crypto_scrypt_smix_sse2.c 6.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249
  1. /*-
  2. * Copyright 2009 Colin Percival
  3. * All rights reserved.
  4. *
  5. * Redistribution and use in source and binary forms, with or without
  6. * modification, are permitted provided that the following conditions
  7. * are met:
  8. * 1. Redistributions of source code must retain the above copyright
  9. * notice, this list of conditions and the following disclaimer.
  10. * 2. Redistributions in binary form must reproduce the above copyright
  11. * notice, this list of conditions and the following disclaimer in the
  12. * documentation and/or other materials provided with the distribution.
  13. *
  14. * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  15. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  16. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  17. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  18. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  19. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  20. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  21. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  22. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  23. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  24. * SUCH DAMAGE.
  25. *
  26. * This file was originally written by Colin Percival as part of the Tarsnap
  27. * online backup system.
  28. */
  29. #include "cpusupport.h"
  30. #ifdef CPUSUPPORT_X86_SSE2
  31. #include <emmintrin.h>
  32. #include <stdint.h>
  33. #include "sysendian.h"
  34. #include "crypto_scrypt_smix_sse2.h"
  35. static void blkcpy(void *, const void *, size_t);
  36. static void blkxor(void *, const void *, size_t);
  37. static void salsa20_8(__m128i *);
  38. static void blockmix_salsa8(const __m128i *, __m128i *, __m128i *, size_t);
  39. static uint64_t integerify(const void *, size_t);
  40. static void
  41. blkcpy(void * dest, const void * src, size_t len)
  42. {
  43. __m128i * D = dest;
  44. const __m128i * S = src;
  45. size_t L = len / 16;
  46. size_t i;
  47. for (i = 0; i < L; i++)
  48. D[i] = S[i];
  49. }
  50. static void
  51. blkxor(void * dest, const void * src, size_t len)
  52. {
  53. __m128i * D = dest;
  54. const __m128i * S = src;
  55. size_t L = len / 16;
  56. size_t i;
  57. for (i = 0; i < L; i++)
  58. D[i] = _mm_xor_si128(D[i], S[i]);
  59. }
  60. /**
  61. * salsa20_8(B):
  62. * Apply the salsa20/8 core to the provided block.
  63. */
  64. static void
  65. salsa20_8(__m128i B[4])
  66. {
  67. __m128i X0, X1, X2, X3;
  68. __m128i T;
  69. size_t i;
  70. X0 = B[0];
  71. X1 = B[1];
  72. X2 = B[2];
  73. X3 = B[3];
  74. for (i = 0; i < 8; i += 2) {
  75. /* Operate on "columns". */
  76. T = _mm_add_epi32(X0, X3);
  77. X1 = _mm_xor_si128(X1, _mm_slli_epi32(T, 7));
  78. X1 = _mm_xor_si128(X1, _mm_srli_epi32(T, 25));
  79. T = _mm_add_epi32(X1, X0);
  80. X2 = _mm_xor_si128(X2, _mm_slli_epi32(T, 9));
  81. X2 = _mm_xor_si128(X2, _mm_srli_epi32(T, 23));
  82. T = _mm_add_epi32(X2, X1);
  83. X3 = _mm_xor_si128(X3, _mm_slli_epi32(T, 13));
  84. X3 = _mm_xor_si128(X3, _mm_srli_epi32(T, 19));
  85. T = _mm_add_epi32(X3, X2);
  86. X0 = _mm_xor_si128(X0, _mm_slli_epi32(T, 18));
  87. X0 = _mm_xor_si128(X0, _mm_srli_epi32(T, 14));
  88. /* Rearrange data. */
  89. X1 = _mm_shuffle_epi32(X1, 0x93);
  90. X2 = _mm_shuffle_epi32(X2, 0x4E);
  91. X3 = _mm_shuffle_epi32(X3, 0x39);
  92. /* Operate on "rows". */
  93. T = _mm_add_epi32(X0, X1);
  94. X3 = _mm_xor_si128(X3, _mm_slli_epi32(T, 7));
  95. X3 = _mm_xor_si128(X3, _mm_srli_epi32(T, 25));
  96. T = _mm_add_epi32(X3, X0);
  97. X2 = _mm_xor_si128(X2, _mm_slli_epi32(T, 9));
  98. X2 = _mm_xor_si128(X2, _mm_srli_epi32(T, 23));
  99. T = _mm_add_epi32(X2, X3);
  100. X1 = _mm_xor_si128(X1, _mm_slli_epi32(T, 13));
  101. X1 = _mm_xor_si128(X1, _mm_srli_epi32(T, 19));
  102. T = _mm_add_epi32(X1, X2);
  103. X0 = _mm_xor_si128(X0, _mm_slli_epi32(T, 18));
  104. X0 = _mm_xor_si128(X0, _mm_srli_epi32(T, 14));
  105. /* Rearrange data. */
  106. X1 = _mm_shuffle_epi32(X1, 0x39);
  107. X2 = _mm_shuffle_epi32(X2, 0x4E);
  108. X3 = _mm_shuffle_epi32(X3, 0x93);
  109. }
  110. B[0] = _mm_add_epi32(B[0], X0);
  111. B[1] = _mm_add_epi32(B[1], X1);
  112. B[2] = _mm_add_epi32(B[2], X2);
  113. B[3] = _mm_add_epi32(B[3], X3);
  114. }
  115. /**
  116. * blockmix_salsa8(Bin, Bout, X, r):
  117. * Compute Bout = BlockMix_{salsa20/8, r}(Bin). The input Bin must be 128r
  118. * bytes in length; the output Bout must also be the same size. The
  119. * temporary space X must be 64 bytes.
  120. */
  121. static void
  122. blockmix_salsa8(const __m128i * Bin, __m128i * Bout, __m128i * X, size_t r)
  123. {
  124. size_t i;
  125. /* 1: X <-- B_{2r - 1} */
  126. blkcpy(X, &Bin[8 * r - 4], 64);
  127. /* 2: for i = 0 to 2r - 1 do */
  128. for (i = 0; i < r; i++) {
  129. /* 3: X <-- H(X \xor B_i) */
  130. blkxor(X, &Bin[i * 8], 64);
  131. salsa20_8(X);
  132. /* 4: Y_i <-- X */
  133. /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
  134. blkcpy(&Bout[i * 4], X, 64);
  135. /* 3: X <-- H(X \xor B_i) */
  136. blkxor(X, &Bin[i * 8 + 4], 64);
  137. salsa20_8(X);
  138. /* 4: Y_i <-- X */
  139. /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
  140. blkcpy(&Bout[(r + i) * 4], X, 64);
  141. }
  142. }
  143. /**
  144. * integerify(B, r):
  145. * Return the result of parsing B_{2r-1} as a little-endian integer.
  146. * Note that B's layout is permuted compared to the generic implementation.
  147. */
  148. static uint64_t
  149. integerify(const void * B, size_t r)
  150. {
  151. const uint32_t * X = (const void *)((uintptr_t)(B) + (2 * r - 1) * 64);
  152. return (((uint64_t)(X[13]) << 32) + X[0]);
  153. }
  154. /**
  155. * crypto_scrypt_smix_sse2(B, r, N, V, XY):
  156. * Compute B = SMix_r(B, N). The input B must be 128r bytes in length;
  157. * the temporary storage V must be 128rN bytes in length; the temporary
  158. * storage XY must be 256r + 64 bytes in length. The value N must be a
  159. * power of 2 greater than 1. The arrays B, V, and XY must be aligned to a
  160. * multiple of 64 bytes.
  161. *
  162. * Use SSE2 instructions.
  163. */
  164. void
  165. crypto_scrypt_smix_sse2(uint8_t * B, size_t r, uint64_t N, void * V, void * XY)
  166. {
  167. __m128i * X = XY;
  168. __m128i * Y = (void *)((uintptr_t)(XY) + 128 * r);
  169. __m128i * Z = (void *)((uintptr_t)(XY) + 256 * r);
  170. uint32_t * X32 = (void *)X;
  171. uint64_t i, j;
  172. size_t k;
  173. /* 1: X <-- B */
  174. for (k = 0; k < 2 * r; k++) {
  175. for (i = 0; i < 16; i++) {
  176. X32[k * 16 + i] =
  177. le32dec(&B[(k * 16 + (i * 5 % 16)) * 4]);
  178. }
  179. }
  180. /* 2: for i = 0 to N - 1 do */
  181. for (i = 0; i < N; i += 2) {
  182. /* 3: V_i <-- X */
  183. blkcpy((void *)((uintptr_t)(V) + i * 128 * r), X, 128 * r);
  184. /* 4: X <-- H(X) */
  185. blockmix_salsa8(X, Y, Z, r);
  186. /* 3: V_i <-- X */
  187. blkcpy((void *)((uintptr_t)(V) + (i + 1) * 128 * r),
  188. Y, 128 * r);
  189. /* 4: X <-- H(X) */
  190. blockmix_salsa8(Y, X, Z, r);
  191. }
  192. /* 6: for i = 0 to N - 1 do */
  193. for (i = 0; i < N; i += 2) {
  194. /* 7: j <-- Integerify(X) mod N */
  195. j = integerify(X, r) & (N - 1);
  196. /* 8: X <-- H(X \xor V_j) */
  197. blkxor(X, (void *)((uintptr_t)(V) + j * 128 * r), 128 * r);
  198. blockmix_salsa8(X, Y, Z, r);
  199. /* 7: j <-- Integerify(X) mod N */
  200. j = integerify(Y, r) & (N - 1);
  201. /* 8: X <-- H(X \xor V_j) */
  202. blkxor(Y, (void *)((uintptr_t)(V) + j * 128 * r), 128 * r);
  203. blockmix_salsa8(Y, X, Z, r);
  204. }
  205. /* 10: B' <-- X */
  206. for (k = 0; k < 2 * r; k++) {
  207. for (i = 0; i < 16; i++) {
  208. le32enc(&B[(k * 16 + (i * 5 % 16)) * 4],
  209. X32[k * 16 + i]);
  210. }
  211. }
  212. }
  213. #endif /* CPUSUPPORT_X86_SSE2 */