123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204 |
- ;;; flonums.scm --- The R6RS flonums arithmetic library
- ;; Copyright (C) 2010, 2011, 2013 Free Software Foundation, Inc.
- ;;
- ;; This library is free software; you can redistribute it and/or
- ;; modify it under the terms of the GNU Lesser General Public
- ;; License as published by the Free Software Foundation; either
- ;; version 3 of the License, or (at your option) any later version.
- ;;
- ;; This library is distributed in the hope that it will be useful,
- ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
- ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- ;; Lesser General Public License for more details.
- ;;
- ;; You should have received a copy of the GNU Lesser General Public
- ;; License along with this library; if not, write to the Free Software
- ;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- (library (rnrs arithmetic flonums (6))
- (export flonum?
- real->flonum
- fl=? fl<? fl<=? fl>? fl>=?
- flinteger? flzero? flpositive? flnegative? flodd? fleven? flfinite?
- flinfinite? flnan?
- flmax flmin
- fl+ fl* fl- fl/
- flabs
- fldiv-and-mod
- fldiv
- flmod
- fldiv0-and-mod0
- fldiv0
- flmod0
- flnumerator
- fldenominator
- flfloor flceiling fltruncate flround
- flexp fllog flsin flcos fltan flacos flasin flatan
- flsqrt flexpt
- &no-infinities
- make-no-infinities-violation
- no-infinities-violation?
-
- &no-nans
- make-no-nans-violation
- no-nans-violation?
- fixnum->flonum)
- (import (ice-9 optargs)
- (only (guile) inf?)
- (rnrs arithmetic fixnums (6))
- (rnrs base (6))
- (rnrs control (6))
- (rnrs conditions (6))
- (rnrs exceptions (6))
- (rnrs lists (6))
- (rnrs r5rs (6)))
- (define (flonum? obj) (and (real? obj) (inexact? obj)))
- (define (assert-flonum . args)
- (or (for-all flonum? args) (raise (make-assertion-violation))))
- (define (assert-iflonum . args)
- (or (for-all (lambda (i) (and (flonum? i) (integer? i))) args)
- (raise (make-assertion-violation))))
- (define (ensure-flonum z)
- (cond ((real? z) z)
- ((zero? (imag-part z)) (real-part z))
- (else +nan.0)))
- (define (real->flonum x)
- (or (real? x) (raise (make-assertion-violation)))
- (exact->inexact x))
- (define (fl=? . args) (apply assert-flonum args) (apply = args))
- (define (fl<? . args) (apply assert-flonum args) (apply < args))
- (define (fl<=? . args) (apply assert-flonum args) (apply <= args))
- (define (fl>? . args) (apply assert-flonum args) (apply > args))
- (define (fl>=? . args) (apply assert-flonum args) (apply >= args))
- (define (flinteger? fl) (assert-flonum fl) (integer? fl))
- (define (flzero? fl) (assert-flonum fl) (zero? fl))
- (define (flpositive? fl) (assert-flonum fl) (positive? fl))
- (define (flnegative? fl) (assert-flonum fl) (negative? fl))
- (define (flodd? ifl) (assert-iflonum ifl) (odd? ifl))
- (define (fleven? ifl) (assert-iflonum ifl) (even? ifl))
- (define (flfinite? fl) (assert-flonum fl) (not (or (inf? fl) (nan? fl))))
- (define (flinfinite? fl) (assert-flonum fl) (inf? fl))
- (define (flnan? fl) (assert-flonum fl) (nan? fl))
- (define (flmax fl1 . args)
- (let ((flargs (cons fl1 args)))
- (apply assert-flonum flargs)
- (apply max flargs)))
- (define (flmin fl1 . args)
- (let ((flargs (cons fl1 args)))
- (apply assert-flonum flargs)
- (apply min flargs)))
- (define (fl+ . args)
- (apply assert-flonum args)
- (if (null? args) 0.0 (apply + args)))
- (define (fl* . args)
- (apply assert-flonum args)
- (if (null? args) 1.0 (apply * args)))
- (define (fl- fl1 . args)
- (let ((flargs (cons fl1 args)))
- (apply assert-flonum flargs)
- (apply - flargs)))
- (define (fl/ fl1 . args)
- (let ((flargs (cons fl1 args)))
- (apply assert-flonum flargs)
- (apply / flargs)))
- (define (flabs fl) (assert-flonum fl) (abs fl))
- (define (fldiv-and-mod fl1 fl2)
- (assert-iflonum fl1 fl2)
- (div-and-mod fl1 fl2))
- (define (fldiv fl1 fl2)
- (assert-iflonum fl1 fl2)
- (div fl1 fl2))
- (define (flmod fl1 fl2)
- (assert-iflonum fl1 fl2)
- (mod fl1 fl2))
- (define (fldiv0-and-mod0 fl1 fl2)
- (assert-iflonum fl1 fl2)
- (div0-and-mod0 fl1 fl2))
- (define (fldiv0 fl1 fl2)
- (assert-iflonum fl1 fl2)
- (div0 fl1 fl2))
- (define (flmod0 fl1 fl2)
- (assert-iflonum fl1 fl2)
- (mod0 fl1 fl2))
- (define (flnumerator fl) (assert-flonum fl) (numerator fl))
- (define (fldenominator fl) (assert-flonum fl) (denominator fl))
-
- (define (flfloor fl) (assert-flonum fl) (floor fl))
- (define (flceiling fl) (assert-flonum fl) (ceiling fl))
- (define (fltruncate fl) (assert-flonum fl) (truncate fl))
- (define (flround fl) (assert-flonum fl) (round fl))
- (define (flexp fl) (assert-flonum fl) (exp fl))
- (define fllog
- (case-lambda
- ((fl)
- (assert-flonum fl)
- ;; add 0.0 to fl, to change -0.0 to 0.0,
- ;; so that (fllog -0.0) will be -inf.0, not -inf.0+pi*i.
- (ensure-flonum (log (+ fl 0.0))))
- ((fl fl2)
- (assert-flonum fl fl2)
- (ensure-flonum (/ (log (+ fl 0.0))
- (log (+ fl2 0.0)))))))
- (define (flsin fl) (assert-flonum fl) (sin fl))
- (define (flcos fl) (assert-flonum fl) (cos fl))
- (define (fltan fl) (assert-flonum fl) (tan fl))
- (define (flasin fl) (assert-flonum fl) (ensure-flonum (asin fl)))
- (define (flacos fl) (assert-flonum fl) (ensure-flonum (acos fl)))
- (define flatan
- (case-lambda
- ((fl) (assert-flonum fl) (atan fl))
- ((fl fl2) (assert-flonum fl fl2) (atan fl fl2))))
- (define (flsqrt fl) (assert-flonum fl) (ensure-flonum (sqrt fl)))
- (define (flexpt fl1 fl2) (assert-flonum fl1 fl2) (ensure-flonum (expt fl1 fl2)))
- (define-condition-type &no-infinities
- &implementation-restriction
- make-no-infinities-violation
- no-infinities-violation?)
- (define-condition-type &no-nans
- &implementation-restriction
- make-no-nans-violation
- no-nans-violation?)
- (define (fixnum->flonum fx)
- (or (fixnum? fx) (raise (make-assertion-violation)))
- (exact->inexact fx))
- )
|