb, DB_SchemaLoaded) ){
- break;
- }
- zMaster = SCHEMA_TABLE(iDb);
- initData.db = db;
- initData.iDb = pOp->p1;
- initData.pzErrMsg = &p->zErrMsg;
- zSql = sqlite3MPrintf(db,
- "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s",
- db->aDb[iDb].zName, zMaster, pOp->p3);
- if( zSql==0 ) goto no_mem;
- sqlite3SafetyOff(db);
- assert( db->init.busy==0 );
- db->init.busy = 1;
- assert( !db->mallocFailed );
- rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
- if( rc==SQLITE_ABORT ) rc = initData.rc;
- sqlite3_free(zSql);
- db->init.busy = 0;
- sqlite3SafetyOn(db);
- if( rc==SQLITE_NOMEM ){
- goto no_mem;
- }
- break;
- }
- #if !defined(SQLITE_OMIT_ANALYZE) && !defined(SQLITE_OMIT_PARSER)
- /* Opcode: LoadAnalysis P1 * *
- **
- ** Read the sqlite_stat1 table for database P1 and load the content
- ** of that table into the internal index hash table. This will cause
- ** the analysis to be used when preparing all subsequent queries.
- */
- case OP_LoadAnalysis: { /* no-push */
- int iDb = pOp->p1;
- assert( iDb>=0 && iDb<db->nDb );
- rc = sqlite3AnalysisLoad(db, iDb);
- break;
- }
- #endif /* !defined(SQLITE_OMIT_ANALYZE) && !defined(SQLITE_OMIT_PARSER) */
- /* Opcode: DropTable P1 * P3
- **
- ** Remove the internal (in-memory) data structures that describe
- ** the table named P3 in database P1. This is called after a table
- ** is dropped in order to keep the internal representation of the
- ** schema consistent with what is on disk.
- */
- case OP_DropTable: { /* no-push */
- sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p3);
- break;
- }
- /* Opcode: DropIndex P1 * P3
- **
- ** Remove the internal (in-memory) data structures that describe
- ** the index named P3 in database P1. This is called after an index
- ** is dropped in order to keep the internal representation of the
- ** schema consistent with what is on disk.
- */
- case OP_DropIndex: { /* no-push */
- sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p3);
- break;
- }
- /* Opcode: DropTrigger P1 * P3
- **
- ** Remove the internal (in-memory) data structures that describe
- ** the trigger named P3 in database P1. This is called after a trigger
- ** is dropped in order to keep the internal representation of the
- ** schema consistent with what is on disk.
- */
- case OP_DropTrigger: { /* no-push */
- sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p3);
- break;
- }
- #ifndef SQLITE_OMIT_INTEGRITY_CHECK
- /* Opcode: IntegrityCk P1 P2 *
- **
- ** Do an analysis of the currently open database. Push onto the
- ** stack the text of an error message describing any problems.
- ** If no problems are found, push a NULL onto the stack.
- **
- ** P1 is the address of a memory cell that contains the maximum
- ** number of allowed errors. At most mem[P1] errors will be reported.
- ** In other words, the analysis stops as soon as mem[P1] errors are
- ** seen. Mem[P1] is updated with the number of errors remaining.
- **
- ** The root page numbers of all tables in the database are integer
- ** values on the stack. This opcode pulls as many integers as it
- ** can off of the stack and uses those numbers as the root pages.
- **
- ** If P2 is not zero, the check is done on the auxiliary database
- ** file, not the main database file.
- **
- ** This opcode is used to implement the integrity_check pragma.
- */
- case OP_IntegrityCk: {
- int nRoot;
- int *aRoot;
- int j;
- int nErr;
- char *z;
- Mem *pnErr;
- for(nRoot=0; &pTos[-nRoot]>=p->aStack; nRoot++){
- if( (pTos[-nRoot].flags & MEM_Int)==0 ) break;
- }
- assert( nRoot>0 );
- aRoot = sqlite3_malloc( sizeof(int)*(nRoot+1) );
- if( aRoot==0 ) goto no_mem;
- j = pOp->p1;
- assert( j>=0 && j<p->nMem );
- pnErr = &p->aMem[j];
- assert( (pnErr->flags & MEM_Int)!=0 );
- for(j=0; j<nRoot; j++){
- aRoot[j] = (pTos-j)->u.i;
- }
- aRoot[j] = 0;
- popStack(&pTos, nRoot);
- pTos++;
- assert( pOp->p2>=0 && pOp->p2<db->nDb );
- assert( (p->btreeMask & (1<<pOp->p2))!=0 );
- z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p2].pBt, aRoot, nRoot,
- pnErr->u.i, &nErr);
- pnErr->u.i -= nErr;
- if( nErr==0 ){
- assert( z==0 );
- pTos->flags = MEM_Null;
- }else{
- pTos->z = z;
- pTos->n = strlen(z);
- pTos->flags = MEM_Str | MEM_Dyn | MEM_Term;
- pTos->xDel = 0;
- }
- pTos->enc = SQLITE_UTF8;
- sqlite3VdbeChangeEncoding(pTos, encoding);
- sqlite3_free(aRoot);
- break;
- }
- #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
- /* Opcode: FifoWrite * * *
- **
- ** Write the integer on the top of the stack
- ** into the Fifo.
- */
- case OP_FifoWrite: { /* no-push */
- assert( pTos>=p->aStack );
- sqlite3VdbeMemIntegerify(pTos);
- if( sqlite3VdbeFifoPush(&p->sFifo, pTos->u.i)==SQLITE_NOMEM ){
- goto no_mem;
- }
- assert( (pTos->flags & MEM_Dyn)==0 );
- pTos--;
- break;
- }
- /* Opcode: FifoRead * P2 *
- **
- ** Attempt to read a single integer from the Fifo
- ** and push it onto the stack. If the Fifo is empty
- ** push nothing but instead jump to P2.
- */
- case OP_FifoRead: {
- i64 v;
- CHECK_FOR_INTERRUPT;
- if( sqlite3VdbeFifoPop(&p->sFifo, &v)==SQLITE_DONE ){
- pc = pOp->p2 - 1;
- }else{
- pTos++;
- pTos->u.i = v;
- pTos->flags = MEM_Int;
- }
- break;
- }
- #ifndef SQLITE_OMIT_TRIGGER
- /* Opcode: ContextPush * * *
- **
- ** Save the current Vdbe context such that it can be restored by a ContextPop
- ** opcode. The context stores the last insert row id, the last statement change
- ** count, and the current statement change count.
- */
- case OP_ContextPush: { /* no-push */
- int i = p->contextStackTop++;
- Context *pContext;
- assert( i>=0 );
- /* FIX ME: This should be allocated as part of the vdbe at compile-time */
- if( i>=p->contextStackDepth ){
- p->contextStackDepth = i+1;
- p->contextStack = sqlite3DbReallocOrFree(db, p->contextStack,
- sizeof(Context)*(i+1));
- if( p->contextStack==0 ) goto no_mem;
- }
- pContext = &p->contextStack[i];
- pContext->lastRowid = db->lastRowid;
- pContext->nChange = p->nChange;
- pContext->sFifo = p->sFifo;
- sqlite3VdbeFifoInit(&p->sFifo);
- break;
- }
- /* Opcode: ContextPop * * *
- **
- ** Restore the Vdbe context to the state it was in when contextPush was last
- ** executed. The context stores the last insert row id, the last statement
- ** change count, and the current statement change count.
- */
- case OP_ContextPop: { /* no-push */
- Context *pContext = &p->contextStack[--p->contextStackTop];
- assert( p->contextStackTop>=0 );
- db->lastRowid = pContext->lastRowid;
- p->nChange = pContext->nChange;
- sqlite3VdbeFifoClear(&p->sFifo);
- p->sFifo = pContext->sFifo;
- break;
- }
- #endif /* #ifndef SQLITE_OMIT_TRIGGER */
- /* Opcode: MemStore P1 P2 *
- **
- ** Write the top of the stack into memory location P1.
- ** P1 should be a small integer since space is allocated
- ** for all memory locations between 0 and P1 inclusive.
- **
- ** After the data is stored in the memory location, the
- ** stack is popped once if P2 is 1. If P2 is zero, then
- ** the original data remains on the stack.
- */
- case OP_MemStore: { /* no-push */
- assert( pTos>=p->aStack );
- assert( pOp->p1>=0 && pOp->p1<p->nMem );
- rc = sqlite3VdbeMemMove(&p->aMem[pOp->p1], pTos);
- pTos--;
- /* If P2 is 0 then fall thru to the next opcode, OP_MemLoad, that will
- ** restore the top of the stack to its original value.
- */
- if( pOp->p2 ){
- break;
- }
- }
- /* Opcode: MemLoad P1 * *
- **
- ** Push a copy of the value in memory location P1 onto the stack.
- **
- ** If the value is a string, then the value pushed is a pointer to
- ** the string that is stored in the memory location. If the memory
- ** location is subsequently changed (using OP_MemStore) then the
- ** value pushed onto the stack will change too.
- */
- case OP_MemLoad: {
- int i = pOp->p1;
- assert( i>=0 && i<p->nMem );
- pTos++;
- sqlite3VdbeMemShallowCopy(pTos, &p->aMem[i], MEM_Ephem);
- break;
- }
- #ifndef SQLITE_OMIT_AUTOINCREMENT
- /* Opcode: MemMax P1 * *
- **
- ** Set the value of memory cell P1 to the maximum of its current value
- ** and the value on the top of the stack. The stack is unchanged.
- **
- ** This instruction throws an error if the memory cell is not initially
- ** an integer.
- */
- case OP_MemMax: { /* no-push */
- int i = pOp->p1;
- Mem *pMem;
- assert( pTos>=p->aStack );
- assert( i>=0 && i<p->nMem );
- pMem = &p->aMem[i];
- sqlite3VdbeMemIntegerify(pMem);
- sqlite3VdbeMemIntegerify(pTos);
- if( pMem->u.i<pTos->u.i){
- pMem->u.i = pTos->u.i;
- }
- break;
- }
- #endif /* SQLITE_OMIT_AUTOINCREMENT */
- /* Opcode: MemIncr P1 P2 *
- **
- ** Increment the integer valued memory cell P2 by the value in P1.
- **
- ** It is illegal to use this instruction on a memory cell that does
- ** not contain an integer. An assertion fault will result if you try.
- */
- case OP_MemIncr: { /* no-push */
- int i = pOp->p2;
- Mem *pMem;
- assert( i>=0 && i<p->nMem );
- pMem = &p->aMem[i];
- assert( pMem->flags==MEM_Int );
- pMem->u.i += pOp->p1;
- break;
- }
- /* Opcode: IfMemPos P1 P2 *
- **
- ** If the value of memory cell P1 is 1 or greater, jump to P2.
- **
- ** It is illegal to use this instruction on a memory cell that does
- ** not contain an integer. An assertion fault will result if you try.
- */
- case OP_IfMemPos: { /* no-push */
- int i = pOp->p1;
- Mem *pMem;
- assert( i>=0 && i<p->nMem );
- pMem = &p->aMem[i];
- assert( pMem->flags==MEM_Int );
- if( pMem->u.i>0 ){
- pc = pOp->p2 - 1;
- }
- break;
- }
- /* Opcode: IfMemNeg P1 P2 *
- **
- ** If the value of memory cell P1 is less than zero, jump to P2.
- **
- ** It is illegal to use this instruction on a memory cell that does
- ** not contain an integer. An assertion fault will result if you try.
- */
- case OP_IfMemNeg: { /* no-push */
- int i = pOp->p1;
- Mem *pMem;
- assert( i>=0 && i<p->nMem );
- pMem = &p->aMem[i];
- assert( pMem->flags==MEM_Int );
- if( pMem->u.i<0 ){
- pc = pOp->p2 - 1;
- }
- break;
- }
- /* Opcode: IfMemZero P1 P2 *
- **
- ** If the value of memory cell P1 is exactly 0, jump to P2.
- **
- ** It is illegal to use this instruction on a memory cell that does
- ** not contain an integer. An assertion fault will result if you try.
- */
- case OP_IfMemZero: { /* no-push */
- int i = pOp->p1;
- Mem *pMem;
- assert( i>=0 && i<p->nMem );
- pMem = &p->aMem[i];
- assert( pMem->flags==MEM_Int );
- if( pMem->u.i==0 ){
- pc = pOp->p2 - 1;
- }
- break;
- }
- /* Opcode: MemNull P1 * *
- **
- ** Store a NULL in memory cell P1
- */
- case OP_MemNull: {
- assert( pOp->p1>=0 && pOp->p1<p->nMem );
- sqlite3VdbeMemSetNull(&p->aMem[pOp->p1]);
- break;
- }
- /* Opcode: MemInt P1 P2 *
- **
- ** Store the integer value P1 in memory cell P2.
- */
- case OP_MemInt: {
- assert( pOp->p2>=0 && pOp->p2<p->nMem );
- sqlite3VdbeMemSetInt64(&p->aMem[pOp->p2], pOp->p1);
- break;
- }
- /* Opcode: MemMove P1 P2 *
- **
- ** Move the content of memory cell P2 over to memory cell P1.
- ** Any prior content of P1 is erased. Memory cell P2 is left
- ** containing a NULL.
- */
- case OP_MemMove: {
- assert( pOp->p1>=0 && pOp->p1<p->nMem );
- assert( pOp->p2>=0 && pOp->p2<p->nMem );
- rc = sqlite3VdbeMemMove(&p->aMem[pOp->p1], &p->aMem[pOp->p2]);
- break;
- }
- /* Opcode: AggStep P1 P2 P3
- **
- ** Execute the step function for an aggregate. The
- ** function has P2 arguments. P3 is a pointer to the FuncDef
- ** structure that specifies the function. Use memory location
- ** P1 as the accumulator.
- **
- ** The P2 arguments are popped from the stack.
- */
- case OP_AggStep: { /* no-push */
- int n = pOp->p2;
- int i;
- Mem *pMem, *pRec;
- sqlite3_context ctx;
- sqlite3_value **apVal;
- assert( n>=0 );
- pRec = &pTos[1-n];
- assert( pRec>=p->aStack );
- apVal = p->apArg;
- assert( apVal || n==0 );
- for(i=0; i<n; i++, pRec++){
- apVal[i] = pRec;
- storeTypeInfo(pRec, encoding);
- }
- ctx.pFunc = (FuncDef*)pOp->p3;
- assert( pOp->p1>=0 && pOp->p1<p->nMem );
- ctx.pMem = pMem = &p->aMem[pOp->p1];
- pMem->n++;
- ctx.s.flags = MEM_Null;
- ctx.s.z = 0;
- ctx.s.xDel = 0;
- ctx.s.db = db;
- ctx.isError = 0;
- ctx.pColl = 0;
- if( ctx.pFunc->needCollSeq ){
- assert( pOp>p->aOp );
- assert( pOp[-1].p3type==P3_COLLSEQ );
- assert( pOp[-1].opcode==OP_CollSeq );
- ctx.pColl = (CollSeq *)pOp[-1].p3;
- }
- (ctx.pFunc->xStep)(&ctx, n, apVal);
- popStack(&pTos, n);
- if( ctx.isError ){
- sqlite3SetString(&p->zErrMsg, sqlite3_value_text(&ctx.s), (char*)0);
- rc = SQLITE_ERROR;
- }
- sqlite3VdbeMemRelease(&ctx.s);
- break;
- }
- /* Opcode: AggFinal P1 P2 P3
- **
- ** Execute the finalizer function for an aggregate. P1 is
- ** the memory location that is the accumulator for the aggregate.
- **
- ** P2 is the number of arguments that the step function takes and
- ** P3 is a pointer to the FuncDef for this function. The P2
- ** argument is not used by this opcode. It is only there to disambiguate
- ** functions that can take varying numbers of arguments. The
- ** P3 argument is only needed for the degenerate case where
- ** the step function was not previously called.
- */
- case OP_AggFinal: { /* no-push */
- Mem *pMem;
- assert( pOp->p1>=0 && pOp->p1<p->nMem );
- pMem = &p->aMem[pOp->p1];
- assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
- rc = sqlite3VdbeMemFinalize(pMem, (FuncDef*)pOp->p3);
- if( rc==SQLITE_ERROR ){
- sqlite3SetString(&p->zErrMsg, sqlite3_value_text(pMem), (char*)0);
- }
- if( sqlite3VdbeMemTooBig(pMem) ){
- goto too_big;
- }
- break;
- }
- #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
- /* Opcode: Vacuum * * *
- **
- ** Vacuum the entire database. This opcode will cause other virtual
- ** machines to be created and run. It may not be called from within
- ** a transaction.
- */
- case OP_Vacuum: { /* no-push */
- if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
- rc = sqlite3RunVacuum(&p->zErrMsg, db);
- if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
- break;
- }
- #endif
- #if !defined(SQLITE_OMIT_AUTOVACUUM)
- /* Opcode: IncrVacuum P1 P2 *
- **
- ** Perform a single step of the incremental vacuum procedure on
- ** the P1 database. If the vacuum has finished, jump to instruction
- ** P2. Otherwise, fall through to the next instruction.
- */
- case OP_IncrVacuum: { /* no-push */
- Btree *pBt;
- assert( pOp->p1>=0 && pOp->p1<db->nDb );
- assert( (p->btreeMask & (1<<pOp->p1))!=0 );
- pBt = db->aDb[pOp->p1].pBt;
- rc = sqlite3BtreeIncrVacuum(pBt);
- if( rc==SQLITE_DONE ){
- pc = pOp->p2 - 1;
- rc = SQLITE_OK;
- }
- break;
- }
- #endif
- /* Opcode: Expire P1 * *
- **
- ** Cause precompiled statements to become expired. An expired statement
- ** fails with an error code of SQLITE_SCHEMA if it is ever executed
- ** (via sqlite3_step()).
- **
- ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
- ** then only the currently executing statement is affected.
- */
- case OP_Expire: { /* no-push */
- if( !pOp->p1 ){
- sqlite3ExpirePreparedStatements(db);
- }else{
- p->expired = 1;
- }
- break;
- }
- #ifndef SQLITE_OMIT_SHARED_CACHE
- /* Opcode: TableLock P1 P2 P3
- **
- ** Obtain a lock on a particular table. This instruction is only used when
- ** the shared-cache feature is enabled.
- **
- ** If P1 is not negative, then it is the index of the database
- ** in sqlite3.aDb[] and a read-lock is required. If P1 is negative, a
- ** write-lock is required. In this case the index of the database is the
- ** absolute value of P1 minus one (iDb = abs(P1) - 1;) and a write-lock is
- ** required.
- **
- ** P2 contains the root-page of the table to lock.
- **
- ** P3 contains a pointer to the name of the table being locked. This is only
- ** used to generate an error message if the lock cannot be obtained.
- */
- case OP_TableLock: { /* no-push */
- int p1 = pOp->p1;
- u8 isWriteLock = (p1<0);
- if( isWriteLock ){
- p1 = (-1*p1)-1;
- }
- assert( p1>=0 && p1<db->nDb );
- assert( (p->btreeMask & (1<<p1))!=0 );
- rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
- if( rc==SQLITE_LOCKED ){
- const char *z = (const char *)pOp->p3;
- sqlite3SetString(&p->zErrMsg, "database table is locked: ", z, (char*)0);
- }
- break;
- }
- #endif /* SQLITE_OMIT_SHARED_CACHE */
- #ifndef SQLITE_OMIT_VIRTUALTABLE
- /* Opcode: VBegin * * P3
- **
- ** P3 a pointer to an sqlite3_vtab structure. Call the xBegin method
- ** for that table.
- */
- case OP_VBegin: { /* no-push */
- rc = sqlite3VtabBegin(db, (sqlite3_vtab *)pOp->p3);
- break;
- }
- #endif /* SQLITE_OMIT_VIRTUALTABLE */
- #ifndef SQLITE_OMIT_VIRTUALTABLE
- /* Opcode: VCreate P1 * P3
- **
- ** P3 is the name of a virtual table in database P1. Call the xCreate method
- ** for that table.
- */
- case OP_VCreate: { /* no-push */
- rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p3, &p->zErrMsg);
- break;
- }
- #endif /* SQLITE_OMIT_VIRTUALTABLE */
- #ifndef SQLITE_OMIT_VIRTUALTABLE
- /* Opcode: VDestroy P1 * P3
- **
- ** P3 is the name of a virtual table in database P1. Call the xDestroy method
- ** of that table.
- */
- case OP_VDestroy: { /* no-push */
- p->inVtabMethod = 2;
- rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p3);
- p->inVtabMethod = 0;
- break;
- }
- #endif /* SQLITE_OMIT_VIRTUALTABLE */
- #ifndef SQLITE_OMIT_VIRTUALTABLE
- /* Opcode: VOpen P1 * P3
- **
- ** P3 is a pointer to a virtual table object, an sqlite3_vtab structure.
- ** P1 is a cursor number. This opcode opens a cursor to the virtual
- ** table and stores that cursor in P1.
- */
- case OP_VOpen: { /* no-push */
- Cursor *pCur = 0;
- sqlite3_vtab_cursor *pVtabCursor = 0;
- sqlite3_vtab *pVtab = (sqlite3_vtab *)(pOp->p3);
- sqlite3_module *pModule = (sqlite3_module *)pVtab->pModule;
- assert(pVtab && pModule);
- if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
- rc = pModule->xOpen(pVtab, &pVtabCursor);
- if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
- if( SQLITE_OK==rc ){
- /* Initialise sqlite3_vtab_cursor base class */
- pVtabCursor->pVtab = pVtab;
- /* Initialise vdbe cursor object */
- pCur = allocateCursor(p, pOp->p1, -1);
- if( pCur ){
- pCur->pVtabCursor = pVtabCursor;
- pCur->pModule = pVtabCursor->pVtab->pModule;
- }else{
- db->mallocFailed = 1;
- pModule->xClose(pVtabCursor);
- }
- }
- break;
- }
- #endif /* SQLITE_OMIT_VIRTUALTABLE */
- #ifndef SQLITE_OMIT_VIRTUALTABLE
- /* Opcode: VFilter P1 P2 P3
- **
- ** P1 is a cursor opened using VOpen. P2 is an address to jump to if
- ** the filtered result set is empty.
- **
- ** P3 is either NULL or a string that was generated by the xBestIndex
- ** method of the module. The interpretation of the P3 string is left
- ** to the module implementation.
- **
- ** This opcode invokes the xFilter method on the virtual table specified
- ** by P1. The integer query plan parameter to xFilter is the top of the
- ** stack. Next down on the stack is the argc parameter. Beneath the
- ** next of stack are argc additional parameters which are passed to
- ** xFilter as argv. The topmost parameter (i.e. 3rd element popped from
- ** the stack) becomes argv[argc-1] when passed to xFilter.
- **
- ** The integer query plan parameter, argc, and all argv stack values
- ** are popped from the stack before this instruction completes.
- **
- ** A jump is made to P2 if the result set after filtering would be
- ** empty.
- */
- case OP_VFilter: { /* no-push */
- int nArg;
- const sqlite3_module *pModule;
- Cursor *pCur = p->apCsr[pOp->p1];
- assert( pCur->pVtabCursor );
- pModule = pCur->pVtabCursor->pVtab->pModule;
- /* Grab the index number and argc parameters off the top of the stack. */
- assert( (&pTos[-1])>=p->aStack );
- assert( (pTos[0].flags&MEM_Int)!=0 && pTos[-1].flags==MEM_Int );
- nArg = pTos[-1].u.i;
- /* Invoke the xFilter method */
- {
- int res = 0;
- int i;
- Mem **apArg = p->apArg;
- for(i = 0; i<nArg; i++){
- apArg[i] = &pTos[i+1-2-nArg];
- storeTypeInfo(apArg[i], 0);
- }
- if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
- p->inVtabMethod = 1;
- rc = pModule->xFilter(pCur->pVtabCursor, pTos->u.i, pOp->p3, nArg, apArg);
- p->inVtabMethod = 0;
- if( rc==SQLITE_OK ){
- res = pModule->xEof(pCur->pVtabCursor);
- }
- if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
- if( res ){
- pc = pOp->p2 - 1;
- }
- }
- /* Pop the index number, argc value and parameters off the stack */
- popStack(&pTos, 2+nArg);
- break;
- }
- #endif /* SQLITE_OMIT_VIRTUALTABLE */
- #ifndef SQLITE_OMIT_VIRTUALTABLE
- /* Opcode: VRowid P1 * *
- **
- ** Push an integer onto the stack which is the rowid of
- ** the virtual-table that the P1 cursor is pointing to.
- */
- case OP_VRowid: {
- const sqlite3_module *pModule;
- Cursor *pCur = p->apCsr[pOp->p1];
- assert( pCur->pVtabCursor );
- pModule = pCur->pVtabCursor->pVtab->pModule;
- if( pModule->xRowid==0 ){
- sqlite3SetString(&p->zErrMsg, "Unsupported module operation: xRowid", 0);
- rc = SQLITE_ERROR;
- } else {
- sqlite_int64 iRow;
- if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
- rc = pModule->xRowid(pCur->pVtabCursor, &iRow);
- if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
- pTos++;
- pTos->flags = MEM_Int;
- pTos->u.i = iRow;
- }
- break;
- }
- #endif /* SQLITE_OMIT_VIRTUALTABLE */
- #ifndef SQLITE_OMIT_VIRTUALTABLE
- /* Opcode: VColumn P1 P2 *
- **
- ** Push onto the stack the value of the P2-th column of
- ** the row of the virtual-table that the P1 cursor is pointing to.
- */
- case OP_VColumn: {
- const sqlite3_module *pModule;
- Cursor *pCur = p->apCsr[pOp->p1];
- assert( pCur->pVtabCursor );
- pModule = pCur->pVtabCursor->pVtab->pModule;
- if( pModule->xColumn==0 ){
- sqlite3SetString(&p->zErrMsg, "Unsupported module operation: xColumn", 0);
- rc = SQLITE_ERROR;
- } else {
- sqlite3_context sContext;
- memset(&sContext, 0, sizeof(sContext));
- sContext.s.flags = MEM_Null;
- sContext.s.db = db;
- if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
- rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
- /* Copy the result of the function to the top of the stack. We
- ** do this regardless of whether or not an error occured to ensure any
- ** dynamic allocation in sContext.s (a Mem struct) is released.
- */
- sqlite3VdbeChangeEncoding(&sContext.s, encoding);
- pTos++;
- pTos->flags = 0;
- sqlite3VdbeMemMove(pTos, &sContext.s);
- if( sqlite3SafetyOn(db) ){
- goto abort_due_to_misuse;
- }
- if( sqlite3VdbeMemTooBig(pTos) ){
- goto too_big;
- }
- }
-
- break;
- }
- #endif /* SQLITE_OMIT_VIRTUALTABLE */
- #ifndef SQLITE_OMIT_VIRTUALTABLE
- /* Opcode: VNext P1 P2 *
- **
- ** Advance virtual table P1 to the next row in its result set and
- ** jump to instruction P2. Or, if the virtual table has reached
- ** the end of its result set, then fall through to the next instruction.
- */
- case OP_VNext: { /* no-push */
- const sqlite3_module *pModule;
- int res = 0;
- Cursor *pCur = p->apCsr[pOp->p1];
- assert( pCur->pVtabCursor );
- pModule = pCur->pVtabCursor->pVtab->pModule;
- if( pModule->xNext==0 ){
- sqlite3SetString(&p->zErrMsg, "Unsupported module operation: xNext", 0);
- rc = SQLITE_ERROR;
- } else {
- /* Invoke the xNext() method of the module. There is no way for the
- ** underlying implementation to return an error if one occurs during
- ** xNext(). Instead, if an error occurs, true is returned (indicating that
- ** data is available) and the error code returned when xColumn or
- ** some other method is next invoked on the save virtual table cursor.
- */
- if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
- p->inVtabMethod = 1;
- rc = pModule->xNext(pCur->pVtabCursor);
- p->inVtabMethod = 0;
- if( rc==SQLITE_OK ){
- res = pModule->xEof(pCur->pVtabCursor);
- }
- if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
- if( !res ){
- /* If there is data, jump to P2 */
- pc = pOp->p2 - 1;
- }
- }
- break;
- }
- #endif /* SQLITE_OMIT_VIRTUALTABLE */
- #ifndef SQLITE_OMIT_VIRTUALTABLE
- /* Opcode: VRename * * P3
- **
- ** P3 is a pointer to a virtual table object, an sqlite3_vtab structure.
- ** This opcode invokes the corresponding xRename method. The value
- ** on the top of the stack is popped and passed as the zName argument
- ** to the xRename method.
- */
- case OP_VRename: { /* no-push */
- sqlite3_vtab *pVtab = (sqlite3_vtab *)(pOp->p3);
- assert( pVtab->pModule->xRename );
- Stringify(pTos, encoding);
- if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
- sqlite3VtabLock(pVtab);
- rc = pVtab->pModule->xRename(pVtab, pTos->z);
- sqlite3VtabUnlock(db, pVtab);
- if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
- popStack(&pTos, 1);
- break;
- }
- #endif
- #ifndef SQLITE_OMIT_VIRTUALTABLE
- /* Opcode: VUpdate P1 P2 P3
- **
- ** P3 is a pointer to a virtual table object, an sqlite3_vtab structure.
- ** This opcode invokes the corresponding xUpdate method. P2 values
- ** are taken from the stack to pass to the xUpdate invocation. The
- ** value on the top of the stack corresponds to the p2th element
- ** of the argv array passed to xUpdate.
- **
- ** The xUpdate method will do a DELETE or an INSERT or both.
- ** The argv[0] element (which corresponds to the P2-th element down
- ** on the stack) is the rowid of a row to delete. If argv[0] is
- ** NULL then no deletion occurs. The argv[1] element is the rowid
- ** of the new row. This can be NULL to have the virtual table
- ** select the new rowid for itself. The higher elements in the
- ** stack are the values of columns in the new row.
- **
- ** If P2==1 then no insert is performed. argv[0] is the rowid of
- ** a row to delete.
- **
- ** P1 is a boolean flag. If it is set to true and the xUpdate call
- ** is successful, then the value returned by sqlite3_last_insert_rowid()
- ** is set to the value of the rowid for the row just inserted.
- */
- case OP_VUpdate: { /* no-push */
- sqlite3_vtab *pVtab = (sqlite3_vtab *)(pOp->p3);
- sqlite3_module *pModule = (sqlite3_module *)pVtab->pModule;
- int nArg = pOp->p2;
- assert( pOp->p3type==P3_VTAB );
- if( pModule->xUpdate==0 ){
- sqlite3SetString(&p->zErrMsg, "read-only table", 0);
- rc = SQLITE_ERROR;
- }else{
- int i;
- sqlite_int64 rowid;
- Mem **apArg = p->apArg;
- Mem *pX = &pTos[1-nArg];
- for(i = 0; i<nArg; i++, pX++){
- storeTypeInfo(pX, 0);
- apArg[i] = pX;
- }
- if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
- sqlite3VtabLock(pVtab);
- rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
- sqlite3VtabUnlock(db, pVtab);
- if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
- if( pOp->p1 && rc==SQLITE_OK ){
- assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
- db->lastRowid = rowid;
- }
- }
- popStack(&pTos, nArg);
- break;
- }
- #endif /* SQLITE_OMIT_VIRTUALTABLE */
- /* An other opcode is illegal...
- */
- default: {
- assert( 0 );
- break;
- }
- /*****************************************************************************
- ** The cases of the switch statement above this line should all be indented
- ** by 6 spaces. But the left-most 6 spaces have been removed to improve the
- ** readability. From this point on down, the normal indentation rules are
- ** restored.
- *****************************************************************************/
- }
- /* Make sure the stack limit was not exceeded */
- assert( pTos<=pStackLimit );
- #ifdef VDBE_PROFILE
- {
- long long elapse = hwtime() - start;
- pOp->cycles += elapse;
- pOp->cnt++;
- #if 0
- fprintf(stdout, "%10lld ", elapse);
- sqlite3VdbePrintOp(stdout, origPc, &p->aOp[origPc]);
- #endif
- }
- #endif
- #ifdef SQLITE_TEST
- /* Keep track of the size of the largest BLOB or STR that has appeared
- ** on the top of the VDBE stack.
- */
- if( pTos>=p->aStack && (pTos->flags & (MEM_Blob|MEM_Str))!=0
- && pTos->n>sqlite3_max_blobsize ){
- sqlite3_max_blobsize = pTos->n;
- }
- #endif
- /* The following code adds nothing to the actual functionality
- ** of the program. It is only here for testing and debugging.
- ** On the other hand, it does burn CPU cycles every time through
- ** the evaluator loop. So we can leave it out when NDEBUG is defined.
- */
- #ifndef NDEBUG
- /* Sanity checking on the top element of the stack. If the previous
- ** instruction was VNoChange, then the flags field of the top
- ** of the stack is set to 0. This is technically invalid for a memory
- ** cell, so avoid calling MemSanity() in this case.
- */
- if( pTos>=p->aStack && pTos->flags ){
- assert( pTos->db==db );
- sqlite3VdbeMemSanity(pTos);
- assert( !sqlite3VdbeMemTooBig(pTos) );
- }
- assert( pc>=-1 && pc<p->nOp );
- #ifdef SQLITE_DEBUG
- /* Code for tracing the vdbe stack. */
- if( p->trace && pTos>=p->aStack ){
- int i;
- fprintf(p->trace, "Stack:");
- for(i=0; i>-5 && &pTos[i]>=p->aStack; i--){
- if( pTos[i].flags & MEM_Null ){
- fprintf(p->trace, " NULL");
- }else if( (pTos[i].flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
- fprintf(p->trace, " si:%lld", pTos[i].u.i);
- }else if( pTos[i].flags & MEM_Int ){
- fprintf(p->trace, " i:%lld", pTos[i].u.i);
- }else if( pTos[i].flags & MEM_Real ){
- fprintf(p->trace, " r:%g", pTos[i].r);
- }else{
- char zBuf[200];
- sqlite3VdbeMemPrettyPrint(&pTos[i], zBuf);
- fprintf(p->trace, " ");
- fprintf(p->trace, "%s", zBuf);
- }
- }
- if( rc!=0 ) fprintf(p->trace," rc=%d",rc);
- fprintf(p->trace,"\n");
- }
- #endif /* SQLITE_DEBUG */
- #endif /* NDEBUG */
- } /* The end of the for(;;) loop the loops through opcodes */
- /* If we reach this point, it means that execution is finished.
- */
- vdbe_halt:
- if( rc ){
- p->rc = rc;
- rc = SQLITE_ERROR;
- }else{
- rc = SQLITE_DONE;
- }
- sqlite3VdbeHalt(p);
- p->pTos = pTos;
- /* This is the only way out of this procedure. We have to
- ** release the mutexes on btrees that were acquired at the
- ** top. */
- vdbe_return:
- sqlite3BtreeMutexArrayLeave(&p->aMutex);
- return rc;
- /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
- ** is encountered.
- */
- too_big:
- sqlite3SetString(&p->zErrMsg, "string or blob too big", (char*)0);
- rc = SQLITE_TOOBIG;
- goto vdbe_halt;
- /* Jump to here if a malloc() fails.
- */
- no_mem:
- db->mallocFailed = 1;
- sqlite3SetString(&p->zErrMsg, "out of memory", (char*)0);
- rc = SQLITE_NOMEM;
- goto vdbe_halt;
- /* Jump to here for an SQLITE_MISUSE error.
- */
- abort_due_to_misuse:
- rc = SQLITE_MISUSE;
- /* Fall thru into abort_due_to_error */
- /* Jump to here for any other kind of fatal error. The "rc" variable
- ** should hold the error number.
- */
- abort_due_to_error:
- if( p->zErrMsg==0 ){
- if( db->mallocFailed ) rc = SQLITE_NOMEM;
- sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(rc), (char*)0);
- }
- goto vdbe_halt;
- /* Jump to here if the sqlite3_interrupt() API sets the interrupt
- ** flag.
- */
- abort_due_to_interrupt:
- assert( db->u1.isInterrupted );
- if( db->magic!=SQLITE_MAGIC_BUSY ){
- rc = SQLITE_MISUSE;
- }else{
- rc = SQLITE_INTERRUPT;
- }
- p->rc = rc;
- sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(rc), (char*)0);
- goto vdbe_halt;
- }
|