123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316 |
- /*
- ** 2007 August 27
- **
- ** The author disclaims copyright to this source code. In place of
- ** a legal notice, here is a blessing:
- **
- ** May you do good and not evil.
- ** May you find forgiveness for yourself and forgive others.
- ** May you share freely, never taking more than you give.
- **
- *************************************************************************
- **
- ** $Id: btmutex.c,v 1.8 2007/12/07 18:55:28 drh Exp $
- **
- ** This file contains code used to implement mutexes on Btree objects.
- ** This code really belongs in btree.c. But btree.c is getting too
- ** big and we want to break it down some. This packaged seemed like
- ** a good breakout.
- */
- #include "btreeInt.h"
- #if SQLITE_THREADSAFE && !defined(SQLITE_OMIT_SHARED_CACHE)
- /*
- ** Enter a mutex on the given BTree object.
- **
- ** If the object is not sharable, then no mutex is ever required
- ** and this routine is a no-op. The underlying mutex is non-recursive.
- ** But we keep a reference count in Btree.wantToLock so the behavior
- ** of this interface is recursive.
- **
- ** To avoid deadlocks, multiple Btrees are locked in the same order
- ** by all database connections. The p->pNext is a list of other
- ** Btrees belonging to the same database connection as the p Btree
- ** which need to be locked after p. If we cannot get a lock on
- ** p, then first unlock all of the others on p->pNext, then wait
- ** for the lock to become available on p, then relock all of the
- ** subsequent Btrees that desire a lock.
- */
- void sqlite3BtreeEnter(Btree *p){
- Btree *pLater;
- /* Some basic sanity checking on the Btree. The list of Btrees
- ** connected by pNext and pPrev should be in sorted order by
- ** Btree.pBt value. All elements of the list should belong to
- ** the same connection. Only shared Btrees are on the list. */
- assert( p->pNext==0 || p->pNext->pBt>p->pBt );
- assert( p->pPrev==0 || p->pPrev->pBt<p->pBt );
- assert( p->pNext==0 || p->pNext->db==p->db );
- assert( p->pPrev==0 || p->pPrev->db==p->db );
- assert( p->sharable || (p->pNext==0 && p->pPrev==0) );
- /* Check for locking consistency */
- assert( !p->locked || p->wantToLock>0 );
- assert( p->sharable || p->wantToLock==0 );
- /* We should already hold a lock on the database connection */
- assert( sqlite3_mutex_held(p->db->mutex) );
- if( !p->sharable ) return;
- p->wantToLock++;
- if( p->locked ) return;
- /* In most cases, we should be able to acquire the lock we
- ** want without having to go throught the ascending lock
- ** procedure that follows. Just be sure not to block.
- */
- if( sqlite3_mutex_try(p->pBt->mutex)==SQLITE_OK ){
- p->locked = 1;
- return;
- }
- /* To avoid deadlock, first release all locks with a larger
- ** BtShared address. Then acquire our lock. Then reacquire
- ** the other BtShared locks that we used to hold in ascending
- ** order.
- */
- for(pLater=p->pNext; pLater; pLater=pLater->pNext){
- assert( pLater->sharable );
- assert( pLater->pNext==0 || pLater->pNext->pBt>pLater->pBt );
- assert( !pLater->locked || pLater->wantToLock>0 );
- if( pLater->locked ){
- sqlite3_mutex_leave(pLater->pBt->mutex);
- pLater->locked = 0;
- }
- }
- sqlite3_mutex_enter(p->pBt->mutex);
- p->locked = 1;
- for(pLater=p->pNext; pLater; pLater=pLater->pNext){
- if( pLater->wantToLock ){
- sqlite3_mutex_enter(pLater->pBt->mutex);
- pLater->locked = 1;
- }
- }
- }
- /*
- ** Exit the recursive mutex on a Btree.
- */
- void sqlite3BtreeLeave(Btree *p){
- if( p->sharable ){
- assert( p->wantToLock>0 );
- p->wantToLock--;
- if( p->wantToLock==0 ){
- assert( p->locked );
- sqlite3_mutex_leave(p->pBt->mutex);
- p->locked = 0;
- }
- }
- }
- #ifndef NDEBUG
- /*
- ** Return true if the BtShared mutex is held on the btree.
- **
- ** This routine makes no determination one why or another if the
- ** database connection mutex is held.
- **
- ** This routine is used only from within assert() statements.
- */
- int sqlite3BtreeHoldsMutex(Btree *p){
- return (p->sharable==0 ||
- (p->locked && p->wantToLock && sqlite3_mutex_held(p->pBt->mutex)));
- }
- #endif
- #ifndef SQLITE_OMIT_INCRBLOB
- /*
- ** Enter and leave a mutex on a Btree given a cursor owned by that
- ** Btree. These entry points are used by incremental I/O and can be
- ** omitted if that module is not used.
- */
- void sqlite3BtreeEnterCursor(BtCursor *pCur){
- sqlite3BtreeEnter(pCur->pBtree);
- }
- void sqlite3BtreeLeaveCursor(BtCursor *pCur){
- sqlite3BtreeLeave(pCur->pBtree);
- }
- #endif /* SQLITE_OMIT_INCRBLOB */
- /*
- ** Enter the mutex on every Btree associated with a database
- ** connection. This is needed (for example) prior to parsing
- ** a statement since we will be comparing table and column names
- ** against all schemas and we do not want those schemas being
- ** reset out from under us.
- **
- ** There is a corresponding leave-all procedures.
- **
- ** Enter the mutexes in accending order by BtShared pointer address
- ** to avoid the possibility of deadlock when two threads with
- ** two or more btrees in common both try to lock all their btrees
- ** at the same instant.
- */
- void sqlite3BtreeEnterAll(sqlite3 *db){
- int i;
- Btree *p, *pLater;
- assert( sqlite3_mutex_held(db->mutex) );
- for(i=0; i<db->nDb; i++){
- p = db->aDb[i].pBt;
- if( p && p->sharable ){
- p->wantToLock++;
- if( !p->locked ){
- assert( p->wantToLock==1 );
- while( p->pPrev ) p = p->pPrev;
- while( p->locked && p->pNext ) p = p->pNext;
- for(pLater = p->pNext; pLater; pLater=pLater->pNext){
- if( pLater->locked ){
- sqlite3_mutex_leave(pLater->pBt->mutex);
- pLater->locked = 0;
- }
- }
- while( p ){
- sqlite3_mutex_enter(p->pBt->mutex);
- p->locked++;
- p = p->pNext;
- }
- }
- }
- }
- }
- void sqlite3BtreeLeaveAll(sqlite3 *db){
- int i;
- Btree *p;
- assert( sqlite3_mutex_held(db->mutex) );
- for(i=0; i<db->nDb; i++){
- p = db->aDb[i].pBt;
- if( p && p->sharable ){
- assert( p->wantToLock>0 );
- p->wantToLock--;
- if( p->wantToLock==0 ){
- assert( p->locked );
- sqlite3_mutex_leave(p->pBt->mutex);
- p->locked = 0;
- }
- }
- }
- }
- #ifndef NDEBUG
- /*
- ** Return true if the current thread holds the database connection
- ** mutex and all required BtShared mutexes.
- **
- ** This routine is used inside assert() statements only.
- */
- int sqlite3BtreeHoldsAllMutexes(sqlite3 *db){
- int i;
- if( !sqlite3_mutex_held(db->mutex) ){
- return 0;
- }
- for(i=0; i<db->nDb; i++){
- Btree *p;
- p = db->aDb[i].pBt;
- if( p && p->sharable &&
- (p->wantToLock==0 || !sqlite3_mutex_held(p->pBt->mutex)) ){
- return 0;
- }
- }
- return 1;
- }
- #endif /* NDEBUG */
- /*
- ** Potentially dd a new Btree pointer to a BtreeMutexArray.
- ** Really only add the Btree if it can possibly be shared with
- ** another database connection.
- **
- ** The Btrees are kept in sorted order by pBtree->pBt. That
- ** way when we go to enter all the mutexes, we can enter them
- ** in order without every having to backup and retry and without
- ** worrying about deadlock.
- **
- ** The number of shared btrees will always be small (usually 0 or 1)
- ** so an insertion sort is an adequate algorithm here.
- */
- void sqlite3BtreeMutexArrayInsert(BtreeMutexArray *pArray, Btree *pBtree){
- int i, j;
- BtShared *pBt;
- if( pBtree==0 || pBtree->sharable==0 ) return;
- #ifndef NDEBUG
- {
- for(i=0; i<pArray->nMutex; i++){
- assert( pArray->aBtree[i]!=pBtree );
- }
- }
- #endif
- assert( pArray->nMutex>=0 );
- assert( pArray->nMutex<sizeof(pArray->aBtree)/sizeof(pArray->aBtree[0])-1 );
- pBt = pBtree->pBt;
- for(i=0; i<pArray->nMutex; i++){
- assert( pArray->aBtree[i]!=pBtree );
- if( pArray->aBtree[i]->pBt>pBt ){
- for(j=pArray->nMutex; j>i; j--){
- pArray->aBtree[j] = pArray->aBtree[j-1];
- }
- pArray->aBtree[i] = pBtree;
- pArray->nMutex++;
- return;
- }
- }
- pArray->aBtree[pArray->nMutex++] = pBtree;
- }
- /*
- ** Enter the mutex of every btree in the array. This routine is
- ** called at the beginning of sqlite3VdbeExec(). The mutexes are
- ** exited at the end of the same function.
- */
- void sqlite3BtreeMutexArrayEnter(BtreeMutexArray *pArray){
- int i;
- for(i=0; i<pArray->nMutex; i++){
- Btree *p = pArray->aBtree[i];
- /* Some basic sanity checking */
- assert( i==0 || pArray->aBtree[i-1]->pBt<p->pBt );
- assert( !p->locked || p->wantToLock>0 );
- /* We should already hold a lock on the database connection */
- assert( sqlite3_mutex_held(p->db->mutex) );
- p->wantToLock++;
- if( !p->locked && p->sharable ){
- sqlite3_mutex_enter(p->pBt->mutex);
- p->locked = 1;
- }
- }
- }
- /*
- ** Leave the mutex of every btree in the group.
- */
- void sqlite3BtreeMutexArrayLeave(BtreeMutexArray *pArray){
- int i;
- for(i=0; i<pArray->nMutex; i++){
- Btree *p = pArray->aBtree[i];
- /* Some basic sanity checking */
- assert( i==0 || pArray->aBtree[i-1]->pBt<p->pBt );
- assert( p->locked || !p->sharable );
- assert( p->wantToLock>0 );
- /* We should already hold a lock on the database connection */
- assert( sqlite3_mutex_held(p->db->mutex) );
- p->wantToLock--;
- if( p->wantToLock==0 && p->locked ){
- sqlite3_mutex_leave(p->pBt->mutex);
- p->locked = 0;
- }
- }
- }
- #endif /* SQLITE_THREADSAFE && !SQLITE_OMIT_SHARED_CACHE */
|