2sha256.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335
  1. /* SHA-256 and SHA-512 implementation based on code by Oliver Gay
  2. * <olivier.gay@a3.epfl.ch> under a BSD-style license. See below.
  3. */
  4. /*
  5. * FIPS 180-2 SHA-224/256/384/512 implementation
  6. * Last update: 02/02/2007
  7. * Issue date: 04/30/2005
  8. *
  9. * Copyright (C) 2005, 2007 Olivier Gay <olivier.gay@a3.epfl.ch>
  10. * All rights reserved.
  11. *
  12. * Redistribution and use in source and binary forms, with or without
  13. * modification, are permitted provided that the following conditions
  14. * are met:
  15. * 1. Redistributions of source code must retain the above copyright
  16. * notice, this list of conditions and the following disclaimer.
  17. * 2. Redistributions in binary form must reproduce the above copyright
  18. * notice, this list of conditions and the following disclaimer in the
  19. * documentation and/or other materials provided with the distribution.
  20. * 3. Neither the name of the project nor the names of its contributors
  21. * may be used to endorse or promote products derived from this software
  22. * without specific prior written permission.
  23. *
  24. * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
  25. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  26. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  27. * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
  28. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  29. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  30. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  31. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  32. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  33. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  34. * SUCH DAMAGE.
  35. */
  36. #include "2sysincludes.h"
  37. #include "2common.h"
  38. #include "2sha.h"
  39. #define SHFR(x, n) (x >> n)
  40. #define ROTR(x, n) ((x >> n) | (x << ((sizeof(x) << 3) - n)))
  41. #define ROTL(x, n) ((x << n) | (x >> ((sizeof(x) << 3) - n)))
  42. #define CH(x, y, z) ((x & y) ^ (~x & z))
  43. #define MAJ(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
  44. #define SHA256_F1(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
  45. #define SHA256_F2(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
  46. #define SHA256_F3(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHFR(x, 3))
  47. #define SHA256_F4(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHFR(x, 10))
  48. #define UNPACK32(x, str) \
  49. { \
  50. *((str) + 3) = (uint8_t) ((x) ); \
  51. *((str) + 2) = (uint8_t) ((x) >> 8); \
  52. *((str) + 1) = (uint8_t) ((x) >> 16); \
  53. *((str) + 0) = (uint8_t) ((x) >> 24); \
  54. }
  55. #define PACK32(str, x) \
  56. { \
  57. *(x) = ((uint32_t) *((str) + 3) ) \
  58. | ((uint32_t) *((str) + 2) << 8) \
  59. | ((uint32_t) *((str) + 1) << 16) \
  60. | ((uint32_t) *((str) + 0) << 24); \
  61. }
  62. /* Macros used for loops unrolling */
  63. #define SHA256_SCR(i) \
  64. { \
  65. w[i] = SHA256_F4(w[i - 2]) + w[i - 7] \
  66. + SHA256_F3(w[i - 15]) + w[i - 16]; \
  67. }
  68. #define SHA256_EXP(a, b, c, d, e, f, g, h, j) \
  69. { \
  70. t1 = wv[h] + SHA256_F2(wv[e]) + CH(wv[e], wv[f], wv[g]) \
  71. + sha256_k[j] + w[j]; \
  72. t2 = SHA256_F1(wv[a]) + MAJ(wv[a], wv[b], wv[c]); \
  73. wv[d] += t1; \
  74. wv[h] = t1 + t2; \
  75. }
  76. static const uint32_t sha256_h0[8] = {
  77. 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
  78. 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19
  79. };
  80. static const uint32_t sha256_k[64] = {
  81. 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
  82. 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
  83. 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
  84. 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
  85. 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
  86. 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
  87. 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
  88. 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
  89. 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
  90. 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
  91. 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
  92. 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
  93. 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
  94. 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
  95. 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
  96. 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
  97. };
  98. /* SHA-256 implementation */
  99. void vb2_sha256_init(struct vb2_sha256_context *ctx)
  100. {
  101. #ifndef UNROLL_LOOPS
  102. int i;
  103. for (i = 0; i < 8; i++) {
  104. ctx->h[i] = sha256_h0[i];
  105. }
  106. #else
  107. ctx->h[0] = sha256_h0[0]; ctx->h[1] = sha256_h0[1];
  108. ctx->h[2] = sha256_h0[2]; ctx->h[3] = sha256_h0[3];
  109. ctx->h[4] = sha256_h0[4]; ctx->h[5] = sha256_h0[5];
  110. ctx->h[6] = sha256_h0[6]; ctx->h[7] = sha256_h0[7];
  111. #endif /* !UNROLL_LOOPS */
  112. ctx->size = 0;
  113. ctx->total_size = 0;
  114. }
  115. static void vb2_sha256_transform(struct vb2_sha256_context *ctx,
  116. const uint8_t *message,
  117. unsigned int block_nb)
  118. {
  119. /* Note that these arrays use 72*4=288 bytes of stack */
  120. uint32_t w[64];
  121. uint32_t wv[8];
  122. uint32_t t1, t2;
  123. const unsigned char *sub_block;
  124. int i;
  125. #ifndef UNROLL_LOOPS
  126. int j;
  127. #endif
  128. for (i = 0; i < (int) block_nb; i++) {
  129. sub_block = message + (i << 6);
  130. #ifndef UNROLL_LOOPS
  131. for (j = 0; j < 16; j++) {
  132. PACK32(&sub_block[j << 2], &w[j]);
  133. }
  134. for (j = 16; j < 64; j++) {
  135. SHA256_SCR(j);
  136. }
  137. for (j = 0; j < 8; j++) {
  138. wv[j] = ctx->h[j];
  139. }
  140. for (j = 0; j < 64; j++) {
  141. t1 = wv[7] + SHA256_F2(wv[4]) + CH(wv[4], wv[5], wv[6])
  142. + sha256_k[j] + w[j];
  143. t2 = SHA256_F1(wv[0]) + MAJ(wv[0], wv[1], wv[2]);
  144. wv[7] = wv[6];
  145. wv[6] = wv[5];
  146. wv[5] = wv[4];
  147. wv[4] = wv[3] + t1;
  148. wv[3] = wv[2];
  149. wv[2] = wv[1];
  150. wv[1] = wv[0];
  151. wv[0] = t1 + t2;
  152. }
  153. for (j = 0; j < 8; j++) {
  154. ctx->h[j] += wv[j];
  155. }
  156. #else
  157. PACK32(&sub_block[ 0], &w[ 0]); PACK32(&sub_block[ 4], &w[ 1]);
  158. PACK32(&sub_block[ 8], &w[ 2]); PACK32(&sub_block[12], &w[ 3]);
  159. PACK32(&sub_block[16], &w[ 4]); PACK32(&sub_block[20], &w[ 5]);
  160. PACK32(&sub_block[24], &w[ 6]); PACK32(&sub_block[28], &w[ 7]);
  161. PACK32(&sub_block[32], &w[ 8]); PACK32(&sub_block[36], &w[ 9]);
  162. PACK32(&sub_block[40], &w[10]); PACK32(&sub_block[44], &w[11]);
  163. PACK32(&sub_block[48], &w[12]); PACK32(&sub_block[52], &w[13]);
  164. PACK32(&sub_block[56], &w[14]); PACK32(&sub_block[60], &w[15]);
  165. SHA256_SCR(16); SHA256_SCR(17); SHA256_SCR(18); SHA256_SCR(19);
  166. SHA256_SCR(20); SHA256_SCR(21); SHA256_SCR(22); SHA256_SCR(23);
  167. SHA256_SCR(24); SHA256_SCR(25); SHA256_SCR(26); SHA256_SCR(27);
  168. SHA256_SCR(28); SHA256_SCR(29); SHA256_SCR(30); SHA256_SCR(31);
  169. SHA256_SCR(32); SHA256_SCR(33); SHA256_SCR(34); SHA256_SCR(35);
  170. SHA256_SCR(36); SHA256_SCR(37); SHA256_SCR(38); SHA256_SCR(39);
  171. SHA256_SCR(40); SHA256_SCR(41); SHA256_SCR(42); SHA256_SCR(43);
  172. SHA256_SCR(44); SHA256_SCR(45); SHA256_SCR(46); SHA256_SCR(47);
  173. SHA256_SCR(48); SHA256_SCR(49); SHA256_SCR(50); SHA256_SCR(51);
  174. SHA256_SCR(52); SHA256_SCR(53); SHA256_SCR(54); SHA256_SCR(55);
  175. SHA256_SCR(56); SHA256_SCR(57); SHA256_SCR(58); SHA256_SCR(59);
  176. SHA256_SCR(60); SHA256_SCR(61); SHA256_SCR(62); SHA256_SCR(63);
  177. wv[0] = ctx->h[0]; wv[1] = ctx->h[1];
  178. wv[2] = ctx->h[2]; wv[3] = ctx->h[3];
  179. wv[4] = ctx->h[4]; wv[5] = ctx->h[5];
  180. wv[6] = ctx->h[6]; wv[7] = ctx->h[7];
  181. SHA256_EXP(0,1,2,3,4,5,6,7, 0); SHA256_EXP(7,0,1,2,3,4,5,6, 1);
  182. SHA256_EXP(6,7,0,1,2,3,4,5, 2); SHA256_EXP(5,6,7,0,1,2,3,4, 3);
  183. SHA256_EXP(4,5,6,7,0,1,2,3, 4); SHA256_EXP(3,4,5,6,7,0,1,2, 5);
  184. SHA256_EXP(2,3,4,5,6,7,0,1, 6); SHA256_EXP(1,2,3,4,5,6,7,0, 7);
  185. SHA256_EXP(0,1,2,3,4,5,6,7, 8); SHA256_EXP(7,0,1,2,3,4,5,6, 9);
  186. SHA256_EXP(6,7,0,1,2,3,4,5,10); SHA256_EXP(5,6,7,0,1,2,3,4,11);
  187. SHA256_EXP(4,5,6,7,0,1,2,3,12); SHA256_EXP(3,4,5,6,7,0,1,2,13);
  188. SHA256_EXP(2,3,4,5,6,7,0,1,14); SHA256_EXP(1,2,3,4,5,6,7,0,15);
  189. SHA256_EXP(0,1,2,3,4,5,6,7,16); SHA256_EXP(7,0,1,2,3,4,5,6,17);
  190. SHA256_EXP(6,7,0,1,2,3,4,5,18); SHA256_EXP(5,6,7,0,1,2,3,4,19);
  191. SHA256_EXP(4,5,6,7,0,1,2,3,20); SHA256_EXP(3,4,5,6,7,0,1,2,21);
  192. SHA256_EXP(2,3,4,5,6,7,0,1,22); SHA256_EXP(1,2,3,4,5,6,7,0,23);
  193. SHA256_EXP(0,1,2,3,4,5,6,7,24); SHA256_EXP(7,0,1,2,3,4,5,6,25);
  194. SHA256_EXP(6,7,0,1,2,3,4,5,26); SHA256_EXP(5,6,7,0,1,2,3,4,27);
  195. SHA256_EXP(4,5,6,7,0,1,2,3,28); SHA256_EXP(3,4,5,6,7,0,1,2,29);
  196. SHA256_EXP(2,3,4,5,6,7,0,1,30); SHA256_EXP(1,2,3,4,5,6,7,0,31);
  197. SHA256_EXP(0,1,2,3,4,5,6,7,32); SHA256_EXP(7,0,1,2,3,4,5,6,33);
  198. SHA256_EXP(6,7,0,1,2,3,4,5,34); SHA256_EXP(5,6,7,0,1,2,3,4,35);
  199. SHA256_EXP(4,5,6,7,0,1,2,3,36); SHA256_EXP(3,4,5,6,7,0,1,2,37);
  200. SHA256_EXP(2,3,4,5,6,7,0,1,38); SHA256_EXP(1,2,3,4,5,6,7,0,39);
  201. SHA256_EXP(0,1,2,3,4,5,6,7,40); SHA256_EXP(7,0,1,2,3,4,5,6,41);
  202. SHA256_EXP(6,7,0,1,2,3,4,5,42); SHA256_EXP(5,6,7,0,1,2,3,4,43);
  203. SHA256_EXP(4,5,6,7,0,1,2,3,44); SHA256_EXP(3,4,5,6,7,0,1,2,45);
  204. SHA256_EXP(2,3,4,5,6,7,0,1,46); SHA256_EXP(1,2,3,4,5,6,7,0,47);
  205. SHA256_EXP(0,1,2,3,4,5,6,7,48); SHA256_EXP(7,0,1,2,3,4,5,6,49);
  206. SHA256_EXP(6,7,0,1,2,3,4,5,50); SHA256_EXP(5,6,7,0,1,2,3,4,51);
  207. SHA256_EXP(4,5,6,7,0,1,2,3,52); SHA256_EXP(3,4,5,6,7,0,1,2,53);
  208. SHA256_EXP(2,3,4,5,6,7,0,1,54); SHA256_EXP(1,2,3,4,5,6,7,0,55);
  209. SHA256_EXP(0,1,2,3,4,5,6,7,56); SHA256_EXP(7,0,1,2,3,4,5,6,57);
  210. SHA256_EXP(6,7,0,1,2,3,4,5,58); SHA256_EXP(5,6,7,0,1,2,3,4,59);
  211. SHA256_EXP(4,5,6,7,0,1,2,3,60); SHA256_EXP(3,4,5,6,7,0,1,2,61);
  212. SHA256_EXP(2,3,4,5,6,7,0,1,62); SHA256_EXP(1,2,3,4,5,6,7,0,63);
  213. ctx->h[0] += wv[0]; ctx->h[1] += wv[1];
  214. ctx->h[2] += wv[2]; ctx->h[3] += wv[3];
  215. ctx->h[4] += wv[4]; ctx->h[5] += wv[5];
  216. ctx->h[6] += wv[6]; ctx->h[7] += wv[7];
  217. #endif /* !UNROLL_LOOPS */
  218. }
  219. }
  220. void vb2_sha256_update(struct vb2_sha256_context *ctx,
  221. const uint8_t *data,
  222. uint32_t size)
  223. {
  224. unsigned int block_nb;
  225. unsigned int new_size, rem_size, tmp_size;
  226. const uint8_t *shifted_data;
  227. tmp_size = VB2_SHA256_BLOCK_SIZE - ctx->size;
  228. rem_size = size < tmp_size ? size : tmp_size;
  229. memcpy(&ctx->block[ctx->size], data, rem_size);
  230. if (ctx->size + size < VB2_SHA256_BLOCK_SIZE) {
  231. ctx->size += size;
  232. return;
  233. }
  234. new_size = size - rem_size;
  235. block_nb = new_size / VB2_SHA256_BLOCK_SIZE;
  236. shifted_data = data + rem_size;
  237. vb2_sha256_transform(ctx, ctx->block, 1);
  238. vb2_sha256_transform(ctx, shifted_data, block_nb);
  239. rem_size = new_size % VB2_SHA256_BLOCK_SIZE;
  240. memcpy(ctx->block, &shifted_data[block_nb << 6],
  241. rem_size);
  242. ctx->size = rem_size;
  243. ctx->total_size += (block_nb + 1) << 6;
  244. }
  245. void vb2_sha256_finalize(struct vb2_sha256_context *ctx, uint8_t *digest)
  246. {
  247. unsigned int block_nb;
  248. unsigned int pm_size;
  249. unsigned int size_b;
  250. #ifndef UNROLL_LOOPS
  251. int i;
  252. #endif
  253. block_nb = (1 + ((VB2_SHA256_BLOCK_SIZE - 9)
  254. < (ctx->size % VB2_SHA256_BLOCK_SIZE)));
  255. size_b = (ctx->total_size + ctx->size) << 3;
  256. pm_size = block_nb << 6;
  257. memset(ctx->block + ctx->size, 0, pm_size - ctx->size);
  258. ctx->block[ctx->size] = 0x80;
  259. UNPACK32(size_b, ctx->block + pm_size - 4);
  260. vb2_sha256_transform(ctx, ctx->block, block_nb);
  261. #ifndef UNROLL_LOOPS
  262. for (i = 0 ; i < 8; i++) {
  263. UNPACK32(ctx->h[i], &digest[i << 2]);
  264. }
  265. #else
  266. UNPACK32(ctx->h[0], &digest[ 0]);
  267. UNPACK32(ctx->h[1], &digest[ 4]);
  268. UNPACK32(ctx->h[2], &digest[ 8]);
  269. UNPACK32(ctx->h[3], &digest[12]);
  270. UNPACK32(ctx->h[4], &digest[16]);
  271. UNPACK32(ctx->h[5], &digest[20]);
  272. UNPACK32(ctx->h[6], &digest[24]);
  273. UNPACK32(ctx->h[7], &digest[28]);
  274. #endif /* !UNROLL_LOOPS */
  275. }
  276. void vb2_sha256_extend(const uint8_t *from, const uint8_t *by, uint8_t *to)
  277. {
  278. struct vb2_sha256_context dc;
  279. int i;
  280. for (i = 0; i < 8; i++) {
  281. PACK32(from, &dc.h[i]);
  282. from += 4;
  283. }
  284. vb2_sha256_transform(&dc, by, 1);
  285. for (i = 0; i < 8; i++) {
  286. UNPACK32(dc.h[i], to);
  287. to += 4;
  288. }
  289. }