123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795 |
- /* Copyright (C) 1999, 2000, 2001, 2003, 2005, 2006, 2009, 2010,
- * 2012, 2013, 2014 Free Software Foundation, Inc.
- *
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public License
- * as published by the Free Software Foundation; either version 3 of
- * the License, or (at your option) any later version.
- *
- * This library is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with this library; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
- * 02110-1301 USA
- */
- /* Original Author: Mikael Djurfeldt <djurfeldt@nada.kth.se> */
- #ifdef HAVE_CONFIG_H
- # include <config.h>
- #endif
- #include "libguile/_scm.h"
- #include <gmp.h>
- #include <stdio.h>
- #include <math.h>
- #include <string.h>
- #include <sys/types.h>
- #include <unistd.h>
- #include "libguile/smob.h"
- #include "libguile/numbers.h"
- #include "libguile/feature.h"
- #include "libguile/strings.h"
- #include "libguile/arrays.h"
- #include "libguile/srfi-4.h"
- #include "libguile/vectors.h"
- #include "libguile/generalized-vectors.h"
- #include "libguile/validate.h"
- #include "libguile/random.h"
- /*
- * A plugin interface for RNGs
- *
- * Using this interface, it is possible for the application to tell
- * libguile to use a different RNG. This is desirable if it is
- * necessary to use the same RNG everywhere in the application in
- * order to prevent interference, if the application uses RNG
- * hardware, or if the application has special demands on the RNG.
- *
- * Look in random.h and how the default generator is "plugged in" in
- * scm_init_random().
- */
- scm_t_rng scm_the_rng;
- /*
- * The prepackaged RNG
- *
- * This is the MWC (Multiply With Carry) random number generator
- * described by George Marsaglia at the Department of Statistics and
- * Supercomputer Computations Research Institute, The Florida State
- * University (http://stat.fsu.edu/~geo).
- *
- * It uses 64 bits, has a period of 4578426017172946943 (4.6e18), and
- * passes all tests in the DIEHARD test suite
- * (http://stat.fsu.edu/~geo/diehard.html)
- */
- typedef struct scm_t_i_rstate {
- scm_t_rstate rstate;
- scm_t_uint32 w;
- scm_t_uint32 c;
- } scm_t_i_rstate;
- #define A 2131995753UL
- #ifndef M_PI
- #define M_PI 3.14159265359
- #endif
- static scm_t_uint32
- scm_i_uniform32 (scm_t_rstate *state)
- {
- scm_t_i_rstate *istate = (scm_t_i_rstate*) state;
- scm_t_uint64 x = (scm_t_uint64) A * istate->w + istate->c;
- scm_t_uint32 w = x & 0xffffffffUL;
- istate->w = w;
- istate->c = x >> 32L;
- return w;
- }
- static void
- scm_i_init_rstate (scm_t_rstate *state, const char *seed, int n)
- {
- scm_t_i_rstate *istate = (scm_t_i_rstate*) state;
- scm_t_uint32 w = 0L;
- scm_t_uint32 c = 0L;
- int i, m;
- for (i = 0; i < n; ++i)
- {
- m = i % 8;
- if (m < 4)
- w += seed[i] << (8 * m);
- else
- c += seed[i] << (8 * (m - 4));
- }
- if ((w == 0 && c == 0) || (w == -1 && c == A - 1))
- ++c;
- istate->w = w;
- istate->c = c;
- }
- static scm_t_rstate *
- scm_i_copy_rstate (scm_t_rstate *state)
- {
- scm_t_rstate *new_state;
- new_state = scm_gc_malloc_pointerless (state->rng->rstate_size,
- "random-state");
- return memcpy (new_state, state, state->rng->rstate_size);
- }
- SCM_SYMBOL(scm_i_rstate_tag, "multiply-with-carry");
- static void
- scm_i_rstate_from_datum (scm_t_rstate *state, SCM value)
- #define FUNC_NAME "scm_i_rstate_from_datum"
- {
- scm_t_i_rstate *istate = (scm_t_i_rstate*) state;
- scm_t_uint32 w, c;
- long length;
-
- SCM_VALIDATE_LIST_COPYLEN (SCM_ARG1, value, length);
- SCM_ASSERT (length == 3, value, SCM_ARG1, FUNC_NAME);
- SCM_ASSERT (scm_is_eq (SCM_CAR (value), scm_i_rstate_tag),
- value, SCM_ARG1, FUNC_NAME);
- SCM_VALIDATE_UINT_COPY (SCM_ARG1, SCM_CADR (value), w);
- SCM_VALIDATE_UINT_COPY (SCM_ARG1, SCM_CADDR (value), c);
- istate->w = w;
- istate->c = c;
- }
- #undef FUNC_NAME
- static SCM
- scm_i_rstate_to_datum (scm_t_rstate *state)
- {
- scm_t_i_rstate *istate = (scm_t_i_rstate*) state;
- return scm_list_3 (scm_i_rstate_tag,
- scm_from_uint32 (istate->w),
- scm_from_uint32 (istate->c));
- }
- /*
- * Random number library functions
- */
- scm_t_rstate *
- scm_c_make_rstate (const char *seed, int n)
- {
- scm_t_rstate *state;
- state = scm_gc_malloc_pointerless (scm_the_rng.rstate_size,
- "random-state");
- state->rng = &scm_the_rng;
- state->normal_next = 0.0;
- state->rng->init_rstate (state, seed, n);
- return state;
- }
- scm_t_rstate *
- scm_c_rstate_from_datum (SCM datum)
- {
- scm_t_rstate *state;
- state = scm_gc_malloc_pointerless (scm_the_rng.rstate_size,
- "random-state");
- state->rng = &scm_the_rng;
- state->normal_next = 0.0;
- state->rng->from_datum (state, datum);
- return state;
- }
- scm_t_rstate *
- scm_c_default_rstate ()
- #define FUNC_NAME "scm_c_default_rstate"
- {
- SCM state = SCM_VARIABLE_REF (scm_var_random_state);
- if (!SCM_RSTATEP (state))
- SCM_MISC_ERROR ("*random-state* contains bogus random state", SCM_EOL);
- return SCM_RSTATE (state);
- }
- #undef FUNC_NAME
- double
- scm_c_uniform01 (scm_t_rstate *state)
- {
- double x = (double) state->rng->random_bits (state) / (double) 0xffffffffUL;
- return ((x + (double) state->rng->random_bits (state))
- / (double) 0xffffffffUL);
- }
- double
- scm_c_normal01 (scm_t_rstate *state)
- {
- if (state->normal_next != 0.0)
- {
- double ret = state->normal_next;
- state->normal_next = 0.0;
- return ret;
- }
- else
- {
- double r, a, n;
-
- r = sqrt (-2.0 * log (scm_c_uniform01 (state)));
- a = 2.0 * M_PI * scm_c_uniform01 (state);
-
- n = r * sin (a);
- state->normal_next = r * cos (a);
-
- return n;
- }
- }
- double
- scm_c_exp1 (scm_t_rstate *state)
- {
- return - log (scm_c_uniform01 (state));
- }
- unsigned char scm_masktab[256];
- static inline scm_t_uint32
- scm_i_mask32 (scm_t_uint32 m)
- {
- return (m < 0x100
- ? scm_masktab[m]
- : (m < 0x10000
- ? scm_masktab[m >> 8] << 8 | 0xff
- : (m < 0x1000000
- ? scm_masktab[m >> 16] << 16 | 0xffff
- : ((scm_t_uint32) scm_masktab[m >> 24]) << 24 | 0xffffff)));
- }
- scm_t_uint32
- scm_c_random (scm_t_rstate *state, scm_t_uint32 m)
- {
- scm_t_uint32 r, mask = scm_i_mask32 (m);
- while ((r = state->rng->random_bits (state) & mask) >= m);
- return r;
- }
- scm_t_uint64
- scm_c_random64 (scm_t_rstate *state, scm_t_uint64 m)
- {
- scm_t_uint64 r;
- scm_t_uint32 mask;
- if (m <= SCM_T_UINT32_MAX)
- return scm_c_random (state, (scm_t_uint32) m);
-
- mask = scm_i_mask32 (m >> 32);
- while ((r = ((scm_t_uint64) (state->rng->random_bits (state) & mask) << 32)
- | state->rng->random_bits (state)) >= m)
- ;
- return r;
- }
- /*
- SCM scm_c_random_bignum (scm_t_rstate *state, SCM m)
- Takes a random state (source of random bits) and a bignum m.
- Returns a bignum b, 0 <= b < m.
- It does this by allocating a bignum b with as many base 65536 digits
- as m, filling b with random bits (in 32 bit chunks) up to the most
- significant 1 in m, and, finally checking if the resultant b is too
- large (>= m). If too large, we simply repeat the process again. (It
- is important to throw away all generated random bits if b >= m,
- otherwise we'll end up with a distorted distribution.)
- */
- SCM
- scm_c_random_bignum (scm_t_rstate *state, SCM m)
- {
- SCM result = scm_i_mkbig ();
- const size_t m_bits = mpz_sizeinbase (SCM_I_BIG_MPZ (m), 2);
- /* how many bits would only partially fill the last scm_t_uint32? */
- const size_t end_bits = m_bits % (sizeof (scm_t_uint32) * SCM_CHAR_BIT);
- scm_t_uint32 *random_chunks = NULL;
- const scm_t_uint32 num_full_chunks =
- m_bits / (sizeof (scm_t_uint32) * SCM_CHAR_BIT);
- const scm_t_uint32 num_chunks = num_full_chunks + ((end_bits) ? 1 : 0);
- /* we know the result will be this big */
- mpz_realloc2 (SCM_I_BIG_MPZ (result), m_bits);
- random_chunks =
- (scm_t_uint32 *) scm_gc_calloc (num_chunks * sizeof (scm_t_uint32),
- "random bignum chunks");
- do
- {
- scm_t_uint32 *current_chunk = random_chunks + (num_chunks - 1);
- scm_t_uint32 chunks_left = num_chunks;
- mpz_set_ui (SCM_I_BIG_MPZ (result), 0);
-
- if (end_bits)
- {
- /* generate a mask with ones in the end_bits position, i.e. if
- end_bits is 3, then we'd have a mask of ...0000000111 */
- const scm_t_uint32 rndbits = state->rng->random_bits (state);
- int rshift = (sizeof (scm_t_uint32) * SCM_CHAR_BIT) - end_bits;
- scm_t_uint32 mask = ((scm_t_uint32)-1) >> rshift;
- scm_t_uint32 highest_bits = rndbits & mask;
- *current_chunk-- = highest_bits;
- chunks_left--;
- }
-
- while (chunks_left)
- {
- /* now fill in the remaining scm_t_uint32 sized chunks */
- *current_chunk-- = state->rng->random_bits (state);
- chunks_left--;
- }
- mpz_import (SCM_I_BIG_MPZ (result),
- num_chunks,
- -1,
- sizeof (scm_t_uint32),
- 0,
- 0,
- random_chunks);
- /* if result >= m, regenerate it (it is important to regenerate
- all bits in order not to get a distorted distribution) */
- } while (mpz_cmp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (m)) >= 0);
- scm_gc_free (random_chunks,
- num_chunks * sizeof (scm_t_uint32),
- "random bignum chunks");
- return scm_i_normbig (result);
- }
- /*
- * Scheme level representation of random states.
- */
-
- scm_t_bits scm_tc16_rstate;
- static SCM
- make_rstate (scm_t_rstate *state)
- {
- SCM_RETURN_NEWSMOB (scm_tc16_rstate, state);
- }
- /*
- * Scheme level interface.
- */
- SCM_GLOBAL_VARIABLE_INIT (scm_var_random_state, "*random-state*", scm_seed_to_random_state (scm_from_locale_string ("URL:http://stat.fsu.edu/~geo/diehard.html")));
- SCM_DEFINE (scm_random, "random", 1, 1, 0,
- (SCM n, SCM state),
- "Return a number in [0, N).\n"
- "\n"
- "Accepts a positive integer or real n and returns a\n"
- "number of the same type between zero (inclusive) and\n"
- "N (exclusive). The values returned have a uniform\n"
- "distribution.\n"
- "\n"
- "The optional argument @var{state} must be of the type produced\n"
- "by @code{seed->random-state}. It defaults to the value of the\n"
- "variable @var{*random-state*}. This object is used to maintain\n"
- "the state of the pseudo-random-number generator and is altered\n"
- "as a side effect of the random operation.")
- #define FUNC_NAME s_scm_random
- {
- if (SCM_UNBNDP (state))
- state = SCM_VARIABLE_REF (scm_var_random_state);
- SCM_VALIDATE_RSTATE (2, state);
- if (SCM_I_INUMP (n))
- {
- scm_t_bits m = (scm_t_bits) SCM_I_INUM (n);
- SCM_ASSERT_RANGE (1, n, SCM_I_INUM (n) > 0);
- #if SCM_SIZEOF_UINTPTR_T <= 4
- return scm_from_uint32 (scm_c_random (SCM_RSTATE (state),
- (scm_t_uint32) m));
- #elif SCM_SIZEOF_UINTPTR_T <= 8
- return scm_from_uint64 (scm_c_random64 (SCM_RSTATE (state),
- (scm_t_uint64) m));
- #else
- #error "Cannot deal with this platform's scm_t_bits size"
- #endif
- }
- SCM_VALIDATE_NIM (1, n);
- if (SCM_REALP (n))
- return scm_from_double (SCM_REAL_VALUE (n)
- * scm_c_uniform01 (SCM_RSTATE (state)));
- if (!SCM_BIGP (n))
- SCM_WRONG_TYPE_ARG (1, n);
- return scm_c_random_bignum (SCM_RSTATE (state), n);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_copy_random_state, "copy-random-state", 0, 1, 0,
- (SCM state),
- "Return a copy of the random state @var{state}.")
- #define FUNC_NAME s_scm_copy_random_state
- {
- if (SCM_UNBNDP (state))
- state = SCM_VARIABLE_REF (scm_var_random_state);
- SCM_VALIDATE_RSTATE (1, state);
- return make_rstate (SCM_RSTATE (state)->rng->copy_rstate (SCM_RSTATE (state)));
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_seed_to_random_state, "seed->random-state", 1, 0, 0,
- (SCM seed),
- "Return a new random state using @var{seed}.")
- #define FUNC_NAME s_scm_seed_to_random_state
- {
- SCM res;
- if (SCM_NUMBERP (seed))
- seed = scm_number_to_string (seed, SCM_UNDEFINED);
- SCM_VALIDATE_STRING (1, seed);
- res = make_rstate (scm_c_make_rstate (scm_i_string_chars (seed),
- scm_i_string_length (seed)));
- scm_remember_upto_here_1 (seed);
- return res;
-
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_datum_to_random_state, "datum->random-state", 1, 0, 0,
- (SCM datum),
- "Return a new random state using @var{datum}, which should have\n"
- "been obtained from @code{random-state->datum}.")
- #define FUNC_NAME s_scm_datum_to_random_state
- {
- return make_rstate (scm_c_rstate_from_datum (datum));
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_random_state_to_datum, "random-state->datum", 1, 0, 0,
- (SCM state),
- "Return a datum representation of @var{state} that may be\n"
- "written out and read back with the Scheme reader.")
- #define FUNC_NAME s_scm_random_state_to_datum
- {
- SCM_VALIDATE_RSTATE (1, state);
- return SCM_RSTATE (state)->rng->to_datum (SCM_RSTATE (state));
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_random_uniform, "random:uniform", 0, 1, 0,
- (SCM state),
- "Return a uniformly distributed inexact real random number in\n"
- "[0,1).")
- #define FUNC_NAME s_scm_random_uniform
- {
- if (SCM_UNBNDP (state))
- state = SCM_VARIABLE_REF (scm_var_random_state);
- SCM_VALIDATE_RSTATE (1, state);
- return scm_from_double (scm_c_uniform01 (SCM_RSTATE (state)));
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_random_normal, "random:normal", 0, 1, 0,
- (SCM state),
- "Return an inexact real in a normal distribution. The\n"
- "distribution used has mean 0 and standard deviation 1. For a\n"
- "normal distribution with mean m and standard deviation d use\n"
- "@code{(+ m (* d (random:normal)))}.")
- #define FUNC_NAME s_scm_random_normal
- {
- if (SCM_UNBNDP (state))
- state = SCM_VARIABLE_REF (scm_var_random_state);
- SCM_VALIDATE_RSTATE (1, state);
- return scm_from_double (scm_c_normal01 (SCM_RSTATE (state)));
- }
- #undef FUNC_NAME
- static void
- vector_scale_x (SCM v, double c)
- {
- size_t n;
- if (scm_is_vector (v))
- {
- n = SCM_SIMPLE_VECTOR_LENGTH (v);
- while (n-- > 0)
- SCM_REAL_VALUE (SCM_SIMPLE_VECTOR_REF (v, n)) *= c;
- }
- else
- {
- /* must be a f64vector. */
- scm_t_array_handle handle;
- size_t i, len;
- ssize_t inc;
- double *elts;
- elts = scm_f64vector_writable_elements (v, &handle, &len, &inc);
- for (i = 0; i < len; i++, elts += inc)
- *elts *= c;
-
- scm_array_handle_release (&handle);
- }
- }
- static double
- vector_sum_squares (SCM v)
- {
- double x, sum = 0.0;
- size_t n;
- if (scm_is_vector (v))
- {
- n = SCM_SIMPLE_VECTOR_LENGTH (v);
- while (n-- > 0)
- {
- x = SCM_REAL_VALUE (SCM_SIMPLE_VECTOR_REF (v, n));
- sum += x * x;
- }
- }
- else
- {
- /* must be a f64vector. */
- scm_t_array_handle handle;
- size_t i, len;
- ssize_t inc;
- const double *elts;
- elts = scm_f64vector_elements (v, &handle, &len, &inc);
- for (i = 0; i < len; i++, elts += inc)
- {
- x = *elts;
- sum += x * x;
- }
- scm_array_handle_release (&handle);
- }
- return sum;
- }
- /* For the uniform distribution on the solid sphere, note that in
- * this distribution the length r of the vector has cumulative
- * distribution r^n; i.e., u=r^n is uniform [0,1], so r can be
- * generated as r=u^(1/n).
- */
- SCM_DEFINE (scm_random_solid_sphere_x, "random:solid-sphere!", 1, 1, 0,
- (SCM v, SCM state),
- "Fills @var{vect} with inexact real random numbers the sum of\n"
- "whose squares is less than 1.0. Thinking of @var{vect} as\n"
- "coordinates in space of dimension @var{n} @math{=}\n"
- "@code{(vector-length @var{vect})}, the coordinates are\n"
- "uniformly distributed within the unit @var{n}-sphere.")
- #define FUNC_NAME s_scm_random_solid_sphere_x
- {
- if (SCM_UNBNDP (state))
- state = SCM_VARIABLE_REF (scm_var_random_state);
- SCM_VALIDATE_RSTATE (2, state);
- scm_random_normal_vector_x (v, state);
- vector_scale_x (v,
- pow (scm_c_uniform01 (SCM_RSTATE (state)),
- 1.0 / scm_c_array_length (v))
- / sqrt (vector_sum_squares (v)));
- return SCM_UNSPECIFIED;
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_random_hollow_sphere_x, "random:hollow-sphere!", 1, 1, 0,
- (SCM v, SCM state),
- "Fills vect with inexact real random numbers\n"
- "the sum of whose squares is equal to 1.0.\n"
- "Thinking of vect as coordinates in space of\n"
- "dimension n = (vector-length vect), the coordinates\n"
- "are uniformly distributed over the surface of the\n"
- "unit n-sphere.")
- #define FUNC_NAME s_scm_random_hollow_sphere_x
- {
- if (SCM_UNBNDP (state))
- state = SCM_VARIABLE_REF (scm_var_random_state);
- SCM_VALIDATE_RSTATE (2, state);
- scm_random_normal_vector_x (v, state);
- vector_scale_x (v, 1 / sqrt (vector_sum_squares (v)));
- return SCM_UNSPECIFIED;
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_random_normal_vector_x, "random:normal-vector!", 1, 1, 0,
- (SCM v, SCM state),
- "Fills vect with inexact real random numbers that are\n"
- "independent and standard normally distributed\n"
- "(i.e., with mean 0 and variance 1).")
- #define FUNC_NAME s_scm_random_normal_vector_x
- {
- long i;
- scm_t_array_handle handle;
- scm_t_array_dim *dim;
- if (SCM_UNBNDP (state))
- state = SCM_VARIABLE_REF (scm_var_random_state);
- SCM_VALIDATE_RSTATE (2, state);
- scm_generalized_vector_get_handle (v, &handle);
- dim = scm_array_handle_dims (&handle);
- if (handle.element_type == SCM_ARRAY_ELEMENT_TYPE_SCM)
- {
- SCM *elts = scm_array_handle_writable_elements (&handle);
- for (i = dim->lbnd; i <= dim->ubnd; i++, elts += dim->inc)
- *elts = scm_from_double (scm_c_normal01 (SCM_RSTATE (state)));
- }
- else
- {
- /* must be a f64vector. */
- double *elts = scm_array_handle_f64_writable_elements (&handle);
- for (i = dim->lbnd; i <= dim->ubnd; i++, elts += dim->inc)
- *elts = scm_c_normal01 (SCM_RSTATE (state));
- }
- scm_array_handle_release (&handle);
- return SCM_UNSPECIFIED;
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_random_exp, "random:exp", 0, 1, 0,
- (SCM state),
- "Return an inexact real in an exponential distribution with mean\n"
- "1. For an exponential distribution with mean u use (* u\n"
- "(random:exp)).")
- #define FUNC_NAME s_scm_random_exp
- {
- if (SCM_UNBNDP (state))
- state = SCM_VARIABLE_REF (scm_var_random_state);
- SCM_VALIDATE_RSTATE (1, state);
- return scm_from_double (scm_c_exp1 (SCM_RSTATE (state)));
- }
- #undef FUNC_NAME
- /* Return a new random-state seeded from the time, date, process ID, an
- address from a freshly allocated heap cell, an address from the local
- stack frame, and a high-resolution timer if available. This is only
- to be used as a last resort, when no better source of entropy is
- available. */
- static SCM
- random_state_of_last_resort (void)
- {
- SCM state;
- SCM time_of_day = scm_gettimeofday ();
- SCM sources = scm_list_n
- (scm_from_unsigned_integer (SCM_UNPACK (time_of_day)), /* heap addr */
- /* Avoid scm_getpid, since it depends on HAVE_POSIX. */
- scm_from_unsigned_integer (getpid ()), /* process ID */
- scm_get_internal_real_time (), /* high-resolution process timer */
- scm_from_unsigned_integer ((scm_t_bits) &time_of_day), /* stack addr */
- scm_car (time_of_day), /* seconds since midnight 1970-01-01 UTC */
- scm_cdr (time_of_day), /* microsecond component of the above clock */
- SCM_UNDEFINED);
- /* Concatenate the sources bitwise to form the seed */
- SCM seed = SCM_INUM0;
- while (scm_is_pair (sources))
- {
- seed = scm_logxor (seed, scm_ash (scm_car (sources),
- scm_integer_length (seed)));
- sources = scm_cdr (sources);
- }
- /* FIXME The following code belongs in `scm_seed_to_random_state',
- and here we should simply do:
- return scm_seed_to_random_state (seed);
- Unfortunately, `scm_seed_to_random_state' only preserves around 32
- bits of entropy from the provided seed. I don't know if it's okay
- to fix that in 2.0, so for now we have this workaround. */
- {
- int i, len;
- unsigned char *buf;
- len = scm_to_int (scm_ceiling_quotient (scm_integer_length (seed),
- SCM_I_MAKINUM (8)));
- buf = (unsigned char *) malloc (len);
- for (i = len-1; i >= 0; --i)
- {
- buf[i] = scm_to_int (scm_logand (seed, SCM_I_MAKINUM (255)));
- seed = scm_ash (seed, SCM_I_MAKINUM (-8));
- }
- state = make_rstate (scm_c_make_rstate ((char *) buf, len));
- free (buf);
- }
- return state;
- }
- /* Attempt to fill buffer with random bytes from /dev/urandom.
- Return 1 if successful, else return 0. */
- static int
- read_dev_urandom (unsigned char *buf, size_t len)
- {
- size_t res = 0;
- FILE *f = fopen ("/dev/urandom", "r");
- if (f)
- {
- res = fread(buf, 1, len, f);
- fclose (f);
- }
- return (res == len);
- }
- /* Fill a buffer with random bytes seeded from a platform-specific
- source of entropy. /dev/urandom is used if available. Note that
- this function provides no guarantees about the amount of entropy
- present in the returned bytes. */
- void
- scm_i_random_bytes_from_platform (unsigned char *buf, size_t len)
- {
- if (read_dev_urandom (buf, len))
- return;
- else /* FIXME: support other platform sources */
- {
- /* When all else fails, use this (rather weak) fallback */
- SCM random_state = random_state_of_last_resort ();
- int i;
- for (i = len-1; i >= 0; --i)
- buf[i] = scm_to_int (scm_random (SCM_I_MAKINUM (256), random_state));
- }
- }
- SCM_DEFINE (scm_random_state_from_platform, "random-state-from-platform", 0, 0, 0,
- (void),
- "Construct a new random state seeded from a platform-specific\n\
- source of entropy, appropriate for use in non-security-critical applications.")
- #define FUNC_NAME s_scm_random_state_from_platform
- {
- unsigned char buf[32];
- if (read_dev_urandom (buf, sizeof(buf)))
- return make_rstate (scm_c_make_rstate ((char *) buf, sizeof(buf)));
- else
- return random_state_of_last_resort ();
- }
- #undef FUNC_NAME
- void
- scm_init_random ()
- {
- int i, m;
- /* plug in default RNG */
- scm_t_rng rng =
- {
- sizeof (scm_t_i_rstate),
- scm_i_uniform32,
- scm_i_init_rstate,
- scm_i_copy_rstate,
- scm_i_rstate_from_datum,
- scm_i_rstate_to_datum
- };
- scm_the_rng = rng;
-
- scm_tc16_rstate = scm_make_smob_type ("random-state", 0);
- for (m = 1; m <= 0x100; m <<= 1)
- for (i = m >> 1; i < m; ++i)
- scm_masktab[i] = m - 1;
-
- #include "libguile/random.x"
- scm_add_feature ("random");
- }
- /*
- Local Variables:
- c-file-style: "gnu"
- End:
- */
|