12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417 |
- /* Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
- * 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
- * 2013, 2014 Free Software Foundation, Inc.
- *
- * Portions Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories
- * and Bellcore. See scm_divide.
- *
- *
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public License
- * as published by the Free Software Foundation; either version 3 of
- * the License, or (at your option) any later version.
- *
- * This library is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with this library; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
- * 02110-1301 USA
- */
- /* General assumptions:
- * All objects satisfying SCM_BIGP() are too large to fit in a fixnum.
- * If an object satisfies integer?, it's either an inum, a bignum, or a real.
- * If floor (r) == r, r is an int, and mpz_set_d will DTRT.
- * XXX What about infinities? They are equal to their own floor! -mhw
- * All objects satisfying SCM_FRACTIONP are never an integer.
- */
- /* TODO:
-
- - see if special casing bignums and reals in integer-exponent when
- possible (to use mpz_pow and mpf_pow_ui) is faster.
- - look in to better short-circuiting of common cases in
- integer-expt and elsewhere.
- - see if direct mpz operations can help in ash and elsewhere.
- */
- #ifdef HAVE_CONFIG_H
- # include <config.h>
- #endif
- #include <verify.h>
- #include <assert.h>
- #include <math.h>
- #include <string.h>
- #include <unicase.h>
- #include <unictype.h>
- #if HAVE_COMPLEX_H
- #include <complex.h>
- #endif
- #include <stdarg.h>
- #include "libguile/_scm.h"
- #include "libguile/feature.h"
- #include "libguile/ports.h"
- #include "libguile/root.h"
- #include "libguile/smob.h"
- #include "libguile/strings.h"
- #include "libguile/bdw-gc.h"
- #include "libguile/validate.h"
- #include "libguile/numbers.h"
- #include "libguile/deprecation.h"
- #include "libguile/eq.h"
- /* values per glibc, if not already defined */
- #ifndef M_LOG10E
- #define M_LOG10E 0.43429448190325182765
- #endif
- #ifndef M_LN2
- #define M_LN2 0.69314718055994530942
- #endif
- #ifndef M_PI
- #define M_PI 3.14159265358979323846
- #endif
- /* FIXME: We assume that FLT_RADIX is 2 */
- verify (FLT_RADIX == 2);
- typedef scm_t_signed_bits scm_t_inum;
- #define scm_from_inum(x) (scm_from_signed_integer (x))
- /* Test an inum to see if it can be converted to a double without loss
- of precision. Note that this will sometimes return 0 even when 1
- could have been returned, e.g. for large powers of 2. It is designed
- to be a fast check to optimize common cases. */
- #define INUM_LOSSLESSLY_CONVERTIBLE_TO_DOUBLE(n) \
- (SCM_I_FIXNUM_BIT-1 <= DBL_MANT_DIG \
- || ((n) ^ ((n) >> (SCM_I_FIXNUM_BIT-1))) < (1L << DBL_MANT_DIG))
- #if ! HAVE_DECL_MPZ_INITS
- /* GMP < 5.0.0 lacks `mpz_inits' and `mpz_clears'. Provide them. */
- #define VARARG_MPZ_ITERATOR(func) \
- static void \
- func ## s (mpz_t x, ...) \
- { \
- va_list ap; \
- \
- va_start (ap, x); \
- while (x != NULL) \
- { \
- func (x); \
- x = va_arg (ap, mpz_ptr); \
- } \
- va_end (ap); \
- }
- VARARG_MPZ_ITERATOR (mpz_init)
- VARARG_MPZ_ITERATOR (mpz_clear)
- #endif
- /*
- Wonder if this might be faster for some of our code? A switch on
- the numtag would jump directly to the right case, and the
- SCM_I_NUMTAG code might be faster than repeated SCM_FOOP tests...
- #define SCM_I_NUMTAG_NOTNUM 0
- #define SCM_I_NUMTAG_INUM 1
- #define SCM_I_NUMTAG_BIG scm_tc16_big
- #define SCM_I_NUMTAG_REAL scm_tc16_real
- #define SCM_I_NUMTAG_COMPLEX scm_tc16_complex
- #define SCM_I_NUMTAG(x) \
- (SCM_I_INUMP(x) ? SCM_I_NUMTAG_INUM \
- : (SCM_IMP(x) ? SCM_I_NUMTAG_NOTNUM \
- : (((0xfcff & SCM_CELL_TYPE (x)) == scm_tc7_number) ? SCM_TYP16(x) \
- : SCM_I_NUMTAG_NOTNUM)))
- */
- /* the macro above will not work as is with fractions */
- /* Default to 1, because as we used to hard-code `free' as the
- deallocator, we know that overriding these functions with
- instrumented `malloc' / `free' is OK. */
- int scm_install_gmp_memory_functions = 1;
- static SCM flo0;
- static SCM exactly_one_half;
- static SCM flo_log10e;
- #define SCM_SWAP(x, y) do { SCM __t = x; x = y; y = __t; } while (0)
- /* FLOBUFLEN is the maximum number of characters neccessary for the
- * printed or scm_string representation of an inexact number.
- */
- #define FLOBUFLEN (40+2*(sizeof(double)/sizeof(char)*SCM_CHAR_BIT*3+9)/10)
- #if !defined (HAVE_ASINH)
- static double asinh (double x) { return log (x + sqrt (x * x + 1)); }
- #endif
- #if !defined (HAVE_ACOSH)
- static double acosh (double x) { return log (x + sqrt (x * x - 1)); }
- #endif
- #if !defined (HAVE_ATANH)
- static double atanh (double x) { return 0.5 * log ((1 + x) / (1 - x)); }
- #endif
- /* mpz_cmp_d in GMP before 4.2 didn't recognise infinities, so
- xmpz_cmp_d uses an explicit check. Starting with GMP 4.2 (released
- in March 2006), mpz_cmp_d now handles infinities properly. */
- #if 1
- #define xmpz_cmp_d(z, d) \
- (isinf (d) ? (d < 0.0 ? 1 : -1) : mpz_cmp_d (z, d))
- #else
- #define xmpz_cmp_d(z, d) mpz_cmp_d (z, d)
- #endif
- #if defined (GUILE_I)
- #if defined HAVE_COMPLEX_DOUBLE
- /* For an SCM object Z which is a complex number (ie. satisfies
- SCM_COMPLEXP), return its value as a C level "complex double". */
- #define SCM_COMPLEX_VALUE(z) \
- (SCM_COMPLEX_REAL (z) + GUILE_I * SCM_COMPLEX_IMAG (z))
- static inline SCM scm_from_complex_double (complex double z) SCM_UNUSED;
- /* Convert a C "complex double" to an SCM value. */
- static inline SCM
- scm_from_complex_double (complex double z)
- {
- return scm_c_make_rectangular (creal (z), cimag (z));
- }
- #endif /* HAVE_COMPLEX_DOUBLE */
- #endif /* GUILE_I */
- static mpz_t z_negative_one;
- /* Clear the `mpz_t' embedded in bignum PTR. */
- static void
- finalize_bignum (void *ptr, void *data)
- {
- SCM bignum;
- bignum = SCM_PACK_POINTER (ptr);
- mpz_clear (SCM_I_BIG_MPZ (bignum));
- }
- /* The next three functions (custom_libgmp_*) are passed to
- mp_set_memory_functions (in GMP) so that memory used by the digits
- themselves is known to the garbage collector. This is needed so
- that GC will be run at appropriate times. Otherwise, a program which
- creates many large bignums would malloc a huge amount of memory
- before the GC runs. */
- static void *
- custom_gmp_malloc (size_t alloc_size)
- {
- return scm_malloc (alloc_size);
- }
- static void *
- custom_gmp_realloc (void *old_ptr, size_t old_size, size_t new_size)
- {
- return scm_realloc (old_ptr, new_size);
- }
- static void
- custom_gmp_free (void *ptr, size_t size)
- {
- free (ptr);
- }
- /* Return a new uninitialized bignum. */
- static inline SCM
- make_bignum (void)
- {
- scm_t_bits *p;
- /* Allocate one word for the type tag and enough room for an `mpz_t'. */
- p = scm_gc_malloc_pointerless (sizeof (scm_t_bits) + sizeof (mpz_t),
- "bignum");
- p[0] = scm_tc16_big;
- scm_i_set_finalizer (p, finalize_bignum, NULL);
- return SCM_PACK (p);
- }
- SCM
- scm_i_mkbig ()
- {
- /* Return a newly created bignum. */
- SCM z = make_bignum ();
- mpz_init (SCM_I_BIG_MPZ (z));
- return z;
- }
- static SCM
- scm_i_inum2big (scm_t_inum x)
- {
- /* Return a newly created bignum initialized to X. */
- SCM z = make_bignum ();
- #if SIZEOF_VOID_P == SIZEOF_LONG
- mpz_init_set_si (SCM_I_BIG_MPZ (z), x);
- #else
- /* Note that in this case, you'll also have to check all mpz_*_ui and
- mpz_*_si invocations in Guile. */
- #error creation of mpz not implemented for this inum size
- #endif
- return z;
- }
- SCM
- scm_i_long2big (long x)
- {
- /* Return a newly created bignum initialized to X. */
- SCM z = make_bignum ();
- mpz_init_set_si (SCM_I_BIG_MPZ (z), x);
- return z;
- }
- SCM
- scm_i_ulong2big (unsigned long x)
- {
- /* Return a newly created bignum initialized to X. */
- SCM z = make_bignum ();
- mpz_init_set_ui (SCM_I_BIG_MPZ (z), x);
- return z;
- }
- SCM
- scm_i_clonebig (SCM src_big, int same_sign_p)
- {
- /* Copy src_big's value, negate it if same_sign_p is false, and return. */
- SCM z = make_bignum ();
- mpz_init_set (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (src_big));
- if (!same_sign_p)
- mpz_neg (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (z));
- return z;
- }
- int
- scm_i_bigcmp (SCM x, SCM y)
- {
- /* Return neg if x < y, pos if x > y, and 0 if x == y */
- /* presume we already know x and y are bignums */
- int result = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- return result;
- }
- SCM
- scm_i_dbl2big (double d)
- {
- /* results are only defined if d is an integer */
- SCM z = make_bignum ();
- mpz_init_set_d (SCM_I_BIG_MPZ (z), d);
- return z;
- }
- /* Convert a integer in double representation to a SCM number. */
- SCM
- scm_i_dbl2num (double u)
- {
- /* SCM_MOST_POSITIVE_FIXNUM+1 and SCM_MOST_NEGATIVE_FIXNUM are both
- powers of 2, so there's no rounding when making "double" values
- from them. If plain SCM_MOST_POSITIVE_FIXNUM was used it could
- get rounded on a 64-bit machine, hence the "+1".
- The use of floor() to force to an integer value ensures we get a
- "numerically closest" value without depending on how a
- double->long cast or how mpz_set_d will round. For reference,
- double->long probably follows the hardware rounding mode,
- mpz_set_d truncates towards zero. */
- /* XXX - what happens when SCM_MOST_POSITIVE_FIXNUM etc is not
- representable as a double? */
- if (u < (double) (SCM_MOST_POSITIVE_FIXNUM+1)
- && u >= (double) SCM_MOST_NEGATIVE_FIXNUM)
- return SCM_I_MAKINUM ((scm_t_inum) u);
- else
- return scm_i_dbl2big (u);
- }
- static SCM round_right_shift_exact_integer (SCM n, long count);
- /* scm_i_big2dbl_2exp() is like frexp for bignums: it converts the
- bignum b into a normalized significand and exponent such that
- b = significand * 2^exponent and 1/2 <= abs(significand) < 1.
- The return value is the significand rounded to the closest
- representable double, and the exponent is placed into *expon_p.
- If b is zero, then the returned exponent and significand are both
- zero. */
- static double
- scm_i_big2dbl_2exp (SCM b, long *expon_p)
- {
- size_t bits = mpz_sizeinbase (SCM_I_BIG_MPZ (b), 2);
- size_t shift = 0;
- if (bits > DBL_MANT_DIG)
- {
- shift = bits - DBL_MANT_DIG;
- b = round_right_shift_exact_integer (b, shift);
- if (SCM_I_INUMP (b))
- {
- int expon;
- double signif = frexp (SCM_I_INUM (b), &expon);
- *expon_p = expon + shift;
- return signif;
- }
- }
- {
- long expon;
- double signif = mpz_get_d_2exp (&expon, SCM_I_BIG_MPZ (b));
- scm_remember_upto_here_1 (b);
- *expon_p = expon + shift;
- return signif;
- }
- }
- /* scm_i_big2dbl() rounds to the closest representable double,
- in accordance with R5RS exact->inexact. */
- double
- scm_i_big2dbl (SCM b)
- {
- long expon;
- double signif = scm_i_big2dbl_2exp (b, &expon);
- return ldexp (signif, expon);
- }
- SCM
- scm_i_normbig (SCM b)
- {
- /* convert a big back to a fixnum if it'll fit */
- /* presume b is a bignum */
- if (mpz_fits_slong_p (SCM_I_BIG_MPZ (b)))
- {
- scm_t_inum val = mpz_get_si (SCM_I_BIG_MPZ (b));
- if (SCM_FIXABLE (val))
- b = SCM_I_MAKINUM (val);
- }
- return b;
- }
- static SCM_C_INLINE_KEYWORD SCM
- scm_i_mpz2num (mpz_t b)
- {
- /* convert a mpz number to a SCM number. */
- if (mpz_fits_slong_p (b))
- {
- scm_t_inum val = mpz_get_si (b);
- if (SCM_FIXABLE (val))
- return SCM_I_MAKINUM (val);
- }
- {
- SCM z = make_bignum ();
- mpz_init_set (SCM_I_BIG_MPZ (z), b);
- return z;
- }
- }
- /* Make the ratio NUMERATOR/DENOMINATOR, where:
- 1. NUMERATOR and DENOMINATOR are exact integers
- 2. NUMERATOR and DENOMINATOR are reduced to lowest terms: gcd(n,d) == 1 */
- static SCM
- scm_i_make_ratio_already_reduced (SCM numerator, SCM denominator)
- {
- /* Flip signs so that the denominator is positive. */
- if (scm_is_false (scm_positive_p (denominator)))
- {
- if (SCM_UNLIKELY (scm_is_eq (denominator, SCM_INUM0)))
- scm_num_overflow ("make-ratio");
- else
- {
- numerator = scm_difference (numerator, SCM_UNDEFINED);
- denominator = scm_difference (denominator, SCM_UNDEFINED);
- }
- }
- /* Check for the integer case */
- if (scm_is_eq (denominator, SCM_INUM1))
- return numerator;
- return scm_double_cell (scm_tc16_fraction,
- SCM_UNPACK (numerator),
- SCM_UNPACK (denominator), 0);
- }
- static SCM scm_exact_integer_quotient (SCM x, SCM y);
- /* Make the ratio NUMERATOR/DENOMINATOR */
- static SCM
- scm_i_make_ratio (SCM numerator, SCM denominator)
- #define FUNC_NAME "make-ratio"
- {
- /* Make sure the arguments are proper */
- if (!SCM_LIKELY (SCM_I_INUMP (numerator) || SCM_BIGP (numerator)))
- SCM_WRONG_TYPE_ARG (1, numerator);
- else if (!SCM_LIKELY (SCM_I_INUMP (denominator) || SCM_BIGP (denominator)))
- SCM_WRONG_TYPE_ARG (2, denominator);
- else
- {
- SCM the_gcd = scm_gcd (numerator, denominator);
- if (!(scm_is_eq (the_gcd, SCM_INUM1)))
- {
- /* Reduce to lowest terms */
- numerator = scm_exact_integer_quotient (numerator, the_gcd);
- denominator = scm_exact_integer_quotient (denominator, the_gcd);
- }
- return scm_i_make_ratio_already_reduced (numerator, denominator);
- }
- }
- #undef FUNC_NAME
- static mpz_t scm_i_divide2double_lo2b;
- /* Return the double that is closest to the exact rational N/D, with
- ties rounded toward even mantissas. N and D must be exact
- integers. */
- static double
- scm_i_divide2double (SCM n, SCM d)
- {
- int neg;
- mpz_t nn, dd, lo, hi, x;
- ssize_t e;
- if (SCM_LIKELY (SCM_I_INUMP (d)))
- {
- if (SCM_LIKELY
- (SCM_I_INUMP (n)
- && INUM_LOSSLESSLY_CONVERTIBLE_TO_DOUBLE (SCM_I_INUM (n))
- && INUM_LOSSLESSLY_CONVERTIBLE_TO_DOUBLE (SCM_I_INUM (d))))
- /* If both N and D can be losslessly converted to doubles, then
- we can rely on IEEE floating point to do proper rounding much
- faster than we can. */
- return ((double) SCM_I_INUM (n)) / ((double) SCM_I_INUM (d));
- if (SCM_UNLIKELY (scm_is_eq (d, SCM_INUM0)))
- {
- if (scm_is_true (scm_positive_p (n)))
- return 1.0 / 0.0;
- else if (scm_is_true (scm_negative_p (n)))
- return -1.0 / 0.0;
- else
- return 0.0 / 0.0;
- }
- mpz_init_set_si (dd, SCM_I_INUM (d));
- }
- else
- mpz_init_set (dd, SCM_I_BIG_MPZ (d));
- if (SCM_I_INUMP (n))
- mpz_init_set_si (nn, SCM_I_INUM (n));
- else
- mpz_init_set (nn, SCM_I_BIG_MPZ (n));
- neg = (mpz_sgn (nn) < 0) ^ (mpz_sgn (dd) < 0);
- mpz_abs (nn, nn);
- mpz_abs (dd, dd);
- /* Now we need to find the value of e such that:
-
- For e <= 0:
- b^{p-1} - 1/2b <= b^-e n / d < b^p - 1/2 [1A]
- (2 b^p - 1) <= 2 b b^-e n / d < (2 b^p - 1) b [2A]
- (2 b^p - 1) d <= 2 b b^-e n < (2 b^p - 1) d b [3A]
- For e >= 0:
- b^{p-1} - 1/2b <= n / b^e d < b^p - 1/2 [1B]
- (2 b^p - 1) <= 2 b n / b^e d < (2 b^p - 1) b [2B]
- (2 b^p - 1) d b^e <= 2 b n < (2 b^p - 1) d b b^e [3B]
- where: p = DBL_MANT_DIG
- b = FLT_RADIX (here assumed to be 2)
- After rounding, the mantissa must be an integer between b^{p-1} and
- (b^p - 1), except for subnormal numbers. In the inequations [1A]
- and [1B], the middle expression represents the mantissa *before*
- rounding, and therefore is bounded by the range of values that will
- round to a floating-point number with the exponent e. The upper
- bound is (b^p - 1 + 1/2) = (b^p - 1/2), and is exclusive because
- ties will round up to the next power of b. The lower bound is
- (b^{p-1} - 1/2b), and is inclusive because ties will round toward
- this power of b. Here we subtract 1/2b instead of 1/2 because it
- is in the range of the next smaller exponent, where the
- representable numbers are closer together by a factor of b.
- Inequations [2A] and [2B] are derived from [1A] and [1B] by
- multiplying by 2b, and in [3A] and [3B] we multiply by the
- denominator of the middle value to obtain integer expressions.
- In the code below, we refer to the three expressions in [3A] or
- [3B] as lo, x, and hi. If the number is normalizable, we will
- achieve the goal: lo <= x < hi */
- /* Make an initial guess for e */
- e = mpz_sizeinbase (nn, 2) - mpz_sizeinbase (dd, 2) - (DBL_MANT_DIG-1);
- if (e < DBL_MIN_EXP - DBL_MANT_DIG)
- e = DBL_MIN_EXP - DBL_MANT_DIG;
- /* Compute the initial values of lo, x, and hi
- based on the initial guess of e */
- mpz_inits (lo, hi, x, NULL);
- mpz_mul_2exp (x, nn, 2 + ((e < 0) ? -e : 0));
- mpz_mul (lo, dd, scm_i_divide2double_lo2b);
- if (e > 0)
- mpz_mul_2exp (lo, lo, e);
- mpz_mul_2exp (hi, lo, 1);
- /* Adjust e as needed to satisfy the inequality lo <= x < hi,
- (but without making e less then the minimum exponent) */
- while (mpz_cmp (x, lo) < 0 && e > DBL_MIN_EXP - DBL_MANT_DIG)
- {
- mpz_mul_2exp (x, x, 1);
- e--;
- }
- while (mpz_cmp (x, hi) >= 0)
- {
- /* If we ever used lo's value again,
- we would need to double lo here. */
- mpz_mul_2exp (hi, hi, 1);
- e++;
- }
- /* Now compute the rounded mantissa:
- n / b^e d (if e >= 0)
- n b^-e / d (if e <= 0) */
- {
- int cmp;
- double result;
- if (e < 0)
- mpz_mul_2exp (nn, nn, -e);
- else
- mpz_mul_2exp (dd, dd, e);
- /* mpz does not directly support rounded right
- shifts, so we have to do it the hard way.
- For efficiency, we reuse lo and hi.
- hi == quotient, lo == remainder */
- mpz_fdiv_qr (hi, lo, nn, dd);
- /* The fractional part of the unrounded mantissa would be
- remainder/dividend, i.e. lo/dd. So we have a tie if
- lo/dd = 1/2. Multiplying both sides by 2*dd yields the
- integer expression 2*lo = dd. Here we do that comparison
- to decide whether to round up or down. */
- mpz_mul_2exp (lo, lo, 1);
- cmp = mpz_cmp (lo, dd);
- if (cmp > 0 || (cmp == 0 && mpz_odd_p (hi)))
- mpz_add_ui (hi, hi, 1);
- result = ldexp (mpz_get_d (hi), e);
- if (neg)
- result = -result;
- mpz_clears (nn, dd, lo, hi, x, NULL);
- return result;
- }
- }
- double
- scm_i_fraction2double (SCM z)
- {
- return scm_i_divide2double (SCM_FRACTION_NUMERATOR (z),
- SCM_FRACTION_DENOMINATOR (z));
- }
- static SCM
- scm_i_from_double (double val)
- {
- SCM z;
- z = SCM_PACK_POINTER (scm_gc_malloc_pointerless (sizeof (scm_t_double), "real"));
- SCM_SET_CELL_TYPE (z, scm_tc16_real);
- SCM_REAL_VALUE (z) = val;
- return z;
- }
- SCM_PRIMITIVE_GENERIC (scm_exact_p, "exact?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is an exact number, @code{#f}\n"
- "otherwise.")
- #define FUNC_NAME s_scm_exact_p
- {
- if (SCM_INEXACTP (x))
- return SCM_BOOL_F;
- else if (SCM_NUMBERP (x))
- return SCM_BOOL_T;
- else
- return scm_wta_dispatch_1 (g_scm_exact_p, x, 1, s_scm_exact_p);
- }
- #undef FUNC_NAME
- int
- scm_is_exact (SCM val)
- {
- return scm_is_true (scm_exact_p (val));
- }
- SCM_PRIMITIVE_GENERIC (scm_inexact_p, "inexact?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is an inexact number, @code{#f}\n"
- "else.")
- #define FUNC_NAME s_scm_inexact_p
- {
- if (SCM_INEXACTP (x))
- return SCM_BOOL_T;
- else if (SCM_NUMBERP (x))
- return SCM_BOOL_F;
- else
- return scm_wta_dispatch_1 (g_scm_inexact_p, x, 1, s_scm_inexact_p);
- }
- #undef FUNC_NAME
- int
- scm_is_inexact (SCM val)
- {
- return scm_is_true (scm_inexact_p (val));
- }
- SCM_PRIMITIVE_GENERIC (scm_odd_p, "odd?", 1, 0, 0,
- (SCM n),
- "Return @code{#t} if @var{n} is an odd number, @code{#f}\n"
- "otherwise.")
- #define FUNC_NAME s_scm_odd_p
- {
- if (SCM_I_INUMP (n))
- {
- scm_t_inum val = SCM_I_INUM (n);
- return scm_from_bool ((val & 1L) != 0);
- }
- else if (SCM_BIGP (n))
- {
- int odd_p = mpz_odd_p (SCM_I_BIG_MPZ (n));
- scm_remember_upto_here_1 (n);
- return scm_from_bool (odd_p);
- }
- else if (SCM_REALP (n))
- {
- double val = SCM_REAL_VALUE (n);
- if (isfinite (val))
- {
- double rem = fabs (fmod (val, 2.0));
- if (rem == 1.0)
- return SCM_BOOL_T;
- else if (rem == 0.0)
- return SCM_BOOL_F;
- }
- }
- return scm_wta_dispatch_1 (g_scm_odd_p, n, 1, s_scm_odd_p);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_even_p, "even?", 1, 0, 0,
- (SCM n),
- "Return @code{#t} if @var{n} is an even number, @code{#f}\n"
- "otherwise.")
- #define FUNC_NAME s_scm_even_p
- {
- if (SCM_I_INUMP (n))
- {
- scm_t_inum val = SCM_I_INUM (n);
- return scm_from_bool ((val & 1L) == 0);
- }
- else if (SCM_BIGP (n))
- {
- int even_p = mpz_even_p (SCM_I_BIG_MPZ (n));
- scm_remember_upto_here_1 (n);
- return scm_from_bool (even_p);
- }
- else if (SCM_REALP (n))
- {
- double val = SCM_REAL_VALUE (n);
- if (isfinite (val))
- {
- double rem = fabs (fmod (val, 2.0));
- if (rem == 1.0)
- return SCM_BOOL_F;
- else if (rem == 0.0)
- return SCM_BOOL_T;
- }
- }
- return scm_wta_dispatch_1 (g_scm_even_p, n, 1, s_scm_even_p);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_finite_p, "finite?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if the real number @var{x} is neither\n"
- "infinite nor a NaN, @code{#f} otherwise.")
- #define FUNC_NAME s_scm_finite_p
- {
- if (SCM_REALP (x))
- return scm_from_bool (isfinite (SCM_REAL_VALUE (x)));
- else if (scm_is_real (x))
- return SCM_BOOL_T;
- else
- return scm_wta_dispatch_1 (g_scm_finite_p, x, 1, s_scm_finite_p);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_inf_p, "inf?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if the real number @var{x} is @samp{+inf.0} or\n"
- "@samp{-inf.0}. Otherwise return @code{#f}.")
- #define FUNC_NAME s_scm_inf_p
- {
- if (SCM_REALP (x))
- return scm_from_bool (isinf (SCM_REAL_VALUE (x)));
- else if (scm_is_real (x))
- return SCM_BOOL_F;
- else
- return scm_wta_dispatch_1 (g_scm_inf_p, x, 1, s_scm_inf_p);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_nan_p, "nan?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if the real number @var{x} is a NaN,\n"
- "or @code{#f} otherwise.")
- #define FUNC_NAME s_scm_nan_p
- {
- if (SCM_REALP (x))
- return scm_from_bool (isnan (SCM_REAL_VALUE (x)));
- else if (scm_is_real (x))
- return SCM_BOOL_F;
- else
- return scm_wta_dispatch_1 (g_scm_nan_p, x, 1, s_scm_nan_p);
- }
- #undef FUNC_NAME
- /* Guile's idea of infinity. */
- static double guile_Inf;
- /* Guile's idea of not a number. */
- static double guile_NaN;
- static void
- guile_ieee_init (void)
- {
- /* Some version of gcc on some old version of Linux used to crash when
- trying to make Inf and NaN. */
- #ifdef INFINITY
- /* C99 INFINITY, when available.
- FIXME: The standard allows for INFINITY to be something that overflows
- at compile time. We ought to have a configure test to check for that
- before trying to use it. (But in practice we believe this is not a
- problem on any system guile is likely to target.) */
- guile_Inf = INFINITY;
- #elif defined HAVE_DINFINITY
- /* OSF */
- extern unsigned int DINFINITY[2];
- guile_Inf = (*((double *) (DINFINITY)));
- #else
- double tmp = 1e+10;
- guile_Inf = tmp;
- for (;;)
- {
- guile_Inf *= 1e+10;
- if (guile_Inf == tmp)
- break;
- tmp = guile_Inf;
- }
- #endif
- #ifdef NAN
- /* C99 NAN, when available */
- guile_NaN = NAN;
- #elif defined HAVE_DQNAN
- {
- /* OSF */
- extern unsigned int DQNAN[2];
- guile_NaN = (*((double *)(DQNAN)));
- }
- #else
- guile_NaN = guile_Inf / guile_Inf;
- #endif
- }
- SCM_DEFINE (scm_inf, "inf", 0, 0, 0,
- (void),
- "Return Inf.")
- #define FUNC_NAME s_scm_inf
- {
- static int initialized = 0;
- if (! initialized)
- {
- guile_ieee_init ();
- initialized = 1;
- }
- return scm_i_from_double (guile_Inf);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_nan, "nan", 0, 0, 0,
- (void),
- "Return NaN.")
- #define FUNC_NAME s_scm_nan
- {
- static int initialized = 0;
- if (!initialized)
- {
- guile_ieee_init ();
- initialized = 1;
- }
- return scm_i_from_double (guile_NaN);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_abs, "abs", 1, 0, 0,
- (SCM x),
- "Return the absolute value of @var{x}.")
- #define FUNC_NAME s_scm_abs
- {
- if (SCM_I_INUMP (x))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- if (xx >= 0)
- return x;
- else if (SCM_POSFIXABLE (-xx))
- return SCM_I_MAKINUM (-xx);
- else
- return scm_i_inum2big (-xx);
- }
- else if (SCM_LIKELY (SCM_REALP (x)))
- {
- double xx = SCM_REAL_VALUE (x);
- /* If x is a NaN then xx<0 is false so we return x unchanged */
- if (xx < 0.0)
- return scm_i_from_double (-xx);
- /* Handle signed zeroes properly */
- else if (SCM_UNLIKELY (xx == 0.0))
- return flo0;
- else
- return x;
- }
- else if (SCM_BIGP (x))
- {
- const int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
- if (sgn < 0)
- return scm_i_clonebig (x, 0);
- else
- return x;
- }
- else if (SCM_FRACTIONP (x))
- {
- if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (x))))
- return x;
- return scm_i_make_ratio_already_reduced
- (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
- SCM_FRACTION_DENOMINATOR (x));
- }
- else
- return scm_wta_dispatch_1 (g_scm_abs, x, 1, s_scm_abs);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_quotient, "quotient", 2, 0, 0,
- (SCM x, SCM y),
- "Return the quotient of the numbers @var{x} and @var{y}.")
- #define FUNC_NAME s_scm_quotient
- {
- if (SCM_LIKELY (scm_is_integer (x)))
- {
- if (SCM_LIKELY (scm_is_integer (y)))
- return scm_truncate_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_quotient, x, y, SCM_ARG2, s_scm_quotient);
- }
- else
- return scm_wta_dispatch_2 (g_scm_quotient, x, y, SCM_ARG1, s_scm_quotient);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_remainder, "remainder", 2, 0, 0,
- (SCM x, SCM y),
- "Return the remainder of the numbers @var{x} and @var{y}.\n"
- "@lisp\n"
- "(remainder 13 4) @result{} 1\n"
- "(remainder -13 4) @result{} -1\n"
- "@end lisp")
- #define FUNC_NAME s_scm_remainder
- {
- if (SCM_LIKELY (scm_is_integer (x)))
- {
- if (SCM_LIKELY (scm_is_integer (y)))
- return scm_truncate_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_remainder, x, y, SCM_ARG2, s_scm_remainder);
- }
- else
- return scm_wta_dispatch_2 (g_scm_remainder, x, y, SCM_ARG1, s_scm_remainder);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_modulo, "modulo", 2, 0, 0,
- (SCM x, SCM y),
- "Return the modulo of the numbers @var{x} and @var{y}.\n"
- "@lisp\n"
- "(modulo 13 4) @result{} 1\n"
- "(modulo -13 4) @result{} 3\n"
- "@end lisp")
- #define FUNC_NAME s_scm_modulo
- {
- if (SCM_LIKELY (scm_is_integer (x)))
- {
- if (SCM_LIKELY (scm_is_integer (y)))
- return scm_floor_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_modulo, x, y, SCM_ARG2, s_scm_modulo);
- }
- else
- return scm_wta_dispatch_2 (g_scm_modulo, x, y, SCM_ARG1, s_scm_modulo);
- }
- #undef FUNC_NAME
- /* Return the exact integer q such that n = q*d, for exact integers n
- and d, where d is known in advance to divide n evenly (with zero
- remainder). For large integers, this can be computed more
- efficiently than when the remainder is unknown. */
- static SCM
- scm_exact_integer_quotient (SCM n, SCM d)
- #define FUNC_NAME "exact-integer-quotient"
- {
- if (SCM_LIKELY (SCM_I_INUMP (n)))
- {
- scm_t_inum nn = SCM_I_INUM (n);
- if (SCM_LIKELY (SCM_I_INUMP (d)))
- {
- scm_t_inum dd = SCM_I_INUM (d);
- if (SCM_UNLIKELY (dd == 0))
- scm_num_overflow ("exact-integer-quotient");
- else
- {
- scm_t_inum qq = nn / dd;
- if (SCM_LIKELY (SCM_FIXABLE (qq)))
- return SCM_I_MAKINUM (qq);
- else
- return scm_i_inum2big (qq);
- }
- }
- else if (SCM_LIKELY (SCM_BIGP (d)))
- {
- /* n is an inum and d is a bignum. Given that d is known to
- divide n evenly, there are only two possibilities: n is 0,
- or else n is fixnum-min and d is abs(fixnum-min). */
- if (nn == 0)
- return SCM_INUM0;
- else
- return SCM_I_MAKINUM (-1);
- }
- else
- SCM_WRONG_TYPE_ARG (2, d);
- }
- else if (SCM_LIKELY (SCM_BIGP (n)))
- {
- if (SCM_LIKELY (SCM_I_INUMP (d)))
- {
- scm_t_inum dd = SCM_I_INUM (d);
- if (SCM_UNLIKELY (dd == 0))
- scm_num_overflow ("exact-integer-quotient");
- else if (SCM_UNLIKELY (dd == 1))
- return n;
- else
- {
- SCM q = scm_i_mkbig ();
- if (dd > 0)
- mpz_divexact_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (n), dd);
- else
- {
- mpz_divexact_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (n), -dd);
- mpz_neg (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q));
- }
- scm_remember_upto_here_1 (n);
- return scm_i_normbig (q);
- }
- }
- else if (SCM_LIKELY (SCM_BIGP (d)))
- {
- SCM q = scm_i_mkbig ();
- mpz_divexact (SCM_I_BIG_MPZ (q),
- SCM_I_BIG_MPZ (n),
- SCM_I_BIG_MPZ (d));
- scm_remember_upto_here_2 (n, d);
- return scm_i_normbig (q);
- }
- else
- SCM_WRONG_TYPE_ARG (2, d);
- }
- else
- SCM_WRONG_TYPE_ARG (1, n);
- }
- #undef FUNC_NAME
- /* two_valued_wta_dispatch_2 is a version of SCM_WTA_DISPATCH_2 for
- two-valued functions. It is called from primitive generics that take
- two arguments and return two values, when the core procedure is
- unable to handle the given argument types. If there are GOOPS
- methods for this primitive generic, it dispatches to GOOPS and, if
- successful, expects two values to be returned, which are placed in
- *rp1 and *rp2. If there are no GOOPS methods, it throws a
- wrong-type-arg exception.
- FIXME: This obviously belongs somewhere else, but until we decide on
- the right API, it is here as a static function, because it is needed
- by the *_divide functions below.
- */
- static void
- two_valued_wta_dispatch_2 (SCM gf, SCM a1, SCM a2, int pos,
- const char *subr, SCM *rp1, SCM *rp2)
- {
- SCM vals = scm_wta_dispatch_2 (gf, a1, a2, pos, subr);
-
- scm_i_extract_values_2 (vals, rp1, rp2);
- }
- SCM_DEFINE (scm_euclidean_quotient, "euclidean-quotient", 2, 0, 0,
- (SCM x, SCM y),
- "Return the integer @var{q} such that\n"
- "@math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
- "where @math{0 <= @var{r} < abs(@var{y})}.\n"
- "@lisp\n"
- "(euclidean-quotient 123 10) @result{} 12\n"
- "(euclidean-quotient 123 -10) @result{} -12\n"
- "(euclidean-quotient -123 10) @result{} -13\n"
- "(euclidean-quotient -123 -10) @result{} 13\n"
- "(euclidean-quotient -123.2 -63.5) @result{} 2.0\n"
- "(euclidean-quotient 16/3 -10/7) @result{} -3\n"
- "@end lisp")
- #define FUNC_NAME s_scm_euclidean_quotient
- {
- if (scm_is_false (scm_negative_p (y)))
- return scm_floor_quotient (x, y);
- else
- return scm_ceiling_quotient (x, y);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_euclidean_remainder, "euclidean-remainder", 2, 0, 0,
- (SCM x, SCM y),
- "Return the real number @var{r} such that\n"
- "@math{0 <= @var{r} < abs(@var{y})} and\n"
- "@math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
- "for some integer @var{q}.\n"
- "@lisp\n"
- "(euclidean-remainder 123 10) @result{} 3\n"
- "(euclidean-remainder 123 -10) @result{} 3\n"
- "(euclidean-remainder -123 10) @result{} 7\n"
- "(euclidean-remainder -123 -10) @result{} 7\n"
- "(euclidean-remainder -123.2 -63.5) @result{} 3.8\n"
- "(euclidean-remainder 16/3 -10/7) @result{} 22/21\n"
- "@end lisp")
- #define FUNC_NAME s_scm_euclidean_remainder
- {
- if (scm_is_false (scm_negative_p (y)))
- return scm_floor_remainder (x, y);
- else
- return scm_ceiling_remainder (x, y);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_i_euclidean_divide, "euclidean/", 2, 0, 0,
- (SCM x, SCM y),
- "Return the integer @var{q} and the real number @var{r}\n"
- "such that @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
- "and @math{0 <= @var{r} < abs(@var{y})}.\n"
- "@lisp\n"
- "(euclidean/ 123 10) @result{} 12 and 3\n"
- "(euclidean/ 123 -10) @result{} -12 and 3\n"
- "(euclidean/ -123 10) @result{} -13 and 7\n"
- "(euclidean/ -123 -10) @result{} 13 and 7\n"
- "(euclidean/ -123.2 -63.5) @result{} 2.0 and 3.8\n"
- "(euclidean/ 16/3 -10/7) @result{} -3 and 22/21\n"
- "@end lisp")
- #define FUNC_NAME s_scm_i_euclidean_divide
- {
- if (scm_is_false (scm_negative_p (y)))
- return scm_i_floor_divide (x, y);
- else
- return scm_i_ceiling_divide (x, y);
- }
- #undef FUNC_NAME
- void
- scm_euclidean_divide (SCM x, SCM y, SCM *qp, SCM *rp)
- {
- if (scm_is_false (scm_negative_p (y)))
- return scm_floor_divide (x, y, qp, rp);
- else
- return scm_ceiling_divide (x, y, qp, rp);
- }
- static SCM scm_i_inexact_floor_quotient (double x, double y);
- static SCM scm_i_exact_rational_floor_quotient (SCM x, SCM y);
- SCM_PRIMITIVE_GENERIC (scm_floor_quotient, "floor-quotient", 2, 0, 0,
- (SCM x, SCM y),
- "Return the floor of @math{@var{x} / @var{y}}.\n"
- "@lisp\n"
- "(floor-quotient 123 10) @result{} 12\n"
- "(floor-quotient 123 -10) @result{} -13\n"
- "(floor-quotient -123 10) @result{} -13\n"
- "(floor-quotient -123 -10) @result{} 12\n"
- "(floor-quotient -123.2 -63.5) @result{} 1.0\n"
- "(floor-quotient 16/3 -10/7) @result{} -4\n"
- "@end lisp")
- #define FUNC_NAME s_scm_floor_quotient
- {
- if (SCM_LIKELY (SCM_I_INUMP (x)))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- scm_t_inum xx1 = xx;
- scm_t_inum qq;
- if (SCM_LIKELY (yy > 0))
- {
- if (SCM_UNLIKELY (xx < 0))
- xx1 = xx - yy + 1;
- }
- else if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_floor_quotient);
- else if (xx > 0)
- xx1 = xx - yy - 1;
- qq = xx1 / yy;
- if (SCM_LIKELY (SCM_FIXABLE (qq)))
- return SCM_I_MAKINUM (qq);
- else
- return scm_i_inum2big (qq);
- }
- else if (SCM_BIGP (y))
- {
- int sign = mpz_sgn (SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_1 (y);
- if (sign > 0)
- return SCM_I_MAKINUM ((xx < 0) ? -1 : 0);
- else
- return SCM_I_MAKINUM ((xx > 0) ? -1 : 0);
- }
- else if (SCM_REALP (y))
- return scm_i_inexact_floor_quotient (xx, SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_floor_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_floor_quotient, x, y, SCM_ARG2,
- s_scm_floor_quotient);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_floor_quotient);
- else if (SCM_UNLIKELY (yy == 1))
- return x;
- else
- {
- SCM q = scm_i_mkbig ();
- if (yy > 0)
- mpz_fdiv_q_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (x), yy);
- else
- {
- mpz_cdiv_q_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (x), -yy);
- mpz_neg (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q));
- }
- scm_remember_upto_here_1 (x);
- return scm_i_normbig (q);
- }
- }
- else if (SCM_BIGP (y))
- {
- SCM q = scm_i_mkbig ();
- mpz_fdiv_q (SCM_I_BIG_MPZ (q),
- SCM_I_BIG_MPZ (x),
- SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- return scm_i_normbig (q);
- }
- else if (SCM_REALP (y))
- return scm_i_inexact_floor_quotient
- (scm_i_big2dbl (x), SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_floor_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_floor_quotient, x, y, SCM_ARG2,
- s_scm_floor_quotient);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_inexact_floor_quotient
- (SCM_REAL_VALUE (x), scm_to_double (y));
- else
- return scm_wta_dispatch_2 (g_scm_floor_quotient, x, y, SCM_ARG2,
- s_scm_floor_quotient);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- return scm_i_inexact_floor_quotient
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_exact_rational_floor_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_floor_quotient, x, y, SCM_ARG2,
- s_scm_floor_quotient);
- }
- else
- return scm_wta_dispatch_2 (g_scm_floor_quotient, x, y, SCM_ARG1,
- s_scm_floor_quotient);
- }
- #undef FUNC_NAME
- static SCM
- scm_i_inexact_floor_quotient (double x, double y)
- {
- if (SCM_UNLIKELY (y == 0))
- scm_num_overflow (s_scm_floor_quotient); /* or return a NaN? */
- else
- return scm_i_from_double (floor (x / y));
- }
- static SCM
- scm_i_exact_rational_floor_quotient (SCM x, SCM y)
- {
- return scm_floor_quotient
- (scm_product (scm_numerator (x), scm_denominator (y)),
- scm_product (scm_numerator (y), scm_denominator (x)));
- }
- static SCM scm_i_inexact_floor_remainder (double x, double y);
- static SCM scm_i_exact_rational_floor_remainder (SCM x, SCM y);
- SCM_PRIMITIVE_GENERIC (scm_floor_remainder, "floor-remainder", 2, 0, 0,
- (SCM x, SCM y),
- "Return the real number @var{r} such that\n"
- "@math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
- "where @math{@var{q} = floor(@var{x} / @var{y})}.\n"
- "@lisp\n"
- "(floor-remainder 123 10) @result{} 3\n"
- "(floor-remainder 123 -10) @result{} -7\n"
- "(floor-remainder -123 10) @result{} 7\n"
- "(floor-remainder -123 -10) @result{} -3\n"
- "(floor-remainder -123.2 -63.5) @result{} -59.7\n"
- "(floor-remainder 16/3 -10/7) @result{} -8/21\n"
- "@end lisp")
- #define FUNC_NAME s_scm_floor_remainder
- {
- if (SCM_LIKELY (SCM_I_INUMP (x)))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_floor_remainder);
- else
- {
- scm_t_inum rr = xx % yy;
- int needs_adjustment;
- if (SCM_LIKELY (yy > 0))
- needs_adjustment = (rr < 0);
- else
- needs_adjustment = (rr > 0);
- if (needs_adjustment)
- rr += yy;
- return SCM_I_MAKINUM (rr);
- }
- }
- else if (SCM_BIGP (y))
- {
- int sign = mpz_sgn (SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_1 (y);
- if (sign > 0)
- {
- if (xx < 0)
- {
- SCM r = scm_i_mkbig ();
- mpz_sub_ui (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (y), -xx);
- scm_remember_upto_here_1 (y);
- return scm_i_normbig (r);
- }
- else
- return x;
- }
- else if (xx <= 0)
- return x;
- else
- {
- SCM r = scm_i_mkbig ();
- mpz_add_ui (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (y), xx);
- scm_remember_upto_here_1 (y);
- return scm_i_normbig (r);
- }
- }
- else if (SCM_REALP (y))
- return scm_i_inexact_floor_remainder (xx, SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_floor_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_floor_remainder, x, y, SCM_ARG2,
- s_scm_floor_remainder);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_floor_remainder);
- else
- {
- scm_t_inum rr;
- if (yy > 0)
- rr = mpz_fdiv_ui (SCM_I_BIG_MPZ (x), yy);
- else
- rr = -mpz_cdiv_ui (SCM_I_BIG_MPZ (x), -yy);
- scm_remember_upto_here_1 (x);
- return SCM_I_MAKINUM (rr);
- }
- }
- else if (SCM_BIGP (y))
- {
- SCM r = scm_i_mkbig ();
- mpz_fdiv_r (SCM_I_BIG_MPZ (r),
- SCM_I_BIG_MPZ (x),
- SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- return scm_i_normbig (r);
- }
- else if (SCM_REALP (y))
- return scm_i_inexact_floor_remainder
- (scm_i_big2dbl (x), SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_floor_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_floor_remainder, x, y, SCM_ARG2,
- s_scm_floor_remainder);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_inexact_floor_remainder
- (SCM_REAL_VALUE (x), scm_to_double (y));
- else
- return scm_wta_dispatch_2 (g_scm_floor_remainder, x, y, SCM_ARG2,
- s_scm_floor_remainder);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- return scm_i_inexact_floor_remainder
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_exact_rational_floor_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_floor_remainder, x, y, SCM_ARG2,
- s_scm_floor_remainder);
- }
- else
- return scm_wta_dispatch_2 (g_scm_floor_remainder, x, y, SCM_ARG1,
- s_scm_floor_remainder);
- }
- #undef FUNC_NAME
- static SCM
- scm_i_inexact_floor_remainder (double x, double y)
- {
- /* Although it would be more efficient to use fmod here, we can't
- because it would in some cases produce results inconsistent with
- scm_i_inexact_floor_quotient, such that x != q * y + r (not even
- close). In particular, when x is very close to a multiple of y,
- then r might be either 0.0 or y, but those two cases must
- correspond to different choices of q. If r = 0.0 then q must be
- x/y, and if r = y then q must be x/y-1. If quotient chooses one
- and remainder chooses the other, it would be bad. */
- if (SCM_UNLIKELY (y == 0))
- scm_num_overflow (s_scm_floor_remainder); /* or return a NaN? */
- else
- return scm_i_from_double (x - y * floor (x / y));
- }
- static SCM
- scm_i_exact_rational_floor_remainder (SCM x, SCM y)
- {
- SCM xd = scm_denominator (x);
- SCM yd = scm_denominator (y);
- SCM r1 = scm_floor_remainder (scm_product (scm_numerator (x), yd),
- scm_product (scm_numerator (y), xd));
- return scm_divide (r1, scm_product (xd, yd));
- }
- static void scm_i_inexact_floor_divide (double x, double y,
- SCM *qp, SCM *rp);
- static void scm_i_exact_rational_floor_divide (SCM x, SCM y,
- SCM *qp, SCM *rp);
- SCM_PRIMITIVE_GENERIC (scm_i_floor_divide, "floor/", 2, 0, 0,
- (SCM x, SCM y),
- "Return the integer @var{q} and the real number @var{r}\n"
- "such that @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
- "and @math{@var{q} = floor(@var{x} / @var{y})}.\n"
- "@lisp\n"
- "(floor/ 123 10) @result{} 12 and 3\n"
- "(floor/ 123 -10) @result{} -13 and -7\n"
- "(floor/ -123 10) @result{} -13 and 7\n"
- "(floor/ -123 -10) @result{} 12 and -3\n"
- "(floor/ -123.2 -63.5) @result{} 1.0 and -59.7\n"
- "(floor/ 16/3 -10/7) @result{} -4 and -8/21\n"
- "@end lisp")
- #define FUNC_NAME s_scm_i_floor_divide
- {
- SCM q, r;
- scm_floor_divide(x, y, &q, &r);
- return scm_values (scm_list_2 (q, r));
- }
- #undef FUNC_NAME
- #define s_scm_floor_divide s_scm_i_floor_divide
- #define g_scm_floor_divide g_scm_i_floor_divide
- void
- scm_floor_divide (SCM x, SCM y, SCM *qp, SCM *rp)
- {
- if (SCM_LIKELY (SCM_I_INUMP (x)))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_floor_divide);
- else
- {
- scm_t_inum qq = xx / yy;
- scm_t_inum rr = xx % yy;
- int needs_adjustment;
- if (SCM_LIKELY (yy > 0))
- needs_adjustment = (rr < 0);
- else
- needs_adjustment = (rr > 0);
- if (needs_adjustment)
- {
- rr += yy;
- qq--;
- }
- if (SCM_LIKELY (SCM_FIXABLE (qq)))
- *qp = SCM_I_MAKINUM (qq);
- else
- *qp = scm_i_inum2big (qq);
- *rp = SCM_I_MAKINUM (rr);
- }
- return;
- }
- else if (SCM_BIGP (y))
- {
- int sign = mpz_sgn (SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_1 (y);
- if (sign > 0)
- {
- if (xx < 0)
- {
- SCM r = scm_i_mkbig ();
- mpz_sub_ui (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (y), -xx);
- scm_remember_upto_here_1 (y);
- *qp = SCM_I_MAKINUM (-1);
- *rp = scm_i_normbig (r);
- }
- else
- {
- *qp = SCM_INUM0;
- *rp = x;
- }
- }
- else if (xx <= 0)
- {
- *qp = SCM_INUM0;
- *rp = x;
- }
- else
- {
- SCM r = scm_i_mkbig ();
- mpz_add_ui (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (y), xx);
- scm_remember_upto_here_1 (y);
- *qp = SCM_I_MAKINUM (-1);
- *rp = scm_i_normbig (r);
- }
- return;
- }
- else if (SCM_REALP (y))
- return scm_i_inexact_floor_divide (xx, SCM_REAL_VALUE (y), qp, rp);
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_floor_divide (x, y, qp, rp);
- else
- return two_valued_wta_dispatch_2 (g_scm_floor_divide, x, y, SCM_ARG2,
- s_scm_floor_divide, qp, rp);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_floor_divide);
- else
- {
- SCM q = scm_i_mkbig ();
- SCM r = scm_i_mkbig ();
- if (yy > 0)
- mpz_fdiv_qr_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
- SCM_I_BIG_MPZ (x), yy);
- else
- {
- mpz_cdiv_qr_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
- SCM_I_BIG_MPZ (x), -yy);
- mpz_neg (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q));
- }
- scm_remember_upto_here_1 (x);
- *qp = scm_i_normbig (q);
- *rp = scm_i_normbig (r);
- }
- return;
- }
- else if (SCM_BIGP (y))
- {
- SCM q = scm_i_mkbig ();
- SCM r = scm_i_mkbig ();
- mpz_fdiv_qr (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
- SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- *qp = scm_i_normbig (q);
- *rp = scm_i_normbig (r);
- return;
- }
- else if (SCM_REALP (y))
- return scm_i_inexact_floor_divide
- (scm_i_big2dbl (x), SCM_REAL_VALUE (y), qp, rp);
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_floor_divide (x, y, qp, rp);
- else
- return two_valued_wta_dispatch_2 (g_scm_floor_divide, x, y, SCM_ARG2,
- s_scm_floor_divide, qp, rp);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_inexact_floor_divide
- (SCM_REAL_VALUE (x), scm_to_double (y), qp, rp);
- else
- return two_valued_wta_dispatch_2 (g_scm_floor_divide, x, y, SCM_ARG2,
- s_scm_floor_divide, qp, rp);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- return scm_i_inexact_floor_divide
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y), qp, rp);
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_exact_rational_floor_divide (x, y, qp, rp);
- else
- return two_valued_wta_dispatch_2 (g_scm_floor_divide, x, y, SCM_ARG2,
- s_scm_floor_divide, qp, rp);
- }
- else
- return two_valued_wta_dispatch_2 (g_scm_floor_divide, x, y, SCM_ARG1,
- s_scm_floor_divide, qp, rp);
- }
- static void
- scm_i_inexact_floor_divide (double x, double y, SCM *qp, SCM *rp)
- {
- if (SCM_UNLIKELY (y == 0))
- scm_num_overflow (s_scm_floor_divide); /* or return a NaN? */
- else
- {
- double q = floor (x / y);
- double r = x - q * y;
- *qp = scm_i_from_double (q);
- *rp = scm_i_from_double (r);
- }
- }
- static void
- scm_i_exact_rational_floor_divide (SCM x, SCM y, SCM *qp, SCM *rp)
- {
- SCM r1;
- SCM xd = scm_denominator (x);
- SCM yd = scm_denominator (y);
- scm_floor_divide (scm_product (scm_numerator (x), yd),
- scm_product (scm_numerator (y), xd),
- qp, &r1);
- *rp = scm_divide (r1, scm_product (xd, yd));
- }
- static SCM scm_i_inexact_ceiling_quotient (double x, double y);
- static SCM scm_i_exact_rational_ceiling_quotient (SCM x, SCM y);
- SCM_PRIMITIVE_GENERIC (scm_ceiling_quotient, "ceiling-quotient", 2, 0, 0,
- (SCM x, SCM y),
- "Return the ceiling of @math{@var{x} / @var{y}}.\n"
- "@lisp\n"
- "(ceiling-quotient 123 10) @result{} 13\n"
- "(ceiling-quotient 123 -10) @result{} -12\n"
- "(ceiling-quotient -123 10) @result{} -12\n"
- "(ceiling-quotient -123 -10) @result{} 13\n"
- "(ceiling-quotient -123.2 -63.5) @result{} 2.0\n"
- "(ceiling-quotient 16/3 -10/7) @result{} -3\n"
- "@end lisp")
- #define FUNC_NAME s_scm_ceiling_quotient
- {
- if (SCM_LIKELY (SCM_I_INUMP (x)))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_ceiling_quotient);
- else
- {
- scm_t_inum xx1 = xx;
- scm_t_inum qq;
- if (SCM_LIKELY (yy > 0))
- {
- if (SCM_LIKELY (xx >= 0))
- xx1 = xx + yy - 1;
- }
- else if (xx < 0)
- xx1 = xx + yy + 1;
- qq = xx1 / yy;
- if (SCM_LIKELY (SCM_FIXABLE (qq)))
- return SCM_I_MAKINUM (qq);
- else
- return scm_i_inum2big (qq);
- }
- }
- else if (SCM_BIGP (y))
- {
- int sign = mpz_sgn (SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_1 (y);
- if (SCM_LIKELY (sign > 0))
- {
- if (SCM_LIKELY (xx > 0))
- return SCM_INUM1;
- else if (SCM_UNLIKELY (xx == SCM_MOST_NEGATIVE_FIXNUM)
- && SCM_UNLIKELY (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
- - SCM_MOST_NEGATIVE_FIXNUM) == 0))
- {
- /* Special case: x == fixnum-min && y == abs (fixnum-min) */
- scm_remember_upto_here_1 (y);
- return SCM_I_MAKINUM (-1);
- }
- else
- return SCM_INUM0;
- }
- else if (xx >= 0)
- return SCM_INUM0;
- else
- return SCM_INUM1;
- }
- else if (SCM_REALP (y))
- return scm_i_inexact_ceiling_quotient (xx, SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_ceiling_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_ceiling_quotient, x, y, SCM_ARG2,
- s_scm_ceiling_quotient);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_ceiling_quotient);
- else if (SCM_UNLIKELY (yy == 1))
- return x;
- else
- {
- SCM q = scm_i_mkbig ();
- if (yy > 0)
- mpz_cdiv_q_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (x), yy);
- else
- {
- mpz_fdiv_q_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (x), -yy);
- mpz_neg (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q));
- }
- scm_remember_upto_here_1 (x);
- return scm_i_normbig (q);
- }
- }
- else if (SCM_BIGP (y))
- {
- SCM q = scm_i_mkbig ();
- mpz_cdiv_q (SCM_I_BIG_MPZ (q),
- SCM_I_BIG_MPZ (x),
- SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- return scm_i_normbig (q);
- }
- else if (SCM_REALP (y))
- return scm_i_inexact_ceiling_quotient
- (scm_i_big2dbl (x), SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_ceiling_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_ceiling_quotient, x, y, SCM_ARG2,
- s_scm_ceiling_quotient);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_inexact_ceiling_quotient
- (SCM_REAL_VALUE (x), scm_to_double (y));
- else
- return scm_wta_dispatch_2 (g_scm_ceiling_quotient, x, y, SCM_ARG2,
- s_scm_ceiling_quotient);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- return scm_i_inexact_ceiling_quotient
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_exact_rational_ceiling_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_ceiling_quotient, x, y, SCM_ARG2,
- s_scm_ceiling_quotient);
- }
- else
- return scm_wta_dispatch_2 (g_scm_ceiling_quotient, x, y, SCM_ARG1,
- s_scm_ceiling_quotient);
- }
- #undef FUNC_NAME
- static SCM
- scm_i_inexact_ceiling_quotient (double x, double y)
- {
- if (SCM_UNLIKELY (y == 0))
- scm_num_overflow (s_scm_ceiling_quotient); /* or return a NaN? */
- else
- return scm_i_from_double (ceil (x / y));
- }
- static SCM
- scm_i_exact_rational_ceiling_quotient (SCM x, SCM y)
- {
- return scm_ceiling_quotient
- (scm_product (scm_numerator (x), scm_denominator (y)),
- scm_product (scm_numerator (y), scm_denominator (x)));
- }
- static SCM scm_i_inexact_ceiling_remainder (double x, double y);
- static SCM scm_i_exact_rational_ceiling_remainder (SCM x, SCM y);
- SCM_PRIMITIVE_GENERIC (scm_ceiling_remainder, "ceiling-remainder", 2, 0, 0,
- (SCM x, SCM y),
- "Return the real number @var{r} such that\n"
- "@math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
- "where @math{@var{q} = ceiling(@var{x} / @var{y})}.\n"
- "@lisp\n"
- "(ceiling-remainder 123 10) @result{} -7\n"
- "(ceiling-remainder 123 -10) @result{} 3\n"
- "(ceiling-remainder -123 10) @result{} -3\n"
- "(ceiling-remainder -123 -10) @result{} 7\n"
- "(ceiling-remainder -123.2 -63.5) @result{} 3.8\n"
- "(ceiling-remainder 16/3 -10/7) @result{} 22/21\n"
- "@end lisp")
- #define FUNC_NAME s_scm_ceiling_remainder
- {
- if (SCM_LIKELY (SCM_I_INUMP (x)))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_ceiling_remainder);
- else
- {
- scm_t_inum rr = xx % yy;
- int needs_adjustment;
- if (SCM_LIKELY (yy > 0))
- needs_adjustment = (rr > 0);
- else
- needs_adjustment = (rr < 0);
- if (needs_adjustment)
- rr -= yy;
- return SCM_I_MAKINUM (rr);
- }
- }
- else if (SCM_BIGP (y))
- {
- int sign = mpz_sgn (SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_1 (y);
- if (SCM_LIKELY (sign > 0))
- {
- if (SCM_LIKELY (xx > 0))
- {
- SCM r = scm_i_mkbig ();
- mpz_sub_ui (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (y), xx);
- scm_remember_upto_here_1 (y);
- mpz_neg (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (r));
- return scm_i_normbig (r);
- }
- else if (SCM_UNLIKELY (xx == SCM_MOST_NEGATIVE_FIXNUM)
- && SCM_UNLIKELY (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
- - SCM_MOST_NEGATIVE_FIXNUM) == 0))
- {
- /* Special case: x == fixnum-min && y == abs (fixnum-min) */
- scm_remember_upto_here_1 (y);
- return SCM_INUM0;
- }
- else
- return x;
- }
- else if (xx >= 0)
- return x;
- else
- {
- SCM r = scm_i_mkbig ();
- mpz_add_ui (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (y), -xx);
- scm_remember_upto_here_1 (y);
- mpz_neg (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (r));
- return scm_i_normbig (r);
- }
- }
- else if (SCM_REALP (y))
- return scm_i_inexact_ceiling_remainder (xx, SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_ceiling_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_ceiling_remainder, x, y, SCM_ARG2,
- s_scm_ceiling_remainder);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_ceiling_remainder);
- else
- {
- scm_t_inum rr;
- if (yy > 0)
- rr = -mpz_cdiv_ui (SCM_I_BIG_MPZ (x), yy);
- else
- rr = mpz_fdiv_ui (SCM_I_BIG_MPZ (x), -yy);
- scm_remember_upto_here_1 (x);
- return SCM_I_MAKINUM (rr);
- }
- }
- else if (SCM_BIGP (y))
- {
- SCM r = scm_i_mkbig ();
- mpz_cdiv_r (SCM_I_BIG_MPZ (r),
- SCM_I_BIG_MPZ (x),
- SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- return scm_i_normbig (r);
- }
- else if (SCM_REALP (y))
- return scm_i_inexact_ceiling_remainder
- (scm_i_big2dbl (x), SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_ceiling_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_ceiling_remainder, x, y, SCM_ARG2,
- s_scm_ceiling_remainder);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_inexact_ceiling_remainder
- (SCM_REAL_VALUE (x), scm_to_double (y));
- else
- return scm_wta_dispatch_2 (g_scm_ceiling_remainder, x, y, SCM_ARG2,
- s_scm_ceiling_remainder);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- return scm_i_inexact_ceiling_remainder
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_exact_rational_ceiling_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_ceiling_remainder, x, y, SCM_ARG2,
- s_scm_ceiling_remainder);
- }
- else
- return scm_wta_dispatch_2 (g_scm_ceiling_remainder, x, y, SCM_ARG1,
- s_scm_ceiling_remainder);
- }
- #undef FUNC_NAME
- static SCM
- scm_i_inexact_ceiling_remainder (double x, double y)
- {
- /* Although it would be more efficient to use fmod here, we can't
- because it would in some cases produce results inconsistent with
- scm_i_inexact_ceiling_quotient, such that x != q * y + r (not even
- close). In particular, when x is very close to a multiple of y,
- then r might be either 0.0 or -y, but those two cases must
- correspond to different choices of q. If r = 0.0 then q must be
- x/y, and if r = -y then q must be x/y+1. If quotient chooses one
- and remainder chooses the other, it would be bad. */
- if (SCM_UNLIKELY (y == 0))
- scm_num_overflow (s_scm_ceiling_remainder); /* or return a NaN? */
- else
- return scm_i_from_double (x - y * ceil (x / y));
- }
- static SCM
- scm_i_exact_rational_ceiling_remainder (SCM x, SCM y)
- {
- SCM xd = scm_denominator (x);
- SCM yd = scm_denominator (y);
- SCM r1 = scm_ceiling_remainder (scm_product (scm_numerator (x), yd),
- scm_product (scm_numerator (y), xd));
- return scm_divide (r1, scm_product (xd, yd));
- }
- static void scm_i_inexact_ceiling_divide (double x, double y,
- SCM *qp, SCM *rp);
- static void scm_i_exact_rational_ceiling_divide (SCM x, SCM y,
- SCM *qp, SCM *rp);
- SCM_PRIMITIVE_GENERIC (scm_i_ceiling_divide, "ceiling/", 2, 0, 0,
- (SCM x, SCM y),
- "Return the integer @var{q} and the real number @var{r}\n"
- "such that @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
- "and @math{@var{q} = ceiling(@var{x} / @var{y})}.\n"
- "@lisp\n"
- "(ceiling/ 123 10) @result{} 13 and -7\n"
- "(ceiling/ 123 -10) @result{} -12 and 3\n"
- "(ceiling/ -123 10) @result{} -12 and -3\n"
- "(ceiling/ -123 -10) @result{} 13 and 7\n"
- "(ceiling/ -123.2 -63.5) @result{} 2.0 and 3.8\n"
- "(ceiling/ 16/3 -10/7) @result{} -3 and 22/21\n"
- "@end lisp")
- #define FUNC_NAME s_scm_i_ceiling_divide
- {
- SCM q, r;
- scm_ceiling_divide(x, y, &q, &r);
- return scm_values (scm_list_2 (q, r));
- }
- #undef FUNC_NAME
- #define s_scm_ceiling_divide s_scm_i_ceiling_divide
- #define g_scm_ceiling_divide g_scm_i_ceiling_divide
- void
- scm_ceiling_divide (SCM x, SCM y, SCM *qp, SCM *rp)
- {
- if (SCM_LIKELY (SCM_I_INUMP (x)))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_ceiling_divide);
- else
- {
- scm_t_inum qq = xx / yy;
- scm_t_inum rr = xx % yy;
- int needs_adjustment;
- if (SCM_LIKELY (yy > 0))
- needs_adjustment = (rr > 0);
- else
- needs_adjustment = (rr < 0);
- if (needs_adjustment)
- {
- rr -= yy;
- qq++;
- }
- if (SCM_LIKELY (SCM_FIXABLE (qq)))
- *qp = SCM_I_MAKINUM (qq);
- else
- *qp = scm_i_inum2big (qq);
- *rp = SCM_I_MAKINUM (rr);
- }
- return;
- }
- else if (SCM_BIGP (y))
- {
- int sign = mpz_sgn (SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_1 (y);
- if (SCM_LIKELY (sign > 0))
- {
- if (SCM_LIKELY (xx > 0))
- {
- SCM r = scm_i_mkbig ();
- mpz_sub_ui (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (y), xx);
- scm_remember_upto_here_1 (y);
- mpz_neg (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (r));
- *qp = SCM_INUM1;
- *rp = scm_i_normbig (r);
- }
- else if (SCM_UNLIKELY (xx == SCM_MOST_NEGATIVE_FIXNUM)
- && SCM_UNLIKELY (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
- - SCM_MOST_NEGATIVE_FIXNUM) == 0))
- {
- /* Special case: x == fixnum-min && y == abs (fixnum-min) */
- scm_remember_upto_here_1 (y);
- *qp = SCM_I_MAKINUM (-1);
- *rp = SCM_INUM0;
- }
- else
- {
- *qp = SCM_INUM0;
- *rp = x;
- }
- }
- else if (xx >= 0)
- {
- *qp = SCM_INUM0;
- *rp = x;
- }
- else
- {
- SCM r = scm_i_mkbig ();
- mpz_add_ui (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (y), -xx);
- scm_remember_upto_here_1 (y);
- mpz_neg (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (r));
- *qp = SCM_INUM1;
- *rp = scm_i_normbig (r);
- }
- return;
- }
- else if (SCM_REALP (y))
- return scm_i_inexact_ceiling_divide (xx, SCM_REAL_VALUE (y), qp, rp);
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_ceiling_divide (x, y, qp, rp);
- else
- return two_valued_wta_dispatch_2 (g_scm_ceiling_divide, x, y, SCM_ARG2,
- s_scm_ceiling_divide, qp, rp);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_ceiling_divide);
- else
- {
- SCM q = scm_i_mkbig ();
- SCM r = scm_i_mkbig ();
- if (yy > 0)
- mpz_cdiv_qr_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
- SCM_I_BIG_MPZ (x), yy);
- else
- {
- mpz_fdiv_qr_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
- SCM_I_BIG_MPZ (x), -yy);
- mpz_neg (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q));
- }
- scm_remember_upto_here_1 (x);
- *qp = scm_i_normbig (q);
- *rp = scm_i_normbig (r);
- }
- return;
- }
- else if (SCM_BIGP (y))
- {
- SCM q = scm_i_mkbig ();
- SCM r = scm_i_mkbig ();
- mpz_cdiv_qr (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
- SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- *qp = scm_i_normbig (q);
- *rp = scm_i_normbig (r);
- return;
- }
- else if (SCM_REALP (y))
- return scm_i_inexact_ceiling_divide
- (scm_i_big2dbl (x), SCM_REAL_VALUE (y), qp, rp);
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_ceiling_divide (x, y, qp, rp);
- else
- return two_valued_wta_dispatch_2 (g_scm_ceiling_divide, x, y, SCM_ARG2,
- s_scm_ceiling_divide, qp, rp);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_inexact_ceiling_divide
- (SCM_REAL_VALUE (x), scm_to_double (y), qp, rp);
- else
- return two_valued_wta_dispatch_2 (g_scm_ceiling_divide, x, y, SCM_ARG2,
- s_scm_ceiling_divide, qp, rp);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- return scm_i_inexact_ceiling_divide
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y), qp, rp);
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_exact_rational_ceiling_divide (x, y, qp, rp);
- else
- return two_valued_wta_dispatch_2 (g_scm_ceiling_divide, x, y, SCM_ARG2,
- s_scm_ceiling_divide, qp, rp);
- }
- else
- return two_valued_wta_dispatch_2 (g_scm_ceiling_divide, x, y, SCM_ARG1,
- s_scm_ceiling_divide, qp, rp);
- }
- static void
- scm_i_inexact_ceiling_divide (double x, double y, SCM *qp, SCM *rp)
- {
- if (SCM_UNLIKELY (y == 0))
- scm_num_overflow (s_scm_ceiling_divide); /* or return a NaN? */
- else
- {
- double q = ceil (x / y);
- double r = x - q * y;
- *qp = scm_i_from_double (q);
- *rp = scm_i_from_double (r);
- }
- }
- static void
- scm_i_exact_rational_ceiling_divide (SCM x, SCM y, SCM *qp, SCM *rp)
- {
- SCM r1;
- SCM xd = scm_denominator (x);
- SCM yd = scm_denominator (y);
- scm_ceiling_divide (scm_product (scm_numerator (x), yd),
- scm_product (scm_numerator (y), xd),
- qp, &r1);
- *rp = scm_divide (r1, scm_product (xd, yd));
- }
- static SCM scm_i_inexact_truncate_quotient (double x, double y);
- static SCM scm_i_exact_rational_truncate_quotient (SCM x, SCM y);
- SCM_PRIMITIVE_GENERIC (scm_truncate_quotient, "truncate-quotient", 2, 0, 0,
- (SCM x, SCM y),
- "Return @math{@var{x} / @var{y}} rounded toward zero.\n"
- "@lisp\n"
- "(truncate-quotient 123 10) @result{} 12\n"
- "(truncate-quotient 123 -10) @result{} -12\n"
- "(truncate-quotient -123 10) @result{} -12\n"
- "(truncate-quotient -123 -10) @result{} 12\n"
- "(truncate-quotient -123.2 -63.5) @result{} 1.0\n"
- "(truncate-quotient 16/3 -10/7) @result{} -3\n"
- "@end lisp")
- #define FUNC_NAME s_scm_truncate_quotient
- {
- if (SCM_LIKELY (SCM_I_INUMP (x)))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_truncate_quotient);
- else
- {
- scm_t_inum qq = xx / yy;
- if (SCM_LIKELY (SCM_FIXABLE (qq)))
- return SCM_I_MAKINUM (qq);
- else
- return scm_i_inum2big (qq);
- }
- }
- else if (SCM_BIGP (y))
- {
- if (SCM_UNLIKELY (xx == SCM_MOST_NEGATIVE_FIXNUM)
- && SCM_UNLIKELY (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
- - SCM_MOST_NEGATIVE_FIXNUM) == 0))
- {
- /* Special case: x == fixnum-min && y == abs (fixnum-min) */
- scm_remember_upto_here_1 (y);
- return SCM_I_MAKINUM (-1);
- }
- else
- return SCM_INUM0;
- }
- else if (SCM_REALP (y))
- return scm_i_inexact_truncate_quotient (xx, SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_truncate_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_truncate_quotient, x, y, SCM_ARG2,
- s_scm_truncate_quotient);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_truncate_quotient);
- else if (SCM_UNLIKELY (yy == 1))
- return x;
- else
- {
- SCM q = scm_i_mkbig ();
- if (yy > 0)
- mpz_tdiv_q_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (x), yy);
- else
- {
- mpz_tdiv_q_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (x), -yy);
- mpz_neg (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q));
- }
- scm_remember_upto_here_1 (x);
- return scm_i_normbig (q);
- }
- }
- else if (SCM_BIGP (y))
- {
- SCM q = scm_i_mkbig ();
- mpz_tdiv_q (SCM_I_BIG_MPZ (q),
- SCM_I_BIG_MPZ (x),
- SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- return scm_i_normbig (q);
- }
- else if (SCM_REALP (y))
- return scm_i_inexact_truncate_quotient
- (scm_i_big2dbl (x), SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_truncate_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_truncate_quotient, x, y, SCM_ARG2,
- s_scm_truncate_quotient);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_inexact_truncate_quotient
- (SCM_REAL_VALUE (x), scm_to_double (y));
- else
- return scm_wta_dispatch_2 (g_scm_truncate_quotient, x, y, SCM_ARG2,
- s_scm_truncate_quotient);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- return scm_i_inexact_truncate_quotient
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_exact_rational_truncate_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_truncate_quotient, x, y, SCM_ARG2,
- s_scm_truncate_quotient);
- }
- else
- return scm_wta_dispatch_2 (g_scm_truncate_quotient, x, y, SCM_ARG1,
- s_scm_truncate_quotient);
- }
- #undef FUNC_NAME
- static SCM
- scm_i_inexact_truncate_quotient (double x, double y)
- {
- if (SCM_UNLIKELY (y == 0))
- scm_num_overflow (s_scm_truncate_quotient); /* or return a NaN? */
- else
- return scm_i_from_double (trunc (x / y));
- }
- static SCM
- scm_i_exact_rational_truncate_quotient (SCM x, SCM y)
- {
- return scm_truncate_quotient
- (scm_product (scm_numerator (x), scm_denominator (y)),
- scm_product (scm_numerator (y), scm_denominator (x)));
- }
- static SCM scm_i_inexact_truncate_remainder (double x, double y);
- static SCM scm_i_exact_rational_truncate_remainder (SCM x, SCM y);
- SCM_PRIMITIVE_GENERIC (scm_truncate_remainder, "truncate-remainder", 2, 0, 0,
- (SCM x, SCM y),
- "Return the real number @var{r} such that\n"
- "@math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
- "where @math{@var{q} = truncate(@var{x} / @var{y})}.\n"
- "@lisp\n"
- "(truncate-remainder 123 10) @result{} 3\n"
- "(truncate-remainder 123 -10) @result{} 3\n"
- "(truncate-remainder -123 10) @result{} -3\n"
- "(truncate-remainder -123 -10) @result{} -3\n"
- "(truncate-remainder -123.2 -63.5) @result{} -59.7\n"
- "(truncate-remainder 16/3 -10/7) @result{} 22/21\n"
- "@end lisp")
- #define FUNC_NAME s_scm_truncate_remainder
- {
- if (SCM_LIKELY (SCM_I_INUMP (x)))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_truncate_remainder);
- else
- return SCM_I_MAKINUM (xx % yy);
- }
- else if (SCM_BIGP (y))
- {
- if (SCM_UNLIKELY (xx == SCM_MOST_NEGATIVE_FIXNUM)
- && SCM_UNLIKELY (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
- - SCM_MOST_NEGATIVE_FIXNUM) == 0))
- {
- /* Special case: x == fixnum-min && y == abs (fixnum-min) */
- scm_remember_upto_here_1 (y);
- return SCM_INUM0;
- }
- else
- return x;
- }
- else if (SCM_REALP (y))
- return scm_i_inexact_truncate_remainder (xx, SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_truncate_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_truncate_remainder, x, y, SCM_ARG2,
- s_scm_truncate_remainder);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_truncate_remainder);
- else
- {
- scm_t_inum rr = (mpz_tdiv_ui (SCM_I_BIG_MPZ (x),
- (yy > 0) ? yy : -yy)
- * mpz_sgn (SCM_I_BIG_MPZ (x)));
- scm_remember_upto_here_1 (x);
- return SCM_I_MAKINUM (rr);
- }
- }
- else if (SCM_BIGP (y))
- {
- SCM r = scm_i_mkbig ();
- mpz_tdiv_r (SCM_I_BIG_MPZ (r),
- SCM_I_BIG_MPZ (x),
- SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- return scm_i_normbig (r);
- }
- else if (SCM_REALP (y))
- return scm_i_inexact_truncate_remainder
- (scm_i_big2dbl (x), SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_truncate_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_truncate_remainder, x, y, SCM_ARG2,
- s_scm_truncate_remainder);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_inexact_truncate_remainder
- (SCM_REAL_VALUE (x), scm_to_double (y));
- else
- return scm_wta_dispatch_2 (g_scm_truncate_remainder, x, y, SCM_ARG2,
- s_scm_truncate_remainder);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- return scm_i_inexact_truncate_remainder
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_exact_rational_truncate_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_truncate_remainder, x, y, SCM_ARG2,
- s_scm_truncate_remainder);
- }
- else
- return scm_wta_dispatch_2 (g_scm_truncate_remainder, x, y, SCM_ARG1,
- s_scm_truncate_remainder);
- }
- #undef FUNC_NAME
- static SCM
- scm_i_inexact_truncate_remainder (double x, double y)
- {
- /* Although it would be more efficient to use fmod here, we can't
- because it would in some cases produce results inconsistent with
- scm_i_inexact_truncate_quotient, such that x != q * y + r (not even
- close). In particular, when x is very close to a multiple of y,
- then r might be either 0.0 or sgn(x)*|y|, but those two cases must
- correspond to different choices of q. If quotient chooses one and
- remainder chooses the other, it would be bad. */
- if (SCM_UNLIKELY (y == 0))
- scm_num_overflow (s_scm_truncate_remainder); /* or return a NaN? */
- else
- return scm_i_from_double (x - y * trunc (x / y));
- }
- static SCM
- scm_i_exact_rational_truncate_remainder (SCM x, SCM y)
- {
- SCM xd = scm_denominator (x);
- SCM yd = scm_denominator (y);
- SCM r1 = scm_truncate_remainder (scm_product (scm_numerator (x), yd),
- scm_product (scm_numerator (y), xd));
- return scm_divide (r1, scm_product (xd, yd));
- }
- static void scm_i_inexact_truncate_divide (double x, double y,
- SCM *qp, SCM *rp);
- static void scm_i_exact_rational_truncate_divide (SCM x, SCM y,
- SCM *qp, SCM *rp);
- SCM_PRIMITIVE_GENERIC (scm_i_truncate_divide, "truncate/", 2, 0, 0,
- (SCM x, SCM y),
- "Return the integer @var{q} and the real number @var{r}\n"
- "such that @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
- "and @math{@var{q} = truncate(@var{x} / @var{y})}.\n"
- "@lisp\n"
- "(truncate/ 123 10) @result{} 12 and 3\n"
- "(truncate/ 123 -10) @result{} -12 and 3\n"
- "(truncate/ -123 10) @result{} -12 and -3\n"
- "(truncate/ -123 -10) @result{} 12 and -3\n"
- "(truncate/ -123.2 -63.5) @result{} 1.0 and -59.7\n"
- "(truncate/ 16/3 -10/7) @result{} -3 and 22/21\n"
- "@end lisp")
- #define FUNC_NAME s_scm_i_truncate_divide
- {
- SCM q, r;
- scm_truncate_divide(x, y, &q, &r);
- return scm_values (scm_list_2 (q, r));
- }
- #undef FUNC_NAME
- #define s_scm_truncate_divide s_scm_i_truncate_divide
- #define g_scm_truncate_divide g_scm_i_truncate_divide
- void
- scm_truncate_divide (SCM x, SCM y, SCM *qp, SCM *rp)
- {
- if (SCM_LIKELY (SCM_I_INUMP (x)))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_truncate_divide);
- else
- {
- scm_t_inum qq = xx / yy;
- scm_t_inum rr = xx % yy;
- if (SCM_LIKELY (SCM_FIXABLE (qq)))
- *qp = SCM_I_MAKINUM (qq);
- else
- *qp = scm_i_inum2big (qq);
- *rp = SCM_I_MAKINUM (rr);
- }
- return;
- }
- else if (SCM_BIGP (y))
- {
- if (SCM_UNLIKELY (xx == SCM_MOST_NEGATIVE_FIXNUM)
- && SCM_UNLIKELY (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
- - SCM_MOST_NEGATIVE_FIXNUM) == 0))
- {
- /* Special case: x == fixnum-min && y == abs (fixnum-min) */
- scm_remember_upto_here_1 (y);
- *qp = SCM_I_MAKINUM (-1);
- *rp = SCM_INUM0;
- }
- else
- {
- *qp = SCM_INUM0;
- *rp = x;
- }
- return;
- }
- else if (SCM_REALP (y))
- return scm_i_inexact_truncate_divide (xx, SCM_REAL_VALUE (y), qp, rp);
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_truncate_divide (x, y, qp, rp);
- else
- return two_valued_wta_dispatch_2
- (g_scm_truncate_divide, x, y, SCM_ARG2,
- s_scm_truncate_divide, qp, rp);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_truncate_divide);
- else
- {
- SCM q = scm_i_mkbig ();
- scm_t_inum rr;
- if (yy > 0)
- rr = mpz_tdiv_q_ui (SCM_I_BIG_MPZ (q),
- SCM_I_BIG_MPZ (x), yy);
- else
- {
- rr = mpz_tdiv_q_ui (SCM_I_BIG_MPZ (q),
- SCM_I_BIG_MPZ (x), -yy);
- mpz_neg (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q));
- }
- rr *= mpz_sgn (SCM_I_BIG_MPZ (x));
- scm_remember_upto_here_1 (x);
- *qp = scm_i_normbig (q);
- *rp = SCM_I_MAKINUM (rr);
- }
- return;
- }
- else if (SCM_BIGP (y))
- {
- SCM q = scm_i_mkbig ();
- SCM r = scm_i_mkbig ();
- mpz_tdiv_qr (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
- SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- *qp = scm_i_normbig (q);
- *rp = scm_i_normbig (r);
- }
- else if (SCM_REALP (y))
- return scm_i_inexact_truncate_divide
- (scm_i_big2dbl (x), SCM_REAL_VALUE (y), qp, rp);
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_truncate_divide (x, y, qp, rp);
- else
- return two_valued_wta_dispatch_2
- (g_scm_truncate_divide, x, y, SCM_ARG2,
- s_scm_truncate_divide, qp, rp);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_inexact_truncate_divide
- (SCM_REAL_VALUE (x), scm_to_double (y), qp, rp);
- else
- return two_valued_wta_dispatch_2
- (g_scm_truncate_divide, x, y, SCM_ARG2,
- s_scm_truncate_divide, qp, rp);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- return scm_i_inexact_truncate_divide
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y), qp, rp);
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_exact_rational_truncate_divide (x, y, qp, rp);
- else
- return two_valued_wta_dispatch_2
- (g_scm_truncate_divide, x, y, SCM_ARG2,
- s_scm_truncate_divide, qp, rp);
- }
- else
- return two_valued_wta_dispatch_2 (g_scm_truncate_divide, x, y, SCM_ARG1,
- s_scm_truncate_divide, qp, rp);
- }
- static void
- scm_i_inexact_truncate_divide (double x, double y, SCM *qp, SCM *rp)
- {
- if (SCM_UNLIKELY (y == 0))
- scm_num_overflow (s_scm_truncate_divide); /* or return a NaN? */
- else
- {
- double q = trunc (x / y);
- double r = x - q * y;
- *qp = scm_i_from_double (q);
- *rp = scm_i_from_double (r);
- }
- }
- static void
- scm_i_exact_rational_truncate_divide (SCM x, SCM y, SCM *qp, SCM *rp)
- {
- SCM r1;
- SCM xd = scm_denominator (x);
- SCM yd = scm_denominator (y);
- scm_truncate_divide (scm_product (scm_numerator (x), yd),
- scm_product (scm_numerator (y), xd),
- qp, &r1);
- *rp = scm_divide (r1, scm_product (xd, yd));
- }
- static SCM scm_i_inexact_centered_quotient (double x, double y);
- static SCM scm_i_bigint_centered_quotient (SCM x, SCM y);
- static SCM scm_i_exact_rational_centered_quotient (SCM x, SCM y);
- SCM_PRIMITIVE_GENERIC (scm_centered_quotient, "centered-quotient", 2, 0, 0,
- (SCM x, SCM y),
- "Return the integer @var{q} such that\n"
- "@math{@var{x} = @var{q}*@var{y} + @var{r}} where\n"
- "@math{-abs(@var{y}/2) <= @var{r} < abs(@var{y}/2)}.\n"
- "@lisp\n"
- "(centered-quotient 123 10) @result{} 12\n"
- "(centered-quotient 123 -10) @result{} -12\n"
- "(centered-quotient -123 10) @result{} -12\n"
- "(centered-quotient -123 -10) @result{} 12\n"
- "(centered-quotient -123.2 -63.5) @result{} 2.0\n"
- "(centered-quotient 16/3 -10/7) @result{} -4\n"
- "@end lisp")
- #define FUNC_NAME s_scm_centered_quotient
- {
- if (SCM_LIKELY (SCM_I_INUMP (x)))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_centered_quotient);
- else
- {
- scm_t_inum qq = xx / yy;
- scm_t_inum rr = xx % yy;
- if (SCM_LIKELY (xx > 0))
- {
- if (SCM_LIKELY (yy > 0))
- {
- if (rr >= (yy + 1) / 2)
- qq++;
- }
- else
- {
- if (rr >= (1 - yy) / 2)
- qq--;
- }
- }
- else
- {
- if (SCM_LIKELY (yy > 0))
- {
- if (rr < -yy / 2)
- qq--;
- }
- else
- {
- if (rr < yy / 2)
- qq++;
- }
- }
- if (SCM_LIKELY (SCM_FIXABLE (qq)))
- return SCM_I_MAKINUM (qq);
- else
- return scm_i_inum2big (qq);
- }
- }
- else if (SCM_BIGP (y))
- {
- /* Pass a denormalized bignum version of x (even though it
- can fit in a fixnum) to scm_i_bigint_centered_quotient */
- return scm_i_bigint_centered_quotient (scm_i_long2big (xx), y);
- }
- else if (SCM_REALP (y))
- return scm_i_inexact_centered_quotient (xx, SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_centered_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_centered_quotient, x, y, SCM_ARG2,
- s_scm_centered_quotient);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_centered_quotient);
- else if (SCM_UNLIKELY (yy == 1))
- return x;
- else
- {
- SCM q = scm_i_mkbig ();
- scm_t_inum rr;
- /* Arrange for rr to initially be non-positive,
- because that simplifies the test to see
- if it is within the needed bounds. */
- if (yy > 0)
- {
- rr = - mpz_cdiv_q_ui (SCM_I_BIG_MPZ (q),
- SCM_I_BIG_MPZ (x), yy);
- scm_remember_upto_here_1 (x);
- if (rr < -yy / 2)
- mpz_sub_ui (SCM_I_BIG_MPZ (q),
- SCM_I_BIG_MPZ (q), 1);
- }
- else
- {
- rr = - mpz_cdiv_q_ui (SCM_I_BIG_MPZ (q),
- SCM_I_BIG_MPZ (x), -yy);
- scm_remember_upto_here_1 (x);
- mpz_neg (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q));
- if (rr < yy / 2)
- mpz_add_ui (SCM_I_BIG_MPZ (q),
- SCM_I_BIG_MPZ (q), 1);
- }
- return scm_i_normbig (q);
- }
- }
- else if (SCM_BIGP (y))
- return scm_i_bigint_centered_quotient (x, y);
- else if (SCM_REALP (y))
- return scm_i_inexact_centered_quotient
- (scm_i_big2dbl (x), SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_centered_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_centered_quotient, x, y, SCM_ARG2,
- s_scm_centered_quotient);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_inexact_centered_quotient
- (SCM_REAL_VALUE (x), scm_to_double (y));
- else
- return scm_wta_dispatch_2 (g_scm_centered_quotient, x, y, SCM_ARG2,
- s_scm_centered_quotient);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- return scm_i_inexact_centered_quotient
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_exact_rational_centered_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_centered_quotient, x, y, SCM_ARG2,
- s_scm_centered_quotient);
- }
- else
- return scm_wta_dispatch_2 (g_scm_centered_quotient, x, y, SCM_ARG1,
- s_scm_centered_quotient);
- }
- #undef FUNC_NAME
- static SCM
- scm_i_inexact_centered_quotient (double x, double y)
- {
- if (SCM_LIKELY (y > 0))
- return scm_i_from_double (floor (x/y + 0.5));
- else if (SCM_LIKELY (y < 0))
- return scm_i_from_double (ceil (x/y - 0.5));
- else if (y == 0)
- scm_num_overflow (s_scm_centered_quotient); /* or return a NaN? */
- else
- return scm_nan ();
- }
- /* Assumes that both x and y are bigints, though
- x might be able to fit into a fixnum. */
- static SCM
- scm_i_bigint_centered_quotient (SCM x, SCM y)
- {
- SCM q, r, min_r;
- /* Note that x might be small enough to fit into a
- fixnum, so we must not let it escape into the wild */
- q = scm_i_mkbig ();
- r = scm_i_mkbig ();
- /* min_r will eventually become -abs(y)/2 */
- min_r = scm_i_mkbig ();
- mpz_tdiv_q_2exp (SCM_I_BIG_MPZ (min_r),
- SCM_I_BIG_MPZ (y), 1);
- /* Arrange for rr to initially be non-positive,
- because that simplifies the test to see
- if it is within the needed bounds. */
- if (mpz_sgn (SCM_I_BIG_MPZ (y)) > 0)
- {
- mpz_cdiv_qr (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
- SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- mpz_neg (SCM_I_BIG_MPZ (min_r), SCM_I_BIG_MPZ (min_r));
- if (mpz_cmp (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (min_r)) < 0)
- mpz_sub_ui (SCM_I_BIG_MPZ (q),
- SCM_I_BIG_MPZ (q), 1);
- }
- else
- {
- mpz_fdiv_qr (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
- SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- if (mpz_cmp (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (min_r)) < 0)
- mpz_add_ui (SCM_I_BIG_MPZ (q),
- SCM_I_BIG_MPZ (q), 1);
- }
- scm_remember_upto_here_2 (r, min_r);
- return scm_i_normbig (q);
- }
- static SCM
- scm_i_exact_rational_centered_quotient (SCM x, SCM y)
- {
- return scm_centered_quotient
- (scm_product (scm_numerator (x), scm_denominator (y)),
- scm_product (scm_numerator (y), scm_denominator (x)));
- }
- static SCM scm_i_inexact_centered_remainder (double x, double y);
- static SCM scm_i_bigint_centered_remainder (SCM x, SCM y);
- static SCM scm_i_exact_rational_centered_remainder (SCM x, SCM y);
- SCM_PRIMITIVE_GENERIC (scm_centered_remainder, "centered-remainder", 2, 0, 0,
- (SCM x, SCM y),
- "Return the real number @var{r} such that\n"
- "@math{-abs(@var{y}/2) <= @var{r} < abs(@var{y}/2)}\n"
- "and @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
- "for some integer @var{q}.\n"
- "@lisp\n"
- "(centered-remainder 123 10) @result{} 3\n"
- "(centered-remainder 123 -10) @result{} 3\n"
- "(centered-remainder -123 10) @result{} -3\n"
- "(centered-remainder -123 -10) @result{} -3\n"
- "(centered-remainder -123.2 -63.5) @result{} 3.8\n"
- "(centered-remainder 16/3 -10/7) @result{} -8/21\n"
- "@end lisp")
- #define FUNC_NAME s_scm_centered_remainder
- {
- if (SCM_LIKELY (SCM_I_INUMP (x)))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_centered_remainder);
- else
- {
- scm_t_inum rr = xx % yy;
- if (SCM_LIKELY (xx > 0))
- {
- if (SCM_LIKELY (yy > 0))
- {
- if (rr >= (yy + 1) / 2)
- rr -= yy;
- }
- else
- {
- if (rr >= (1 - yy) / 2)
- rr += yy;
- }
- }
- else
- {
- if (SCM_LIKELY (yy > 0))
- {
- if (rr < -yy / 2)
- rr += yy;
- }
- else
- {
- if (rr < yy / 2)
- rr -= yy;
- }
- }
- return SCM_I_MAKINUM (rr);
- }
- }
- else if (SCM_BIGP (y))
- {
- /* Pass a denormalized bignum version of x (even though it
- can fit in a fixnum) to scm_i_bigint_centered_remainder */
- return scm_i_bigint_centered_remainder (scm_i_long2big (xx), y);
- }
- else if (SCM_REALP (y))
- return scm_i_inexact_centered_remainder (xx, SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_centered_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_centered_remainder, x, y, SCM_ARG2,
- s_scm_centered_remainder);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_centered_remainder);
- else
- {
- scm_t_inum rr;
- /* Arrange for rr to initially be non-positive,
- because that simplifies the test to see
- if it is within the needed bounds. */
- if (yy > 0)
- {
- rr = - mpz_cdiv_ui (SCM_I_BIG_MPZ (x), yy);
- scm_remember_upto_here_1 (x);
- if (rr < -yy / 2)
- rr += yy;
- }
- else
- {
- rr = - mpz_cdiv_ui (SCM_I_BIG_MPZ (x), -yy);
- scm_remember_upto_here_1 (x);
- if (rr < yy / 2)
- rr -= yy;
- }
- return SCM_I_MAKINUM (rr);
- }
- }
- else if (SCM_BIGP (y))
- return scm_i_bigint_centered_remainder (x, y);
- else if (SCM_REALP (y))
- return scm_i_inexact_centered_remainder
- (scm_i_big2dbl (x), SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_centered_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_centered_remainder, x, y, SCM_ARG2,
- s_scm_centered_remainder);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_inexact_centered_remainder
- (SCM_REAL_VALUE (x), scm_to_double (y));
- else
- return scm_wta_dispatch_2 (g_scm_centered_remainder, x, y, SCM_ARG2,
- s_scm_centered_remainder);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- return scm_i_inexact_centered_remainder
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_exact_rational_centered_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_centered_remainder, x, y, SCM_ARG2,
- s_scm_centered_remainder);
- }
- else
- return scm_wta_dispatch_2 (g_scm_centered_remainder, x, y, SCM_ARG1,
- s_scm_centered_remainder);
- }
- #undef FUNC_NAME
- static SCM
- scm_i_inexact_centered_remainder (double x, double y)
- {
- double q;
- /* Although it would be more efficient to use fmod here, we can't
- because it would in some cases produce results inconsistent with
- scm_i_inexact_centered_quotient, such that x != r + q * y (not even
- close). In particular, when x-y/2 is very close to a multiple of
- y, then r might be either -abs(y/2) or abs(y/2)-epsilon, but those
- two cases must correspond to different choices of q. If quotient
- chooses one and remainder chooses the other, it would be bad. */
- if (SCM_LIKELY (y > 0))
- q = floor (x/y + 0.5);
- else if (SCM_LIKELY (y < 0))
- q = ceil (x/y - 0.5);
- else if (y == 0)
- scm_num_overflow (s_scm_centered_remainder); /* or return a NaN? */
- else
- return scm_nan ();
- return scm_i_from_double (x - q * y);
- }
- /* Assumes that both x and y are bigints, though
- x might be able to fit into a fixnum. */
- static SCM
- scm_i_bigint_centered_remainder (SCM x, SCM y)
- {
- SCM r, min_r;
- /* Note that x might be small enough to fit into a
- fixnum, so we must not let it escape into the wild */
- r = scm_i_mkbig ();
- /* min_r will eventually become -abs(y)/2 */
- min_r = scm_i_mkbig ();
- mpz_tdiv_q_2exp (SCM_I_BIG_MPZ (min_r),
- SCM_I_BIG_MPZ (y), 1);
- /* Arrange for rr to initially be non-positive,
- because that simplifies the test to see
- if it is within the needed bounds. */
- if (mpz_sgn (SCM_I_BIG_MPZ (y)) > 0)
- {
- mpz_cdiv_r (SCM_I_BIG_MPZ (r),
- SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
- mpz_neg (SCM_I_BIG_MPZ (min_r), SCM_I_BIG_MPZ (min_r));
- if (mpz_cmp (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (min_r)) < 0)
- mpz_add (SCM_I_BIG_MPZ (r),
- SCM_I_BIG_MPZ (r),
- SCM_I_BIG_MPZ (y));
- }
- else
- {
- mpz_fdiv_r (SCM_I_BIG_MPZ (r),
- SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
- if (mpz_cmp (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (min_r)) < 0)
- mpz_sub (SCM_I_BIG_MPZ (r),
- SCM_I_BIG_MPZ (r),
- SCM_I_BIG_MPZ (y));
- }
- scm_remember_upto_here_2 (x, y);
- return scm_i_normbig (r);
- }
- static SCM
- scm_i_exact_rational_centered_remainder (SCM x, SCM y)
- {
- SCM xd = scm_denominator (x);
- SCM yd = scm_denominator (y);
- SCM r1 = scm_centered_remainder (scm_product (scm_numerator (x), yd),
- scm_product (scm_numerator (y), xd));
- return scm_divide (r1, scm_product (xd, yd));
- }
- static void scm_i_inexact_centered_divide (double x, double y,
- SCM *qp, SCM *rp);
- static void scm_i_bigint_centered_divide (SCM x, SCM y, SCM *qp, SCM *rp);
- static void scm_i_exact_rational_centered_divide (SCM x, SCM y,
- SCM *qp, SCM *rp);
- SCM_PRIMITIVE_GENERIC (scm_i_centered_divide, "centered/", 2, 0, 0,
- (SCM x, SCM y),
- "Return the integer @var{q} and the real number @var{r}\n"
- "such that @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
- "and @math{-abs(@var{y}/2) <= @var{r} < abs(@var{y}/2)}.\n"
- "@lisp\n"
- "(centered/ 123 10) @result{} 12 and 3\n"
- "(centered/ 123 -10) @result{} -12 and 3\n"
- "(centered/ -123 10) @result{} -12 and -3\n"
- "(centered/ -123 -10) @result{} 12 and -3\n"
- "(centered/ -123.2 -63.5) @result{} 2.0 and 3.8\n"
- "(centered/ 16/3 -10/7) @result{} -4 and -8/21\n"
- "@end lisp")
- #define FUNC_NAME s_scm_i_centered_divide
- {
- SCM q, r;
- scm_centered_divide(x, y, &q, &r);
- return scm_values (scm_list_2 (q, r));
- }
- #undef FUNC_NAME
- #define s_scm_centered_divide s_scm_i_centered_divide
- #define g_scm_centered_divide g_scm_i_centered_divide
- void
- scm_centered_divide (SCM x, SCM y, SCM *qp, SCM *rp)
- {
- if (SCM_LIKELY (SCM_I_INUMP (x)))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_centered_divide);
- else
- {
- scm_t_inum qq = xx / yy;
- scm_t_inum rr = xx % yy;
- if (SCM_LIKELY (xx > 0))
- {
- if (SCM_LIKELY (yy > 0))
- {
- if (rr >= (yy + 1) / 2)
- { qq++; rr -= yy; }
- }
- else
- {
- if (rr >= (1 - yy) / 2)
- { qq--; rr += yy; }
- }
- }
- else
- {
- if (SCM_LIKELY (yy > 0))
- {
- if (rr < -yy / 2)
- { qq--; rr += yy; }
- }
- else
- {
- if (rr < yy / 2)
- { qq++; rr -= yy; }
- }
- }
- if (SCM_LIKELY (SCM_FIXABLE (qq)))
- *qp = SCM_I_MAKINUM (qq);
- else
- *qp = scm_i_inum2big (qq);
- *rp = SCM_I_MAKINUM (rr);
- }
- return;
- }
- else if (SCM_BIGP (y))
- {
- /* Pass a denormalized bignum version of x (even though it
- can fit in a fixnum) to scm_i_bigint_centered_divide */
- return scm_i_bigint_centered_divide (scm_i_long2big (xx), y, qp, rp);
- }
- else if (SCM_REALP (y))
- return scm_i_inexact_centered_divide (xx, SCM_REAL_VALUE (y), qp, rp);
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_centered_divide (x, y, qp, rp);
- else
- return two_valued_wta_dispatch_2
- (g_scm_centered_divide, x, y, SCM_ARG2,
- s_scm_centered_divide, qp, rp);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_centered_divide);
- else
- {
- SCM q = scm_i_mkbig ();
- scm_t_inum rr;
- /* Arrange for rr to initially be non-positive,
- because that simplifies the test to see
- if it is within the needed bounds. */
- if (yy > 0)
- {
- rr = - mpz_cdiv_q_ui (SCM_I_BIG_MPZ (q),
- SCM_I_BIG_MPZ (x), yy);
- scm_remember_upto_here_1 (x);
- if (rr < -yy / 2)
- {
- mpz_sub_ui (SCM_I_BIG_MPZ (q),
- SCM_I_BIG_MPZ (q), 1);
- rr += yy;
- }
- }
- else
- {
- rr = - mpz_cdiv_q_ui (SCM_I_BIG_MPZ (q),
- SCM_I_BIG_MPZ (x), -yy);
- scm_remember_upto_here_1 (x);
- mpz_neg (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q));
- if (rr < yy / 2)
- {
- mpz_add_ui (SCM_I_BIG_MPZ (q),
- SCM_I_BIG_MPZ (q), 1);
- rr -= yy;
- }
- }
- *qp = scm_i_normbig (q);
- *rp = SCM_I_MAKINUM (rr);
- }
- return;
- }
- else if (SCM_BIGP (y))
- return scm_i_bigint_centered_divide (x, y, qp, rp);
- else if (SCM_REALP (y))
- return scm_i_inexact_centered_divide
- (scm_i_big2dbl (x), SCM_REAL_VALUE (y), qp, rp);
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_centered_divide (x, y, qp, rp);
- else
- return two_valued_wta_dispatch_2
- (g_scm_centered_divide, x, y, SCM_ARG2,
- s_scm_centered_divide, qp, rp);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_inexact_centered_divide
- (SCM_REAL_VALUE (x), scm_to_double (y), qp, rp);
- else
- return two_valued_wta_dispatch_2
- (g_scm_centered_divide, x, y, SCM_ARG2,
- s_scm_centered_divide, qp, rp);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- return scm_i_inexact_centered_divide
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y), qp, rp);
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_exact_rational_centered_divide (x, y, qp, rp);
- else
- return two_valued_wta_dispatch_2
- (g_scm_centered_divide, x, y, SCM_ARG2,
- s_scm_centered_divide, qp, rp);
- }
- else
- return two_valued_wta_dispatch_2 (g_scm_centered_divide, x, y, SCM_ARG1,
- s_scm_centered_divide, qp, rp);
- }
- static void
- scm_i_inexact_centered_divide (double x, double y, SCM *qp, SCM *rp)
- {
- double q, r;
- if (SCM_LIKELY (y > 0))
- q = floor (x/y + 0.5);
- else if (SCM_LIKELY (y < 0))
- q = ceil (x/y - 0.5);
- else if (y == 0)
- scm_num_overflow (s_scm_centered_divide); /* or return a NaN? */
- else
- q = guile_NaN;
- r = x - q * y;
- *qp = scm_i_from_double (q);
- *rp = scm_i_from_double (r);
- }
- /* Assumes that both x and y are bigints, though
- x might be able to fit into a fixnum. */
- static void
- scm_i_bigint_centered_divide (SCM x, SCM y, SCM *qp, SCM *rp)
- {
- SCM q, r, min_r;
- /* Note that x might be small enough to fit into a
- fixnum, so we must not let it escape into the wild */
- q = scm_i_mkbig ();
- r = scm_i_mkbig ();
- /* min_r will eventually become -abs(y/2) */
- min_r = scm_i_mkbig ();
- mpz_tdiv_q_2exp (SCM_I_BIG_MPZ (min_r),
- SCM_I_BIG_MPZ (y), 1);
- /* Arrange for rr to initially be non-positive,
- because that simplifies the test to see
- if it is within the needed bounds. */
- if (mpz_sgn (SCM_I_BIG_MPZ (y)) > 0)
- {
- mpz_cdiv_qr (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
- SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
- mpz_neg (SCM_I_BIG_MPZ (min_r), SCM_I_BIG_MPZ (min_r));
- if (mpz_cmp (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (min_r)) < 0)
- {
- mpz_sub_ui (SCM_I_BIG_MPZ (q),
- SCM_I_BIG_MPZ (q), 1);
- mpz_add (SCM_I_BIG_MPZ (r),
- SCM_I_BIG_MPZ (r),
- SCM_I_BIG_MPZ (y));
- }
- }
- else
- {
- mpz_fdiv_qr (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
- SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
- if (mpz_cmp (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (min_r)) < 0)
- {
- mpz_add_ui (SCM_I_BIG_MPZ (q),
- SCM_I_BIG_MPZ (q), 1);
- mpz_sub (SCM_I_BIG_MPZ (r),
- SCM_I_BIG_MPZ (r),
- SCM_I_BIG_MPZ (y));
- }
- }
- scm_remember_upto_here_2 (x, y);
- *qp = scm_i_normbig (q);
- *rp = scm_i_normbig (r);
- }
- static void
- scm_i_exact_rational_centered_divide (SCM x, SCM y, SCM *qp, SCM *rp)
- {
- SCM r1;
- SCM xd = scm_denominator (x);
- SCM yd = scm_denominator (y);
- scm_centered_divide (scm_product (scm_numerator (x), yd),
- scm_product (scm_numerator (y), xd),
- qp, &r1);
- *rp = scm_divide (r1, scm_product (xd, yd));
- }
- static SCM scm_i_inexact_round_quotient (double x, double y);
- static SCM scm_i_bigint_round_quotient (SCM x, SCM y);
- static SCM scm_i_exact_rational_round_quotient (SCM x, SCM y);
- SCM_PRIMITIVE_GENERIC (scm_round_quotient, "round-quotient", 2, 0, 0,
- (SCM x, SCM y),
- "Return @math{@var{x} / @var{y}} to the nearest integer,\n"
- "with ties going to the nearest even integer.\n"
- "@lisp\n"
- "(round-quotient 123 10) @result{} 12\n"
- "(round-quotient 123 -10) @result{} -12\n"
- "(round-quotient -123 10) @result{} -12\n"
- "(round-quotient -123 -10) @result{} 12\n"
- "(round-quotient 125 10) @result{} 12\n"
- "(round-quotient 127 10) @result{} 13\n"
- "(round-quotient 135 10) @result{} 14\n"
- "(round-quotient -123.2 -63.5) @result{} 2.0\n"
- "(round-quotient 16/3 -10/7) @result{} -4\n"
- "@end lisp")
- #define FUNC_NAME s_scm_round_quotient
- {
- if (SCM_LIKELY (SCM_I_INUMP (x)))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_round_quotient);
- else
- {
- scm_t_inum qq = xx / yy;
- scm_t_inum rr = xx % yy;
- scm_t_inum ay = yy;
- scm_t_inum r2 = 2 * rr;
- if (SCM_LIKELY (yy < 0))
- {
- ay = -ay;
- r2 = -r2;
- }
- if (qq & 1L)
- {
- if (r2 >= ay)
- qq++;
- else if (r2 <= -ay)
- qq--;
- }
- else
- {
- if (r2 > ay)
- qq++;
- else if (r2 < -ay)
- qq--;
- }
- if (SCM_LIKELY (SCM_FIXABLE (qq)))
- return SCM_I_MAKINUM (qq);
- else
- return scm_i_inum2big (qq);
- }
- }
- else if (SCM_BIGP (y))
- {
- /* Pass a denormalized bignum version of x (even though it
- can fit in a fixnum) to scm_i_bigint_round_quotient */
- return scm_i_bigint_round_quotient (scm_i_long2big (xx), y);
- }
- else if (SCM_REALP (y))
- return scm_i_inexact_round_quotient (xx, SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_round_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_round_quotient, x, y, SCM_ARG2,
- s_scm_round_quotient);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_round_quotient);
- else if (SCM_UNLIKELY (yy == 1))
- return x;
- else
- {
- SCM q = scm_i_mkbig ();
- scm_t_inum rr;
- int needs_adjustment;
- if (yy > 0)
- {
- rr = mpz_fdiv_q_ui (SCM_I_BIG_MPZ (q),
- SCM_I_BIG_MPZ (x), yy);
- if (mpz_odd_p (SCM_I_BIG_MPZ (q)))
- needs_adjustment = (2*rr >= yy);
- else
- needs_adjustment = (2*rr > yy);
- }
- else
- {
- rr = - mpz_cdiv_q_ui (SCM_I_BIG_MPZ (q),
- SCM_I_BIG_MPZ (x), -yy);
- mpz_neg (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q));
- if (mpz_odd_p (SCM_I_BIG_MPZ (q)))
- needs_adjustment = (2*rr <= yy);
- else
- needs_adjustment = (2*rr < yy);
- }
- scm_remember_upto_here_1 (x);
- if (needs_adjustment)
- mpz_add_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q), 1);
- return scm_i_normbig (q);
- }
- }
- else if (SCM_BIGP (y))
- return scm_i_bigint_round_quotient (x, y);
- else if (SCM_REALP (y))
- return scm_i_inexact_round_quotient
- (scm_i_big2dbl (x), SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_round_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_round_quotient, x, y, SCM_ARG2,
- s_scm_round_quotient);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_inexact_round_quotient
- (SCM_REAL_VALUE (x), scm_to_double (y));
- else
- return scm_wta_dispatch_2 (g_scm_round_quotient, x, y, SCM_ARG2,
- s_scm_round_quotient);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- return scm_i_inexact_round_quotient
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_exact_rational_round_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_round_quotient, x, y, SCM_ARG2,
- s_scm_round_quotient);
- }
- else
- return scm_wta_dispatch_2 (g_scm_round_quotient, x, y, SCM_ARG1,
- s_scm_round_quotient);
- }
- #undef FUNC_NAME
- static SCM
- scm_i_inexact_round_quotient (double x, double y)
- {
- if (SCM_UNLIKELY (y == 0))
- scm_num_overflow (s_scm_round_quotient); /* or return a NaN? */
- else
- return scm_i_from_double (scm_c_round (x / y));
- }
- /* Assumes that both x and y are bigints, though
- x might be able to fit into a fixnum. */
- static SCM
- scm_i_bigint_round_quotient (SCM x, SCM y)
- {
- SCM q, r, r2;
- int cmp, needs_adjustment;
- /* Note that x might be small enough to fit into a
- fixnum, so we must not let it escape into the wild */
- q = scm_i_mkbig ();
- r = scm_i_mkbig ();
- r2 = scm_i_mkbig ();
- mpz_fdiv_qr (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
- SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
- mpz_mul_2exp (SCM_I_BIG_MPZ (r2), SCM_I_BIG_MPZ (r), 1); /* r2 = 2*r */
- scm_remember_upto_here_2 (x, r);
- cmp = mpz_cmpabs (SCM_I_BIG_MPZ (r2), SCM_I_BIG_MPZ (y));
- if (mpz_odd_p (SCM_I_BIG_MPZ (q)))
- needs_adjustment = (cmp >= 0);
- else
- needs_adjustment = (cmp > 0);
- scm_remember_upto_here_2 (r2, y);
- if (needs_adjustment)
- mpz_add_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q), 1);
- return scm_i_normbig (q);
- }
- static SCM
- scm_i_exact_rational_round_quotient (SCM x, SCM y)
- {
- return scm_round_quotient
- (scm_product (scm_numerator (x), scm_denominator (y)),
- scm_product (scm_numerator (y), scm_denominator (x)));
- }
- static SCM scm_i_inexact_round_remainder (double x, double y);
- static SCM scm_i_bigint_round_remainder (SCM x, SCM y);
- static SCM scm_i_exact_rational_round_remainder (SCM x, SCM y);
- SCM_PRIMITIVE_GENERIC (scm_round_remainder, "round-remainder", 2, 0, 0,
- (SCM x, SCM y),
- "Return the real number @var{r} such that\n"
- "@math{@var{x} = @var{q}*@var{y} + @var{r}}, where\n"
- "@var{q} is @math{@var{x} / @var{y}} rounded to the\n"
- "nearest integer, with ties going to the nearest\n"
- "even integer.\n"
- "@lisp\n"
- "(round-remainder 123 10) @result{} 3\n"
- "(round-remainder 123 -10) @result{} 3\n"
- "(round-remainder -123 10) @result{} -3\n"
- "(round-remainder -123 -10) @result{} -3\n"
- "(round-remainder 125 10) @result{} 5\n"
- "(round-remainder 127 10) @result{} -3\n"
- "(round-remainder 135 10) @result{} -5\n"
- "(round-remainder -123.2 -63.5) @result{} 3.8\n"
- "(round-remainder 16/3 -10/7) @result{} -8/21\n"
- "@end lisp")
- #define FUNC_NAME s_scm_round_remainder
- {
- if (SCM_LIKELY (SCM_I_INUMP (x)))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_round_remainder);
- else
- {
- scm_t_inum qq = xx / yy;
- scm_t_inum rr = xx % yy;
- scm_t_inum ay = yy;
- scm_t_inum r2 = 2 * rr;
- if (SCM_LIKELY (yy < 0))
- {
- ay = -ay;
- r2 = -r2;
- }
- if (qq & 1L)
- {
- if (r2 >= ay)
- rr -= yy;
- else if (r2 <= -ay)
- rr += yy;
- }
- else
- {
- if (r2 > ay)
- rr -= yy;
- else if (r2 < -ay)
- rr += yy;
- }
- return SCM_I_MAKINUM (rr);
- }
- }
- else if (SCM_BIGP (y))
- {
- /* Pass a denormalized bignum version of x (even though it
- can fit in a fixnum) to scm_i_bigint_round_remainder */
- return scm_i_bigint_round_remainder
- (scm_i_long2big (xx), y);
- }
- else if (SCM_REALP (y))
- return scm_i_inexact_round_remainder (xx, SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_round_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_round_remainder, x, y, SCM_ARG2,
- s_scm_round_remainder);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_round_remainder);
- else
- {
- SCM q = scm_i_mkbig ();
- scm_t_inum rr;
- int needs_adjustment;
- if (yy > 0)
- {
- rr = mpz_fdiv_q_ui (SCM_I_BIG_MPZ (q),
- SCM_I_BIG_MPZ (x), yy);
- if (mpz_odd_p (SCM_I_BIG_MPZ (q)))
- needs_adjustment = (2*rr >= yy);
- else
- needs_adjustment = (2*rr > yy);
- }
- else
- {
- rr = - mpz_cdiv_q_ui (SCM_I_BIG_MPZ (q),
- SCM_I_BIG_MPZ (x), -yy);
- if (mpz_odd_p (SCM_I_BIG_MPZ (q)))
- needs_adjustment = (2*rr <= yy);
- else
- needs_adjustment = (2*rr < yy);
- }
- scm_remember_upto_here_2 (x, q);
- if (needs_adjustment)
- rr -= yy;
- return SCM_I_MAKINUM (rr);
- }
- }
- else if (SCM_BIGP (y))
- return scm_i_bigint_round_remainder (x, y);
- else if (SCM_REALP (y))
- return scm_i_inexact_round_remainder
- (scm_i_big2dbl (x), SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_round_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_round_remainder, x, y, SCM_ARG2,
- s_scm_round_remainder);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_inexact_round_remainder
- (SCM_REAL_VALUE (x), scm_to_double (y));
- else
- return scm_wta_dispatch_2 (g_scm_round_remainder, x, y, SCM_ARG2,
- s_scm_round_remainder);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- return scm_i_inexact_round_remainder
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_exact_rational_round_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_round_remainder, x, y, SCM_ARG2,
- s_scm_round_remainder);
- }
- else
- return scm_wta_dispatch_2 (g_scm_round_remainder, x, y, SCM_ARG1,
- s_scm_round_remainder);
- }
- #undef FUNC_NAME
- static SCM
- scm_i_inexact_round_remainder (double x, double y)
- {
- /* Although it would be more efficient to use fmod here, we can't
- because it would in some cases produce results inconsistent with
- scm_i_inexact_round_quotient, such that x != r + q * y (not even
- close). In particular, when x-y/2 is very close to a multiple of
- y, then r might be either -abs(y/2) or abs(y/2), but those two
- cases must correspond to different choices of q. If quotient
- chooses one and remainder chooses the other, it would be bad. */
- if (SCM_UNLIKELY (y == 0))
- scm_num_overflow (s_scm_round_remainder); /* or return a NaN? */
- else
- {
- double q = scm_c_round (x / y);
- return scm_i_from_double (x - q * y);
- }
- }
- /* Assumes that both x and y are bigints, though
- x might be able to fit into a fixnum. */
- static SCM
- scm_i_bigint_round_remainder (SCM x, SCM y)
- {
- SCM q, r, r2;
- int cmp, needs_adjustment;
- /* Note that x might be small enough to fit into a
- fixnum, so we must not let it escape into the wild */
- q = scm_i_mkbig ();
- r = scm_i_mkbig ();
- r2 = scm_i_mkbig ();
- mpz_fdiv_qr (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
- SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_1 (x);
- mpz_mul_2exp (SCM_I_BIG_MPZ (r2), SCM_I_BIG_MPZ (r), 1); /* r2 = 2*r */
- cmp = mpz_cmpabs (SCM_I_BIG_MPZ (r2), SCM_I_BIG_MPZ (y));
- if (mpz_odd_p (SCM_I_BIG_MPZ (q)))
- needs_adjustment = (cmp >= 0);
- else
- needs_adjustment = (cmp > 0);
- scm_remember_upto_here_2 (q, r2);
- if (needs_adjustment)
- mpz_sub (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_1 (y);
- return scm_i_normbig (r);
- }
- static SCM
- scm_i_exact_rational_round_remainder (SCM x, SCM y)
- {
- SCM xd = scm_denominator (x);
- SCM yd = scm_denominator (y);
- SCM r1 = scm_round_remainder (scm_product (scm_numerator (x), yd),
- scm_product (scm_numerator (y), xd));
- return scm_divide (r1, scm_product (xd, yd));
- }
- static void scm_i_inexact_round_divide (double x, double y, SCM *qp, SCM *rp);
- static void scm_i_bigint_round_divide (SCM x, SCM y, SCM *qp, SCM *rp);
- static void scm_i_exact_rational_round_divide (SCM x, SCM y, SCM *qp, SCM *rp);
- SCM_PRIMITIVE_GENERIC (scm_i_round_divide, "round/", 2, 0, 0,
- (SCM x, SCM y),
- "Return the integer @var{q} and the real number @var{r}\n"
- "such that @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
- "and @var{q} is @math{@var{x} / @var{y}} rounded to the\n"
- "nearest integer, with ties going to the nearest even integer.\n"
- "@lisp\n"
- "(round/ 123 10) @result{} 12 and 3\n"
- "(round/ 123 -10) @result{} -12 and 3\n"
- "(round/ -123 10) @result{} -12 and -3\n"
- "(round/ -123 -10) @result{} 12 and -3\n"
- "(round/ 125 10) @result{} 12 and 5\n"
- "(round/ 127 10) @result{} 13 and -3\n"
- "(round/ 135 10) @result{} 14 and -5\n"
- "(round/ -123.2 -63.5) @result{} 2.0 and 3.8\n"
- "(round/ 16/3 -10/7) @result{} -4 and -8/21\n"
- "@end lisp")
- #define FUNC_NAME s_scm_i_round_divide
- {
- SCM q, r;
- scm_round_divide(x, y, &q, &r);
- return scm_values (scm_list_2 (q, r));
- }
- #undef FUNC_NAME
- #define s_scm_round_divide s_scm_i_round_divide
- #define g_scm_round_divide g_scm_i_round_divide
- void
- scm_round_divide (SCM x, SCM y, SCM *qp, SCM *rp)
- {
- if (SCM_LIKELY (SCM_I_INUMP (x)))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_round_divide);
- else
- {
- scm_t_inum qq = xx / yy;
- scm_t_inum rr = xx % yy;
- scm_t_inum ay = yy;
- scm_t_inum r2 = 2 * rr;
- if (SCM_LIKELY (yy < 0))
- {
- ay = -ay;
- r2 = -r2;
- }
- if (qq & 1L)
- {
- if (r2 >= ay)
- { qq++; rr -= yy; }
- else if (r2 <= -ay)
- { qq--; rr += yy; }
- }
- else
- {
- if (r2 > ay)
- { qq++; rr -= yy; }
- else if (r2 < -ay)
- { qq--; rr += yy; }
- }
- if (SCM_LIKELY (SCM_FIXABLE (qq)))
- *qp = SCM_I_MAKINUM (qq);
- else
- *qp = scm_i_inum2big (qq);
- *rp = SCM_I_MAKINUM (rr);
- }
- return;
- }
- else if (SCM_BIGP (y))
- {
- /* Pass a denormalized bignum version of x (even though it
- can fit in a fixnum) to scm_i_bigint_round_divide */
- return scm_i_bigint_round_divide
- (scm_i_long2big (SCM_I_INUM (x)), y, qp, rp);
- }
- else if (SCM_REALP (y))
- return scm_i_inexact_round_divide (xx, SCM_REAL_VALUE (y), qp, rp);
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_round_divide (x, y, qp, rp);
- else
- return two_valued_wta_dispatch_2 (g_scm_round_divide, x, y, SCM_ARG2,
- s_scm_round_divide, qp, rp);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_round_divide);
- else
- {
- SCM q = scm_i_mkbig ();
- scm_t_inum rr;
- int needs_adjustment;
- if (yy > 0)
- {
- rr = mpz_fdiv_q_ui (SCM_I_BIG_MPZ (q),
- SCM_I_BIG_MPZ (x), yy);
- if (mpz_odd_p (SCM_I_BIG_MPZ (q)))
- needs_adjustment = (2*rr >= yy);
- else
- needs_adjustment = (2*rr > yy);
- }
- else
- {
- rr = - mpz_cdiv_q_ui (SCM_I_BIG_MPZ (q),
- SCM_I_BIG_MPZ (x), -yy);
- mpz_neg (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q));
- if (mpz_odd_p (SCM_I_BIG_MPZ (q)))
- needs_adjustment = (2*rr <= yy);
- else
- needs_adjustment = (2*rr < yy);
- }
- scm_remember_upto_here_1 (x);
- if (needs_adjustment)
- {
- mpz_add_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q), 1);
- rr -= yy;
- }
- *qp = scm_i_normbig (q);
- *rp = SCM_I_MAKINUM (rr);
- }
- return;
- }
- else if (SCM_BIGP (y))
- return scm_i_bigint_round_divide (x, y, qp, rp);
- else if (SCM_REALP (y))
- return scm_i_inexact_round_divide
- (scm_i_big2dbl (x), SCM_REAL_VALUE (y), qp, rp);
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_round_divide (x, y, qp, rp);
- else
- return two_valued_wta_dispatch_2 (g_scm_round_divide, x, y, SCM_ARG2,
- s_scm_round_divide, qp, rp);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_inexact_round_divide
- (SCM_REAL_VALUE (x), scm_to_double (y), qp, rp);
- else
- return two_valued_wta_dispatch_2 (g_scm_round_divide, x, y, SCM_ARG2,
- s_scm_round_divide, qp, rp);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- return scm_i_inexact_round_divide
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y), qp, rp);
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_exact_rational_round_divide (x, y, qp, rp);
- else
- return two_valued_wta_dispatch_2 (g_scm_round_divide, x, y, SCM_ARG2,
- s_scm_round_divide, qp, rp);
- }
- else
- return two_valued_wta_dispatch_2 (g_scm_round_divide, x, y, SCM_ARG1,
- s_scm_round_divide, qp, rp);
- }
- static void
- scm_i_inexact_round_divide (double x, double y, SCM *qp, SCM *rp)
- {
- if (SCM_UNLIKELY (y == 0))
- scm_num_overflow (s_scm_round_divide); /* or return a NaN? */
- else
- {
- double q = scm_c_round (x / y);
- double r = x - q * y;
- *qp = scm_i_from_double (q);
- *rp = scm_i_from_double (r);
- }
- }
- /* Assumes that both x and y are bigints, though
- x might be able to fit into a fixnum. */
- static void
- scm_i_bigint_round_divide (SCM x, SCM y, SCM *qp, SCM *rp)
- {
- SCM q, r, r2;
- int cmp, needs_adjustment;
- /* Note that x might be small enough to fit into a
- fixnum, so we must not let it escape into the wild */
- q = scm_i_mkbig ();
- r = scm_i_mkbig ();
- r2 = scm_i_mkbig ();
- mpz_fdiv_qr (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
- SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_1 (x);
- mpz_mul_2exp (SCM_I_BIG_MPZ (r2), SCM_I_BIG_MPZ (r), 1); /* r2 = 2*r */
- cmp = mpz_cmpabs (SCM_I_BIG_MPZ (r2), SCM_I_BIG_MPZ (y));
- if (mpz_odd_p (SCM_I_BIG_MPZ (q)))
- needs_adjustment = (cmp >= 0);
- else
- needs_adjustment = (cmp > 0);
- if (needs_adjustment)
- {
- mpz_add_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q), 1);
- mpz_sub (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (y));
- }
- scm_remember_upto_here_2 (r2, y);
- *qp = scm_i_normbig (q);
- *rp = scm_i_normbig (r);
- }
- static void
- scm_i_exact_rational_round_divide (SCM x, SCM y, SCM *qp, SCM *rp)
- {
- SCM r1;
- SCM xd = scm_denominator (x);
- SCM yd = scm_denominator (y);
- scm_round_divide (scm_product (scm_numerator (x), yd),
- scm_product (scm_numerator (y), xd),
- qp, &r1);
- *rp = scm_divide (r1, scm_product (xd, yd));
- }
- SCM_PRIMITIVE_GENERIC (scm_i_gcd, "gcd", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return the greatest common divisor of all parameter values.\n"
- "If called without arguments, 0 is returned.")
- #define FUNC_NAME s_scm_i_gcd
- {
- while (!scm_is_null (rest))
- { x = scm_gcd (x, y);
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_gcd (x, y);
- }
- #undef FUNC_NAME
-
- #define s_gcd s_scm_i_gcd
- #define g_gcd g_scm_i_gcd
- SCM
- scm_gcd (SCM x, SCM y)
- {
- if (SCM_UNLIKELY (SCM_UNBNDP (y)))
- return SCM_UNBNDP (x) ? SCM_INUM0 : scm_abs (x);
-
- if (SCM_LIKELY (SCM_I_INUMP (x)))
- {
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- scm_t_inum yy = SCM_I_INUM (y);
- scm_t_inum u = xx < 0 ? -xx : xx;
- scm_t_inum v = yy < 0 ? -yy : yy;
- scm_t_inum result;
- if (SCM_UNLIKELY (xx == 0))
- result = v;
- else if (SCM_UNLIKELY (yy == 0))
- result = u;
- else
- {
- int k = 0;
- /* Determine a common factor 2^k */
- while (((u | v) & 1) == 0)
- {
- k++;
- u >>= 1;
- v >>= 1;
- }
- /* Now, any factor 2^n can be eliminated */
- if ((u & 1) == 0)
- while ((u & 1) == 0)
- u >>= 1;
- else
- while ((v & 1) == 0)
- v >>= 1;
- /* Both u and v are now odd. Subtract the smaller one
- from the larger one to produce an even number, remove
- more factors of two, and repeat. */
- while (u != v)
- {
- if (u > v)
- {
- u -= v;
- while ((u & 1) == 0)
- u >>= 1;
- }
- else
- {
- v -= u;
- while ((v & 1) == 0)
- v >>= 1;
- }
- }
- result = u << k;
- }
- return (SCM_POSFIXABLE (result)
- ? SCM_I_MAKINUM (result)
- : scm_i_inum2big (result));
- }
- else if (SCM_BIGP (y))
- {
- SCM_SWAP (x, y);
- goto big_inum;
- }
- else if (SCM_REALP (y) && scm_is_integer (y))
- goto handle_inexacts;
- else
- return scm_wta_dispatch_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- {
- scm_t_bits result;
- scm_t_inum yy;
- big_inum:
- yy = SCM_I_INUM (y);
- if (yy == 0)
- return scm_abs (x);
- if (yy < 0)
- yy = -yy;
- result = mpz_gcd_ui (NULL, SCM_I_BIG_MPZ (x), yy);
- scm_remember_upto_here_1 (x);
- return (SCM_POSFIXABLE (result)
- ? SCM_I_MAKINUM (result)
- : scm_from_unsigned_integer (result));
- }
- else if (SCM_BIGP (y))
- {
- SCM result = scm_i_mkbig ();
- mpz_gcd (SCM_I_BIG_MPZ (result),
- SCM_I_BIG_MPZ (x),
- SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- return scm_i_normbig (result);
- }
- else if (SCM_REALP (y) && scm_is_integer (y))
- goto handle_inexacts;
- else
- return scm_wta_dispatch_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
- }
- else if (SCM_REALP (x) && scm_is_integer (x))
- {
- if (SCM_I_INUMP (y) || SCM_BIGP (y)
- || (SCM_REALP (y) && scm_is_integer (y)))
- {
- handle_inexacts:
- return scm_exact_to_inexact (scm_gcd (scm_inexact_to_exact (x),
- scm_inexact_to_exact (y)));
- }
- else
- return scm_wta_dispatch_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
- }
- else
- return scm_wta_dispatch_2 (g_gcd, x, y, SCM_ARG1, s_gcd);
- }
- SCM_PRIMITIVE_GENERIC (scm_i_lcm, "lcm", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return the least common multiple of the arguments.\n"
- "If called without arguments, 1 is returned.")
- #define FUNC_NAME s_scm_i_lcm
- {
- while (!scm_is_null (rest))
- { x = scm_lcm (x, y);
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_lcm (x, y);
- }
- #undef FUNC_NAME
-
- #define s_lcm s_scm_i_lcm
- #define g_lcm g_scm_i_lcm
- SCM
- scm_lcm (SCM n1, SCM n2)
- {
- if (SCM_UNLIKELY (SCM_UNBNDP (n2)))
- return SCM_UNBNDP (n1) ? SCM_INUM1 : scm_abs (n1);
- if (SCM_LIKELY (SCM_I_INUMP (n1)))
- {
- if (SCM_LIKELY (SCM_I_INUMP (n2)))
- {
- SCM d = scm_gcd (n1, n2);
- if (scm_is_eq (d, SCM_INUM0))
- return d;
- else
- return scm_abs (scm_product (n1, scm_quotient (n2, d)));
- }
- else if (SCM_LIKELY (SCM_BIGP (n2)))
- {
- /* inum n1, big n2 */
- inumbig:
- {
- SCM result = scm_i_mkbig ();
- scm_t_inum nn1 = SCM_I_INUM (n1);
- if (nn1 == 0) return SCM_INUM0;
- if (nn1 < 0) nn1 = - nn1;
- mpz_lcm_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n2), nn1);
- scm_remember_upto_here_1 (n2);
- return result;
- }
- }
- else if (SCM_REALP (n2) && scm_is_integer (n2))
- goto handle_inexacts;
- else
- return scm_wta_dispatch_2 (g_lcm, n1, n2, SCM_ARG2, s_lcm);
- }
- else if (SCM_LIKELY (SCM_BIGP (n1)))
- {
- /* big n1 */
- if (SCM_I_INUMP (n2))
- {
- SCM_SWAP (n1, n2);
- goto inumbig;
- }
- else if (SCM_LIKELY (SCM_BIGP (n2)))
- {
- SCM result = scm_i_mkbig ();
- mpz_lcm(SCM_I_BIG_MPZ (result),
- SCM_I_BIG_MPZ (n1),
- SCM_I_BIG_MPZ (n2));
- scm_remember_upto_here_2(n1, n2);
- /* shouldn't need to normalize b/c lcm of 2 bigs should be big */
- return result;
- }
- else if (SCM_REALP (n2) && scm_is_integer (n2))
- goto handle_inexacts;
- else
- return scm_wta_dispatch_2 (g_lcm, n1, n2, SCM_ARG2, s_lcm);
- }
- else if (SCM_REALP (n1) && scm_is_integer (n1))
- {
- if (SCM_I_INUMP (n2) || SCM_BIGP (n2)
- || (SCM_REALP (n2) && scm_is_integer (n2)))
- {
- handle_inexacts:
- return scm_exact_to_inexact (scm_lcm (scm_inexact_to_exact (n1),
- scm_inexact_to_exact (n2)));
- }
- else
- return scm_wta_dispatch_2 (g_lcm, n1, n2, SCM_ARG2, s_lcm);
- }
- else
- return scm_wta_dispatch_2 (g_lcm, n1, n2, SCM_ARG1, s_lcm);
- }
- /* Emulating 2's complement bignums with sign magnitude arithmetic:
- Logand:
- X Y Result Method:
- (len)
- + + + x (map digit:logand X Y)
- + - + x (map digit:logand X (lognot (+ -1 Y)))
- - + + y (map digit:logand (lognot (+ -1 X)) Y)
- - - - (+ 1 (map digit:logior (+ -1 X) (+ -1 Y)))
- Logior:
- X Y Result Method:
- + + + (map digit:logior X Y)
- + - - y (+ 1 (map digit:logand (lognot X) (+ -1 Y)))
- - + - x (+ 1 (map digit:logand (+ -1 X) (lognot Y)))
- - - - x (+ 1 (map digit:logand (+ -1 X) (+ -1 Y)))
- Logxor:
- X Y Result Method:
- + + + (map digit:logxor X Y)
- + - - (+ 1 (map digit:logxor X (+ -1 Y)))
- - + - (+ 1 (map digit:logxor (+ -1 X) Y))
- - - + (map digit:logxor (+ -1 X) (+ -1 Y))
- Logtest:
- X Y Result
- + + (any digit:logand X Y)
- + - (any digit:logand X (lognot (+ -1 Y)))
- - + (any digit:logand (lognot (+ -1 X)) Y)
- - - #t
- */
- SCM_DEFINE (scm_i_logand, "logand", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return the bitwise AND of the integer arguments.\n\n"
- "@lisp\n"
- "(logand) @result{} -1\n"
- "(logand 7) @result{} 7\n"
- "(logand #b111 #b011 #b001) @result{} 1\n"
- "@end lisp")
- #define FUNC_NAME s_scm_i_logand
- {
- while (!scm_is_null (rest))
- { x = scm_logand (x, y);
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_logand (x, y);
- }
- #undef FUNC_NAME
-
- #define s_scm_logand s_scm_i_logand
- SCM scm_logand (SCM n1, SCM n2)
- #define FUNC_NAME s_scm_logand
- {
- scm_t_inum nn1;
- if (SCM_UNBNDP (n2))
- {
- if (SCM_UNBNDP (n1))
- return SCM_I_MAKINUM (-1);
- else if (!SCM_NUMBERP (n1))
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
- else if (SCM_NUMBERP (n1))
- return n1;
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
- }
- if (SCM_I_INUMP (n1))
- {
- nn1 = SCM_I_INUM (n1);
- if (SCM_I_INUMP (n2))
- {
- scm_t_inum nn2 = SCM_I_INUM (n2);
- return SCM_I_MAKINUM (nn1 & nn2);
- }
- else if SCM_BIGP (n2)
- {
- intbig:
- if (nn1 == 0)
- return SCM_INUM0;
- {
- SCM result_z = scm_i_mkbig ();
- mpz_t nn1_z;
- mpz_init_set_si (nn1_z, nn1);
- mpz_and (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
- scm_remember_upto_here_1 (n2);
- mpz_clear (nn1_z);
- return scm_i_normbig (result_z);
- }
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
- }
- else if (SCM_BIGP (n1))
- {
- if (SCM_I_INUMP (n2))
- {
- SCM_SWAP (n1, n2);
- nn1 = SCM_I_INUM (n1);
- goto intbig;
- }
- else if (SCM_BIGP (n2))
- {
- SCM result_z = scm_i_mkbig ();
- mpz_and (SCM_I_BIG_MPZ (result_z),
- SCM_I_BIG_MPZ (n1),
- SCM_I_BIG_MPZ (n2));
- scm_remember_upto_here_2 (n1, n2);
- return scm_i_normbig (result_z);
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_i_logior, "logior", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return the bitwise OR of the integer arguments.\n\n"
- "@lisp\n"
- "(logior) @result{} 0\n"
- "(logior 7) @result{} 7\n"
- "(logior #b000 #b001 #b011) @result{} 3\n"
- "@end lisp")
- #define FUNC_NAME s_scm_i_logior
- {
- while (!scm_is_null (rest))
- { x = scm_logior (x, y);
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_logior (x, y);
- }
- #undef FUNC_NAME
-
- #define s_scm_logior s_scm_i_logior
- SCM scm_logior (SCM n1, SCM n2)
- #define FUNC_NAME s_scm_logior
- {
- scm_t_inum nn1;
- if (SCM_UNBNDP (n2))
- {
- if (SCM_UNBNDP (n1))
- return SCM_INUM0;
- else if (SCM_NUMBERP (n1))
- return n1;
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
- }
- if (SCM_I_INUMP (n1))
- {
- nn1 = SCM_I_INUM (n1);
- if (SCM_I_INUMP (n2))
- {
- long nn2 = SCM_I_INUM (n2);
- return SCM_I_MAKINUM (nn1 | nn2);
- }
- else if (SCM_BIGP (n2))
- {
- intbig:
- if (nn1 == 0)
- return n2;
- {
- SCM result_z = scm_i_mkbig ();
- mpz_t nn1_z;
- mpz_init_set_si (nn1_z, nn1);
- mpz_ior (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
- scm_remember_upto_here_1 (n2);
- mpz_clear (nn1_z);
- return scm_i_normbig (result_z);
- }
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
- }
- else if (SCM_BIGP (n1))
- {
- if (SCM_I_INUMP (n2))
- {
- SCM_SWAP (n1, n2);
- nn1 = SCM_I_INUM (n1);
- goto intbig;
- }
- else if (SCM_BIGP (n2))
- {
- SCM result_z = scm_i_mkbig ();
- mpz_ior (SCM_I_BIG_MPZ (result_z),
- SCM_I_BIG_MPZ (n1),
- SCM_I_BIG_MPZ (n2));
- scm_remember_upto_here_2 (n1, n2);
- return scm_i_normbig (result_z);
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_i_logxor, "logxor", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return the bitwise XOR of the integer arguments. A bit is\n"
- "set in the result if it is set in an odd number of arguments.\n"
- "@lisp\n"
- "(logxor) @result{} 0\n"
- "(logxor 7) @result{} 7\n"
- "(logxor #b000 #b001 #b011) @result{} 2\n"
- "(logxor #b000 #b001 #b011 #b011) @result{} 1\n"
- "@end lisp")
- #define FUNC_NAME s_scm_i_logxor
- {
- while (!scm_is_null (rest))
- { x = scm_logxor (x, y);
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_logxor (x, y);
- }
- #undef FUNC_NAME
-
- #define s_scm_logxor s_scm_i_logxor
- SCM scm_logxor (SCM n1, SCM n2)
- #define FUNC_NAME s_scm_logxor
- {
- scm_t_inum nn1;
- if (SCM_UNBNDP (n2))
- {
- if (SCM_UNBNDP (n1))
- return SCM_INUM0;
- else if (SCM_NUMBERP (n1))
- return n1;
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
- }
- if (SCM_I_INUMP (n1))
- {
- nn1 = SCM_I_INUM (n1);
- if (SCM_I_INUMP (n2))
- {
- scm_t_inum nn2 = SCM_I_INUM (n2);
- return SCM_I_MAKINUM (nn1 ^ nn2);
- }
- else if (SCM_BIGP (n2))
- {
- intbig:
- {
- SCM result_z = scm_i_mkbig ();
- mpz_t nn1_z;
- mpz_init_set_si (nn1_z, nn1);
- mpz_xor (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
- scm_remember_upto_here_1 (n2);
- mpz_clear (nn1_z);
- return scm_i_normbig (result_z);
- }
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
- }
- else if (SCM_BIGP (n1))
- {
- if (SCM_I_INUMP (n2))
- {
- SCM_SWAP (n1, n2);
- nn1 = SCM_I_INUM (n1);
- goto intbig;
- }
- else if (SCM_BIGP (n2))
- {
- SCM result_z = scm_i_mkbig ();
- mpz_xor (SCM_I_BIG_MPZ (result_z),
- SCM_I_BIG_MPZ (n1),
- SCM_I_BIG_MPZ (n2));
- scm_remember_upto_here_2 (n1, n2);
- return scm_i_normbig (result_z);
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_logtest, "logtest", 2, 0, 0,
- (SCM j, SCM k),
- "Test whether @var{j} and @var{k} have any 1 bits in common.\n"
- "This is equivalent to @code{(not (zero? (logand j k)))}, but\n"
- "without actually calculating the @code{logand}, just testing\n"
- "for non-zero.\n"
- "\n"
- "@lisp\n"
- "(logtest #b0100 #b1011) @result{} #f\n"
- "(logtest #b0100 #b0111) @result{} #t\n"
- "@end lisp")
- #define FUNC_NAME s_scm_logtest
- {
- scm_t_inum nj;
- if (SCM_I_INUMP (j))
- {
- nj = SCM_I_INUM (j);
- if (SCM_I_INUMP (k))
- {
- scm_t_inum nk = SCM_I_INUM (k);
- return scm_from_bool (nj & nk);
- }
- else if (SCM_BIGP (k))
- {
- intbig:
- if (nj == 0)
- return SCM_BOOL_F;
- {
- SCM result;
- mpz_t nj_z;
- mpz_init_set_si (nj_z, nj);
- mpz_and (nj_z, nj_z, SCM_I_BIG_MPZ (k));
- scm_remember_upto_here_1 (k);
- result = scm_from_bool (mpz_sgn (nj_z) != 0);
- mpz_clear (nj_z);
- return result;
- }
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
- }
- else if (SCM_BIGP (j))
- {
- if (SCM_I_INUMP (k))
- {
- SCM_SWAP (j, k);
- nj = SCM_I_INUM (j);
- goto intbig;
- }
- else if (SCM_BIGP (k))
- {
- SCM result;
- mpz_t result_z;
- mpz_init (result_z);
- mpz_and (result_z,
- SCM_I_BIG_MPZ (j),
- SCM_I_BIG_MPZ (k));
- scm_remember_upto_here_2 (j, k);
- result = scm_from_bool (mpz_sgn (result_z) != 0);
- mpz_clear (result_z);
- return result;
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, j);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_logbit_p, "logbit?", 2, 0, 0,
- (SCM index, SCM j),
- "Test whether bit number @var{index} in @var{j} is set.\n"
- "@var{index} starts from 0 for the least significant bit.\n"
- "\n"
- "@lisp\n"
- "(logbit? 0 #b1101) @result{} #t\n"
- "(logbit? 1 #b1101) @result{} #f\n"
- "(logbit? 2 #b1101) @result{} #t\n"
- "(logbit? 3 #b1101) @result{} #t\n"
- "(logbit? 4 #b1101) @result{} #f\n"
- "@end lisp")
- #define FUNC_NAME s_scm_logbit_p
- {
- unsigned long int iindex;
- iindex = scm_to_ulong (index);
- if (SCM_I_INUMP (j))
- {
- if (iindex < SCM_LONG_BIT - 1)
- /* Arrange for the number to be converted to unsigned before
- checking the bit, to ensure that we're testing the bit in a
- two's complement representation (regardless of the native
- representation. */
- return scm_from_bool ((1UL << iindex) & SCM_I_INUM (j));
- else
- /* Portably check the sign. */
- return scm_from_bool (SCM_I_INUM (j) < 0);
- }
- else if (SCM_BIGP (j))
- {
- int val = mpz_tstbit (SCM_I_BIG_MPZ (j), iindex);
- scm_remember_upto_here_1 (j);
- return scm_from_bool (val);
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG2, j);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_lognot, "lognot", 1, 0, 0,
- (SCM n),
- "Return the integer which is the ones-complement of the integer\n"
- "argument.\n"
- "\n"
- "@lisp\n"
- "(number->string (lognot #b10000000) 2)\n"
- " @result{} \"-10000001\"\n"
- "(number->string (lognot #b0) 2)\n"
- " @result{} \"-1\"\n"
- "@end lisp")
- #define FUNC_NAME s_scm_lognot
- {
- if (SCM_I_INUMP (n)) {
- /* No overflow here, just need to toggle all the bits making up the inum.
- Enhancement: No need to strip the tag and add it back, could just xor
- a block of 1 bits, if that worked with the various debug versions of
- the SCM typedef. */
- return SCM_I_MAKINUM (~ SCM_I_INUM (n));
- } else if (SCM_BIGP (n)) {
- SCM result = scm_i_mkbig ();
- mpz_com (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n));
- scm_remember_upto_here_1 (n);
- return result;
- } else {
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
- }
- }
- #undef FUNC_NAME
- /* returns 0 if IN is not an integer. OUT must already be
- initialized. */
- static int
- coerce_to_big (SCM in, mpz_t out)
- {
- if (SCM_BIGP (in))
- mpz_set (out, SCM_I_BIG_MPZ (in));
- else if (SCM_I_INUMP (in))
- mpz_set_si (out, SCM_I_INUM (in));
- else
- return 0;
- return 1;
- }
- SCM_DEFINE (scm_modulo_expt, "modulo-expt", 3, 0, 0,
- (SCM n, SCM k, SCM m),
- "Return @var{n} raised to the integer exponent\n"
- "@var{k}, modulo @var{m}.\n"
- "\n"
- "@lisp\n"
- "(modulo-expt 2 3 5)\n"
- " @result{} 3\n"
- "@end lisp")
- #define FUNC_NAME s_scm_modulo_expt
- {
- mpz_t n_tmp;
- mpz_t k_tmp;
- mpz_t m_tmp;
-
- /* There are two classes of error we might encounter --
- 1) Math errors, which we'll report by calling scm_num_overflow,
- and
- 2) wrong-type errors, which of course we'll report by calling
- SCM_WRONG_TYPE_ARG.
- We don't report those errors immediately, however; instead we do
- some cleanup first. These variables tell us which error (if
- any) we should report after cleaning up.
- */
- int report_overflow = 0;
- int position_of_wrong_type = 0;
- SCM value_of_wrong_type = SCM_INUM0;
- SCM result = SCM_UNDEFINED;
- mpz_init (n_tmp);
- mpz_init (k_tmp);
- mpz_init (m_tmp);
-
- if (scm_is_eq (m, SCM_INUM0))
- {
- report_overflow = 1;
- goto cleanup;
- }
-
- if (!coerce_to_big (n, n_tmp))
- {
- value_of_wrong_type = n;
- position_of_wrong_type = 1;
- goto cleanup;
- }
- if (!coerce_to_big (k, k_tmp))
- {
- value_of_wrong_type = k;
- position_of_wrong_type = 2;
- goto cleanup;
- }
- if (!coerce_to_big (m, m_tmp))
- {
- value_of_wrong_type = m;
- position_of_wrong_type = 3;
- goto cleanup;
- }
- /* if the exponent K is negative, and we simply call mpz_powm, we
- will get a divide-by-zero exception when an inverse 1/n mod m
- doesn't exist (or is not unique). Since exceptions are hard to
- handle, we'll attempt the inversion "by hand" -- that way, we get
- a simple failure code, which is easy to handle. */
-
- if (-1 == mpz_sgn (k_tmp))
- {
- if (!mpz_invert (n_tmp, n_tmp, m_tmp))
- {
- report_overflow = 1;
- goto cleanup;
- }
- mpz_neg (k_tmp, k_tmp);
- }
- result = scm_i_mkbig ();
- mpz_powm (SCM_I_BIG_MPZ (result),
- n_tmp,
- k_tmp,
- m_tmp);
- if (mpz_sgn (m_tmp) < 0 && mpz_sgn (SCM_I_BIG_MPZ (result)) != 0)
- mpz_add (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), m_tmp);
- cleanup:
- mpz_clear (m_tmp);
- mpz_clear (k_tmp);
- mpz_clear (n_tmp);
- if (report_overflow)
- scm_num_overflow (FUNC_NAME);
- if (position_of_wrong_type)
- SCM_WRONG_TYPE_ARG (position_of_wrong_type,
- value_of_wrong_type);
-
- return scm_i_normbig (result);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_integer_expt, "integer-expt", 2, 0, 0,
- (SCM n, SCM k),
- "Return @var{n} raised to the power @var{k}. @var{k} must be an\n"
- "exact integer, @var{n} can be any number.\n"
- "\n"
- "Negative @var{k} is supported, and results in\n"
- "@math{1/@var{n}^abs(@var{k})} in the usual way.\n"
- "@math{@var{n}^0} is 1, as usual, and that\n"
- "includes @math{0^0} is 1.\n"
- "\n"
- "@lisp\n"
- "(integer-expt 2 5) @result{} 32\n"
- "(integer-expt -3 3) @result{} -27\n"
- "(integer-expt 5 -3) @result{} 1/125\n"
- "(integer-expt 0 0) @result{} 1\n"
- "@end lisp")
- #define FUNC_NAME s_scm_integer_expt
- {
- scm_t_inum i2 = 0;
- SCM z_i2 = SCM_BOOL_F;
- int i2_is_big = 0;
- SCM acc = SCM_I_MAKINUM (1L);
- /* Specifically refrain from checking the type of the first argument.
- This allows us to exponentiate any object that can be multiplied.
- If we must raise to a negative power, we must also be able to
- take its reciprocal. */
- if (!SCM_LIKELY (SCM_I_INUMP (k)) && !SCM_LIKELY (SCM_BIGP (k)))
- SCM_WRONG_TYPE_ARG (2, k);
- if (SCM_UNLIKELY (scm_is_eq (k, SCM_INUM0)))
- return SCM_INUM1; /* n^(exact0) is exact 1, regardless of n */
- else if (SCM_UNLIKELY (scm_is_eq (n, SCM_I_MAKINUM (-1L))))
- return scm_is_false (scm_even_p (k)) ? n : SCM_INUM1;
- /* The next check is necessary only because R6RS specifies different
- behavior for 0^(-k) than for (/ 0). If n is not a scheme number,
- we simply skip this case and move on. */
- else if (SCM_NUMBERP (n) && scm_is_true (scm_zero_p (n)))
- {
- /* k cannot be 0 at this point, because we
- have already checked for that case above */
- if (scm_is_true (scm_positive_p (k)))
- return n;
- else /* return NaN for (0 ^ k) for negative k per R6RS */
- return scm_nan ();
- }
- else if (SCM_FRACTIONP (n))
- {
- /* Optimize the fraction case by (a/b)^k ==> (a^k)/(b^k), to avoid
- needless reduction of intermediate products to lowest terms.
- If a and b have no common factors, then a^k and b^k have no
- common factors. Use 'scm_i_make_ratio_already_reduced' to
- construct the final result, so that no gcd computations are
- needed to exponentiate a fraction. */
- if (scm_is_true (scm_positive_p (k)))
- return scm_i_make_ratio_already_reduced
- (scm_integer_expt (SCM_FRACTION_NUMERATOR (n), k),
- scm_integer_expt (SCM_FRACTION_DENOMINATOR (n), k));
- else
- {
- k = scm_difference (k, SCM_UNDEFINED);
- return scm_i_make_ratio_already_reduced
- (scm_integer_expt (SCM_FRACTION_DENOMINATOR (n), k),
- scm_integer_expt (SCM_FRACTION_NUMERATOR (n), k));
- }
- }
- if (SCM_I_INUMP (k))
- i2 = SCM_I_INUM (k);
- else if (SCM_BIGP (k))
- {
- z_i2 = scm_i_clonebig (k, 1);
- scm_remember_upto_here_1 (k);
- i2_is_big = 1;
- }
- else
- SCM_WRONG_TYPE_ARG (2, k);
-
- if (i2_is_big)
- {
- if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == -1)
- {
- mpz_neg (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2));
- n = scm_divide (n, SCM_UNDEFINED);
- }
- while (1)
- {
- if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == 0)
- {
- return acc;
- }
- if (mpz_cmp_ui(SCM_I_BIG_MPZ (z_i2), 1) == 0)
- {
- return scm_product (acc, n);
- }
- if (mpz_tstbit(SCM_I_BIG_MPZ (z_i2), 0))
- acc = scm_product (acc, n);
- n = scm_product (n, n);
- mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2), 1);
- }
- }
- else
- {
- if (i2 < 0)
- {
- i2 = -i2;
- n = scm_divide (n, SCM_UNDEFINED);
- }
- while (1)
- {
- if (0 == i2)
- return acc;
- if (1 == i2)
- return scm_product (acc, n);
- if (i2 & 1)
- acc = scm_product (acc, n);
- n = scm_product (n, n);
- i2 >>= 1;
- }
- }
- }
- #undef FUNC_NAME
- /* Efficiently compute (N * 2^COUNT),
- where N is an exact integer, and COUNT > 0. */
- static SCM
- left_shift_exact_integer (SCM n, long count)
- {
- if (SCM_I_INUMP (n))
- {
- scm_t_inum nn = SCM_I_INUM (n);
- /* Left shift of count >= SCM_I_FIXNUM_BIT-1 will almost[*] always
- overflow a non-zero fixnum. For smaller shifts we check the
- bits going into positions above SCM_I_FIXNUM_BIT-1. If they're
- all 0s for nn>=0, or all 1s for nn<0 then there's no overflow.
- Those bits are "nn >> (SCM_I_FIXNUM_BIT-1 - count)".
- [*] There's one exception:
- (-1) << SCM_I_FIXNUM_BIT-1 == SCM_MOST_NEGATIVE_FIXNUM */
- if (nn == 0)
- return n;
- else if (count < SCM_I_FIXNUM_BIT-1 &&
- ((scm_t_bits) (SCM_SRS (nn, (SCM_I_FIXNUM_BIT-1 - count)) + 1)
- <= 1))
- return SCM_I_MAKINUM (nn < 0 ? -(-nn << count) : (nn << count));
- else
- {
- SCM result = scm_i_inum2big (nn);
- mpz_mul_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result),
- count);
- return scm_i_normbig (result);
- }
- }
- else if (SCM_BIGP (n))
- {
- SCM result = scm_i_mkbig ();
- mpz_mul_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n), count);
- scm_remember_upto_here_1 (n);
- return result;
- }
- else
- assert (0);
- }
- /* Efficiently compute floor (N / 2^COUNT),
- where N is an exact integer and COUNT > 0. */
- static SCM
- floor_right_shift_exact_integer (SCM n, long count)
- {
- if (SCM_I_INUMP (n))
- {
- scm_t_inum nn = SCM_I_INUM (n);
- if (count >= SCM_I_FIXNUM_BIT)
- return (nn >= 0 ? SCM_INUM0 : SCM_I_MAKINUM (-1));
- else
- return SCM_I_MAKINUM (SCM_SRS (nn, count));
- }
- else if (SCM_BIGP (n))
- {
- SCM result = scm_i_mkbig ();
- mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n),
- count);
- scm_remember_upto_here_1 (n);
- return scm_i_normbig (result);
- }
- else
- assert (0);
- }
- /* Efficiently compute round (N / 2^COUNT),
- where N is an exact integer and COUNT > 0. */
- static SCM
- round_right_shift_exact_integer (SCM n, long count)
- {
- if (SCM_I_INUMP (n))
- {
- if (count >= SCM_I_FIXNUM_BIT)
- return SCM_INUM0;
- else
- {
- scm_t_inum nn = SCM_I_INUM (n);
- scm_t_inum qq = SCM_SRS (nn, count);
- if (0 == (nn & (1L << (count-1))))
- return SCM_I_MAKINUM (qq); /* round down */
- else if (nn & ((1L << (count-1)) - 1))
- return SCM_I_MAKINUM (qq + 1); /* round up */
- else
- return SCM_I_MAKINUM ((~1L) & (qq + 1)); /* round to even */
- }
- }
- else if (SCM_BIGP (n))
- {
- SCM q = scm_i_mkbig ();
- mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (n), count);
- if (mpz_tstbit (SCM_I_BIG_MPZ (n), count-1)
- && (mpz_odd_p (SCM_I_BIG_MPZ (q))
- || (mpz_scan1 (SCM_I_BIG_MPZ (n), 0) < count-1)))
- mpz_add_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q), 1);
- scm_remember_upto_here_1 (n);
- return scm_i_normbig (q);
- }
- else
- assert (0);
- }
- SCM_DEFINE (scm_ash, "ash", 2, 0, 0,
- (SCM n, SCM count),
- "Return @math{floor(@var{n} * 2^@var{count})}.\n"
- "@var{n} and @var{count} must be exact integers.\n"
- "\n"
- "With @var{n} viewed as an infinite-precision twos-complement\n"
- "integer, @code{ash} means a left shift introducing zero bits\n"
- "when @var{count} is positive, or a right shift dropping bits\n"
- "when @var{count} is negative. This is an ``arithmetic'' shift.\n"
- "\n"
- "@lisp\n"
- "(number->string (ash #b1 3) 2) @result{} \"1000\"\n"
- "(number->string (ash #b1010 -1) 2) @result{} \"101\"\n"
- "\n"
- ";; -23 is bits ...11101001, -6 is bits ...111010\n"
- "(ash -23 -2) @result{} -6\n"
- "@end lisp")
- #define FUNC_NAME s_scm_ash
- {
- if (SCM_I_INUMP (n) || SCM_BIGP (n))
- {
- long bits_to_shift = scm_to_long (count);
- if (bits_to_shift > 0)
- return left_shift_exact_integer (n, bits_to_shift);
- else if (SCM_LIKELY (bits_to_shift < 0))
- return floor_right_shift_exact_integer (n, -bits_to_shift);
- else
- return n;
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_round_ash, "round-ash", 2, 0, 0,
- (SCM n, SCM count),
- "Return @math{round(@var{n} * 2^@var{count})}.\n"
- "@var{n} and @var{count} must be exact integers.\n"
- "\n"
- "With @var{n} viewed as an infinite-precision twos-complement\n"
- "integer, @code{round-ash} means a left shift introducing zero\n"
- "bits when @var{count} is positive, or a right shift rounding\n"
- "to the nearest integer (with ties going to the nearest even\n"
- "integer) when @var{count} is negative. This is a rounded\n"
- "``arithmetic'' shift.\n"
- "\n"
- "@lisp\n"
- "(number->string (round-ash #b1 3) 2) @result{} \"1000\"\n"
- "(number->string (round-ash #b1010 -1) 2) @result{} \"101\"\n"
- "(number->string (round-ash #b1010 -2) 2) @result{} \"10\"\n"
- "(number->string (round-ash #b1011 -2) 2) @result{} \"11\"\n"
- "(number->string (round-ash #b1101 -2) 2) @result{} \"11\"\n"
- "(number->string (round-ash #b1110 -2) 2) @result{} \"100\"\n"
- "@end lisp")
- #define FUNC_NAME s_scm_round_ash
- {
- if (SCM_I_INUMP (n) || SCM_BIGP (n))
- {
- long bits_to_shift = scm_to_long (count);
- if (bits_to_shift > 0)
- return left_shift_exact_integer (n, bits_to_shift);
- else if (SCM_LIKELY (bits_to_shift < 0))
- return round_right_shift_exact_integer (n, -bits_to_shift);
- else
- return n;
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_bit_extract, "bit-extract", 3, 0, 0,
- (SCM n, SCM start, SCM end),
- "Return the integer composed of the @var{start} (inclusive)\n"
- "through @var{end} (exclusive) bits of @var{n}. The\n"
- "@var{start}th bit becomes the 0-th bit in the result.\n"
- "\n"
- "@lisp\n"
- "(number->string (bit-extract #b1101101010 0 4) 2)\n"
- " @result{} \"1010\"\n"
- "(number->string (bit-extract #b1101101010 4 9) 2)\n"
- " @result{} \"10110\"\n"
- "@end lisp")
- #define FUNC_NAME s_scm_bit_extract
- {
- unsigned long int istart, iend, bits;
- istart = scm_to_ulong (start);
- iend = scm_to_ulong (end);
- SCM_ASSERT_RANGE (3, end, (iend >= istart));
- /* how many bits to keep */
- bits = iend - istart;
- if (SCM_I_INUMP (n))
- {
- scm_t_inum in = SCM_I_INUM (n);
- /* When istart>=SCM_I_FIXNUM_BIT we can just limit the shift to
- SCM_I_FIXNUM_BIT-1 to get either 0 or -1 per the sign of "in". */
- in = SCM_SRS (in, min (istart, SCM_I_FIXNUM_BIT-1));
- if (in < 0 && bits >= SCM_I_FIXNUM_BIT)
- {
- /* Since we emulate two's complement encoded numbers, this
- * special case requires us to produce a result that has
- * more bits than can be stored in a fixnum.
- */
- SCM result = scm_i_inum2big (in);
- mpz_fdiv_r_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result),
- bits);
- return result;
- }
- /* mask down to requisite bits */
- bits = min (bits, SCM_I_FIXNUM_BIT);
- return SCM_I_MAKINUM (in & ((1L << bits) - 1));
- }
- else if (SCM_BIGP (n))
- {
- SCM result;
- if (bits == 1)
- {
- result = SCM_I_MAKINUM (mpz_tstbit (SCM_I_BIG_MPZ (n), istart));
- }
- else
- {
- /* ENHANCE-ME: It'd be nice not to allocate a new bignum when
- bits<SCM_I_FIXNUM_BIT. Would want some help from GMP to get
- such bits into a ulong. */
- result = scm_i_mkbig ();
- mpz_fdiv_q_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(n), istart);
- mpz_fdiv_r_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(result), bits);
- result = scm_i_normbig (result);
- }
- scm_remember_upto_here_1 (n);
- return result;
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
- }
- #undef FUNC_NAME
- static const char scm_logtab[] = {
- 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
- };
- SCM_DEFINE (scm_logcount, "logcount", 1, 0, 0,
- (SCM n),
- "Return the number of bits in integer @var{n}. If integer is\n"
- "positive, the 1-bits in its binary representation are counted.\n"
- "If negative, the 0-bits in its two's-complement binary\n"
- "representation are counted. If 0, 0 is returned.\n"
- "\n"
- "@lisp\n"
- "(logcount #b10101010)\n"
- " @result{} 4\n"
- "(logcount 0)\n"
- " @result{} 0\n"
- "(logcount -2)\n"
- " @result{} 1\n"
- "@end lisp")
- #define FUNC_NAME s_scm_logcount
- {
- if (SCM_I_INUMP (n))
- {
- unsigned long c = 0;
- scm_t_inum nn = SCM_I_INUM (n);
- if (nn < 0)
- nn = -1 - nn;
- while (nn)
- {
- c += scm_logtab[15 & nn];
- nn >>= 4;
- }
- return SCM_I_MAKINUM (c);
- }
- else if (SCM_BIGP (n))
- {
- unsigned long count;
- if (mpz_sgn (SCM_I_BIG_MPZ (n)) >= 0)
- count = mpz_popcount (SCM_I_BIG_MPZ (n));
- else
- count = mpz_hamdist (SCM_I_BIG_MPZ (n), z_negative_one);
- scm_remember_upto_here_1 (n);
- return SCM_I_MAKINUM (count);
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
- }
- #undef FUNC_NAME
- static const char scm_ilentab[] = {
- 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4
- };
- SCM_DEFINE (scm_integer_length, "integer-length", 1, 0, 0,
- (SCM n),
- "Return the number of bits necessary to represent @var{n}.\n"
- "\n"
- "@lisp\n"
- "(integer-length #b10101010)\n"
- " @result{} 8\n"
- "(integer-length 0)\n"
- " @result{} 0\n"
- "(integer-length #b1111)\n"
- " @result{} 4\n"
- "@end lisp")
- #define FUNC_NAME s_scm_integer_length
- {
- if (SCM_I_INUMP (n))
- {
- unsigned long c = 0;
- unsigned int l = 4;
- scm_t_inum nn = SCM_I_INUM (n);
- if (nn < 0)
- nn = -1 - nn;
- while (nn)
- {
- c += 4;
- l = scm_ilentab [15 & nn];
- nn >>= 4;
- }
- return SCM_I_MAKINUM (c - 4 + l);
- }
- else if (SCM_BIGP (n))
- {
- /* mpz_sizeinbase looks at the absolute value of negatives, whereas we
- want a ones-complement. If n is ...111100..00 then mpz_sizeinbase is
- 1 too big, so check for that and adjust. */
- size_t size = mpz_sizeinbase (SCM_I_BIG_MPZ (n), 2);
- if (mpz_sgn (SCM_I_BIG_MPZ (n)) < 0
- && mpz_scan0 (SCM_I_BIG_MPZ (n), /* no 0 bits above the lowest 1 */
- mpz_scan1 (SCM_I_BIG_MPZ (n), 0)) == ULONG_MAX)
- size--;
- scm_remember_upto_here_1 (n);
- return SCM_I_MAKINUM (size);
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
- }
- #undef FUNC_NAME
- /*** NUMBERS -> STRINGS ***/
- #define SCM_MAX_DBL_RADIX 36
- /* use this array as a way to generate a single digit */
- static const char number_chars[] = "0123456789abcdefghijklmnopqrstuvwxyz";
- static mpz_t dbl_minimum_normal_mantissa;
- static size_t
- idbl2str (double dbl, char *a, int radix)
- {
- int ch = 0;
- if (radix < 2 || radix > SCM_MAX_DBL_RADIX)
- /* revert to existing behavior */
- radix = 10;
- if (isinf (dbl))
- {
- strcpy (a, (dbl > 0.0) ? "+inf.0" : "-inf.0");
- return 6;
- }
- else if (dbl > 0.0)
- ;
- else if (dbl < 0.0)
- {
- dbl = -dbl;
- a[ch++] = '-';
- }
- else if (dbl == 0.0)
- {
- if (copysign (1.0, dbl) < 0.0)
- a[ch++] = '-';
- strcpy (a + ch, "0.0");
- return ch + 3;
- }
- else if (isnan (dbl))
- {
- strcpy (a, "+nan.0");
- return 6;
- }
- /* Algorithm taken from "Printing Floating-Point Numbers Quickly and
- Accurately" by Robert G. Burger and R. Kent Dybvig */
- {
- int e, k;
- mpz_t f, r, s, mplus, mminus, hi, digit;
- int f_is_even, f_is_odd;
- int expon;
- int show_exp = 0;
- mpz_inits (f, r, s, mplus, mminus, hi, digit, NULL);
- mpz_set_d (f, ldexp (frexp (dbl, &e), DBL_MANT_DIG));
- if (e < DBL_MIN_EXP)
- {
- mpz_tdiv_q_2exp (f, f, DBL_MIN_EXP - e);
- e = DBL_MIN_EXP;
- }
- e -= DBL_MANT_DIG;
- f_is_even = !mpz_odd_p (f);
- f_is_odd = !f_is_even;
- /* Initialize r, s, mplus, and mminus according
- to Table 1 from the paper. */
- if (e < 0)
- {
- mpz_set_ui (mminus, 1);
- if (mpz_cmp (f, dbl_minimum_normal_mantissa) != 0
- || e == DBL_MIN_EXP - DBL_MANT_DIG)
- {
- mpz_set_ui (mplus, 1);
- mpz_mul_2exp (r, f, 1);
- mpz_mul_2exp (s, mminus, 1 - e);
- }
- else
- {
- mpz_set_ui (mplus, 2);
- mpz_mul_2exp (r, f, 2);
- mpz_mul_2exp (s, mminus, 2 - e);
- }
- }
- else
- {
- mpz_set_ui (mminus, 1);
- mpz_mul_2exp (mminus, mminus, e);
- if (mpz_cmp (f, dbl_minimum_normal_mantissa) != 0)
- {
- mpz_set (mplus, mminus);
- mpz_mul_2exp (r, f, 1 + e);
- mpz_set_ui (s, 2);
- }
- else
- {
- mpz_mul_2exp (mplus, mminus, 1);
- mpz_mul_2exp (r, f, 2 + e);
- mpz_set_ui (s, 4);
- }
- }
- /* Find the smallest k such that:
- (r + mplus) / s < radix^k (if f is even)
- (r + mplus) / s <= radix^k (if f is odd) */
- {
- /* IMPROVE-ME: Make an initial guess to speed this up */
- mpz_add (hi, r, mplus);
- k = 0;
- while (mpz_cmp (hi, s) >= f_is_odd)
- {
- mpz_mul_ui (s, s, radix);
- k++;
- }
- if (k == 0)
- {
- mpz_mul_ui (hi, hi, radix);
- while (mpz_cmp (hi, s) < f_is_odd)
- {
- mpz_mul_ui (r, r, radix);
- mpz_mul_ui (mplus, mplus, radix);
- mpz_mul_ui (mminus, mminus, radix);
- mpz_mul_ui (hi, hi, radix);
- k--;
- }
- }
- }
- expon = k - 1;
- if (k <= 0)
- {
- if (k <= -3)
- {
- /* Use scientific notation */
- show_exp = 1;
- k = 1;
- }
- else
- {
- int i;
- /* Print leading zeroes */
- a[ch++] = '0';
- a[ch++] = '.';
- for (i = 0; i > k; i--)
- a[ch++] = '0';
- }
- }
- for (;;)
- {
- int end_1_p, end_2_p;
- int d;
- mpz_mul_ui (mplus, mplus, radix);
- mpz_mul_ui (mminus, mminus, radix);
- mpz_mul_ui (r, r, radix);
- mpz_fdiv_qr (digit, r, r, s);
- d = mpz_get_ui (digit);
- mpz_add (hi, r, mplus);
- end_1_p = (mpz_cmp (r, mminus) < f_is_even);
- end_2_p = (mpz_cmp (s, hi) < f_is_even);
- if (end_1_p || end_2_p)
- {
- mpz_mul_2exp (r, r, 1);
- if (!end_2_p)
- ;
- else if (!end_1_p)
- d++;
- else if (mpz_cmp (r, s) >= !(d & 1))
- d++;
- a[ch++] = number_chars[d];
- if (--k == 0)
- a[ch++] = '.';
- break;
- }
- else
- {
- a[ch++] = number_chars[d];
- if (--k == 0)
- a[ch++] = '.';
- }
- }
- if (k > 0)
- {
- if (expon >= 7 && k >= 4 && expon >= k)
- {
- /* Here we would have to print more than three zeroes
- followed by a decimal point and another zero. It
- makes more sense to use scientific notation. */
- /* Adjust k to what it would have been if we had chosen
- scientific notation from the beginning. */
- k -= expon;
- /* k will now be <= 0, with magnitude equal to the number of
- digits that we printed which should now be put after the
- decimal point. */
- /* Insert a decimal point */
- memmove (a + ch + k + 1, a + ch + k, -k);
- a[ch + k] = '.';
- ch++;
- show_exp = 1;
- }
- else
- {
- for (; k > 0; k--)
- a[ch++] = '0';
- a[ch++] = '.';
- }
- }
- if (k == 0)
- a[ch++] = '0';
- if (show_exp)
- {
- a[ch++] = 'e';
- ch += scm_iint2str (expon, radix, a + ch);
- }
- mpz_clears (f, r, s, mplus, mminus, hi, digit, NULL);
- }
- return ch;
- }
- static size_t
- icmplx2str (double real, double imag, char *str, int radix)
- {
- size_t i;
- double sgn;
-
- i = idbl2str (real, str, radix);
- #ifdef HAVE_COPYSIGN
- sgn = copysign (1.0, imag);
- #else
- sgn = imag;
- #endif
- /* Don't output a '+' for negative numbers or for Inf and
- NaN. They will provide their own sign. */
- if (sgn >= 0 && isfinite (imag))
- str[i++] = '+';
- i += idbl2str (imag, &str[i], radix);
- str[i++] = 'i';
- return i;
- }
- static size_t
- iflo2str (SCM flt, char *str, int radix)
- {
- size_t i;
- if (SCM_REALP (flt))
- i = idbl2str (SCM_REAL_VALUE (flt), str, radix);
- else
- i = icmplx2str (SCM_COMPLEX_REAL (flt), SCM_COMPLEX_IMAG (flt),
- str, radix);
- return i;
- }
- /* convert a scm_t_intmax to a string (unterminated). returns the number of
- characters in the result.
- rad is output base
- p is destination: worst case (base 2) is SCM_INTBUFLEN */
- size_t
- scm_iint2str (scm_t_intmax num, int rad, char *p)
- {
- if (num < 0)
- {
- *p++ = '-';
- return scm_iuint2str (-num, rad, p) + 1;
- }
- else
- return scm_iuint2str (num, rad, p);
- }
- /* convert a scm_t_intmax to a string (unterminated). returns the number of
- characters in the result.
- rad is output base
- p is destination: worst case (base 2) is SCM_INTBUFLEN */
- size_t
- scm_iuint2str (scm_t_uintmax num, int rad, char *p)
- {
- size_t j = 1;
- size_t i;
- scm_t_uintmax n = num;
- if (rad < 2 || rad > 36)
- scm_out_of_range ("scm_iuint2str", scm_from_int (rad));
- for (n /= rad; n > 0; n /= rad)
- j++;
- i = j;
- n = num;
- while (i--)
- {
- int d = n % rad;
- n /= rad;
- p[i] = number_chars[d];
- }
- return j;
- }
- SCM_DEFINE (scm_number_to_string, "number->string", 1, 1, 0,
- (SCM n, SCM radix),
- "Return a string holding the external representation of the\n"
- "number @var{n} in the given @var{radix}. If @var{n} is\n"
- "inexact, a radix of 10 will be used.")
- #define FUNC_NAME s_scm_number_to_string
- {
- int base;
- if (SCM_UNBNDP (radix))
- base = 10;
- else
- base = scm_to_signed_integer (radix, 2, 36);
- if (SCM_I_INUMP (n))
- {
- char num_buf [SCM_INTBUFLEN];
- size_t length = scm_iint2str (SCM_I_INUM (n), base, num_buf);
- return scm_from_locale_stringn (num_buf, length);
- }
- else if (SCM_BIGP (n))
- {
- char *str = mpz_get_str (NULL, base, SCM_I_BIG_MPZ (n));
- size_t len = strlen (str);
- void (*freefunc) (void *, size_t);
- SCM ret;
- mp_get_memory_functions (NULL, NULL, &freefunc);
- scm_remember_upto_here_1 (n);
- ret = scm_from_latin1_stringn (str, len);
- freefunc (str, len + 1);
- return ret;
- }
- else if (SCM_FRACTIONP (n))
- {
- return scm_string_append (scm_list_3 (scm_number_to_string (SCM_FRACTION_NUMERATOR (n), radix),
- scm_from_locale_string ("/"),
- scm_number_to_string (SCM_FRACTION_DENOMINATOR (n), radix)));
- }
- else if (SCM_INEXACTP (n))
- {
- char num_buf [FLOBUFLEN];
- return scm_from_locale_stringn (num_buf, iflo2str (n, num_buf, base));
- }
- else
- SCM_WRONG_TYPE_ARG (1, n);
- }
- #undef FUNC_NAME
- /* These print routines used to be stubbed here so that scm_repl.c
- wouldn't need SCM_BIGDIG conditionals (pre GMP) */
- int
- scm_print_real (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
- {
- char num_buf[FLOBUFLEN];
- scm_lfwrite_unlocked (num_buf, iflo2str (sexp, num_buf, 10), port);
- return !0;
- }
- void
- scm_i_print_double (double val, SCM port)
- {
- char num_buf[FLOBUFLEN];
- scm_lfwrite_unlocked (num_buf, idbl2str (val, num_buf, 10), port);
- }
- int
- scm_print_complex (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
- {
- char num_buf[FLOBUFLEN];
- scm_lfwrite_unlocked (num_buf, iflo2str (sexp, num_buf, 10), port);
- return !0;
- }
- void
- scm_i_print_complex (double real, double imag, SCM port)
- {
- char num_buf[FLOBUFLEN];
- scm_lfwrite_unlocked (num_buf, icmplx2str (real, imag, num_buf, 10), port);
- }
- int
- scm_i_print_fraction (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
- {
- SCM str;
- str = scm_number_to_string (sexp, SCM_UNDEFINED);
- scm_display (str, port);
- scm_remember_upto_here_1 (str);
- return !0;
- }
- int
- scm_bigprint (SCM exp, SCM port, scm_print_state *pstate SCM_UNUSED)
- {
- char *str = mpz_get_str (NULL, 10, SCM_I_BIG_MPZ (exp));
- size_t len = strlen (str);
- void (*freefunc) (void *, size_t);
- mp_get_memory_functions (NULL, NULL, &freefunc);
- scm_remember_upto_here_1 (exp);
- scm_lfwrite_unlocked (str, len, port);
- freefunc (str, len + 1);
- return !0;
- }
- /*** END nums->strs ***/
- /*** STRINGS -> NUMBERS ***/
- /* The following functions implement the conversion from strings to numbers.
- * The implementation somehow follows the grammar for numbers as it is given
- * in R5RS. Thus, the functions resemble syntactic units (<ureal R>,
- * <uinteger R>, ...) that are used to build up numbers in the grammar. Some
- * points should be noted about the implementation:
- *
- * * Each function keeps a local index variable 'idx' that points at the
- * current position within the parsed string. The global index is only
- * updated if the function could parse the corresponding syntactic unit
- * successfully.
- *
- * * Similarly, the functions keep track of indicators of inexactness ('#',
- * '.' or exponents) using local variables ('hash_seen', 'x').
- *
- * * Sequences of digits are parsed into temporary variables holding fixnums.
- * Only if these fixnums would overflow, the result variables are updated
- * using the standard functions scm_add, scm_product, scm_divide etc. Then,
- * the temporary variables holding the fixnums are cleared, and the process
- * starts over again. If for example fixnums were able to store five decimal
- * digits, a number 1234567890 would be parsed in two parts 12345 and 67890,
- * and the result was computed as 12345 * 100000 + 67890. In other words,
- * only every five digits two bignum operations were performed.
- *
- * Notes on the handling of exactness specifiers:
- *
- * When parsing non-real complex numbers, we apply exactness specifiers on
- * per-component basis, as is done in PLT Scheme. For complex numbers
- * written in rectangular form, exactness specifiers are applied to the
- * real and imaginary parts before calling scm_make_rectangular. For
- * complex numbers written in polar form, exactness specifiers are applied
- * to the magnitude and angle before calling scm_make_polar.
- *
- * There are two kinds of exactness specifiers: forced and implicit. A
- * forced exactness specifier is a "#e" or "#i" prefix at the beginning of
- * the entire number, and applies to both components of a complex number.
- * "#e" causes each component to be made exact, and "#i" causes each
- * component to be made inexact. If no forced exactness specifier is
- * present, then the exactness of each component is determined
- * independently by the presence or absence of a decimal point or hash mark
- * within that component. If a decimal point or hash mark is present, the
- * component is made inexact, otherwise it is made exact.
- *
- * After the exactness specifiers have been applied to each component, they
- * are passed to either scm_make_rectangular or scm_make_polar to produce
- * the final result. Note that this will result in a real number if the
- * imaginary part, magnitude, or angle is an exact 0.
- *
- * For example, (string->number "#i5.0+0i") does the equivalent of:
- *
- * (make-rectangular (exact->inexact 5) (exact->inexact 0))
- */
- enum t_exactness {NO_EXACTNESS, INEXACT, EXACT};
- /* R5RS, section 7.1.1, lexical structure of numbers: <uinteger R>. */
- /* Caller is responsible for checking that the return value is in range
- for the given radix, which should be <= 36. */
- static unsigned int
- char_decimal_value (scm_t_uint32 c)
- {
- if (c >= (scm_t_uint32) '0' && c <= (scm_t_uint32) '9')
- return c - (scm_t_uint32) '0';
- else
- {
- /* uc_decimal_value returns -1 on error. When cast to an unsigned int,
- that's certainly above any valid decimal, so we take advantage of
- that to elide some tests. */
- unsigned int d = (unsigned int) uc_decimal_value (c);
- /* If that failed, try extended hexadecimals, then. Only accept ascii
- hexadecimals. */
- if (d >= 10U)
- {
- c = uc_tolower (c);
- if (c >= (scm_t_uint32) 'a')
- d = c - (scm_t_uint32)'a' + 10U;
- }
- return d;
- }
- }
- /* Parse the substring of MEM starting at *P_IDX for an unsigned integer
- in base RADIX. Upon success, return the unsigned integer and update
- *P_IDX and *P_EXACTNESS accordingly. Return #f on failure. */
- static SCM
- mem2uinteger (SCM mem, unsigned int *p_idx,
- unsigned int radix, enum t_exactness *p_exactness)
- {
- unsigned int idx = *p_idx;
- unsigned int hash_seen = 0;
- scm_t_bits shift = 1;
- scm_t_bits add = 0;
- unsigned int digit_value;
- SCM result;
- char c;
- size_t len = scm_i_string_length (mem);
- if (idx == len)
- return SCM_BOOL_F;
- c = scm_i_string_ref (mem, idx);
- digit_value = char_decimal_value (c);
- if (digit_value >= radix)
- return SCM_BOOL_F;
- idx++;
- result = SCM_I_MAKINUM (digit_value);
- while (idx != len)
- {
- scm_t_wchar c = scm_i_string_ref (mem, idx);
- if (c == '#')
- {
- hash_seen = 1;
- digit_value = 0;
- }
- else if (hash_seen)
- break;
- else
- {
- digit_value = char_decimal_value (c);
- /* This check catches non-decimals in addition to out-of-range
- decimals. */
- if (digit_value >= radix)
- break;
- }
- idx++;
- if (SCM_MOST_POSITIVE_FIXNUM / radix < shift)
- {
- result = scm_product (result, SCM_I_MAKINUM (shift));
- if (add > 0)
- result = scm_sum (result, SCM_I_MAKINUM (add));
- shift = radix;
- add = digit_value;
- }
- else
- {
- shift = shift * radix;
- add = add * radix + digit_value;
- }
- };
- if (shift > 1)
- result = scm_product (result, SCM_I_MAKINUM (shift));
- if (add > 0)
- result = scm_sum (result, SCM_I_MAKINUM (add));
- *p_idx = idx;
- if (hash_seen)
- *p_exactness = INEXACT;
- return result;
- }
- /* R5RS, section 7.1.1, lexical structure of numbers: <decimal 10>. Only
- * covers the parts of the rules that start at a potential point. The value
- * of the digits up to the point have been parsed by the caller and are given
- * in variable result. The content of *p_exactness indicates, whether a hash
- * has already been seen in the digits before the point.
- */
- #define DIGIT2UINT(d) (uc_numeric_value(d).numerator)
- static SCM
- mem2decimal_from_point (SCM result, SCM mem,
- unsigned int *p_idx, enum t_exactness *p_exactness)
- {
- unsigned int idx = *p_idx;
- enum t_exactness x = *p_exactness;
- size_t len = scm_i_string_length (mem);
- if (idx == len)
- return result;
- if (scm_i_string_ref (mem, idx) == '.')
- {
- scm_t_bits shift = 1;
- scm_t_bits add = 0;
- unsigned int digit_value;
- SCM big_shift = SCM_INUM1;
- idx++;
- while (idx != len)
- {
- scm_t_wchar c = scm_i_string_ref (mem, idx);
- if (uc_is_property_decimal_digit ((scm_t_uint32) c))
- {
- if (x == INEXACT)
- return SCM_BOOL_F;
- else
- digit_value = DIGIT2UINT (c);
- }
- else if (c == '#')
- {
- x = INEXACT;
- digit_value = 0;
- }
- else
- break;
- idx++;
- if (SCM_MOST_POSITIVE_FIXNUM / 10 < shift)
- {
- big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
- result = scm_product (result, SCM_I_MAKINUM (shift));
- if (add > 0)
- result = scm_sum (result, SCM_I_MAKINUM (add));
-
- shift = 10;
- add = digit_value;
- }
- else
- {
- shift = shift * 10;
- add = add * 10 + digit_value;
- }
- };
- if (add > 0)
- {
- big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
- result = scm_product (result, SCM_I_MAKINUM (shift));
- result = scm_sum (result, SCM_I_MAKINUM (add));
- }
- result = scm_divide (result, big_shift);
- /* We've seen a decimal point, thus the value is implicitly inexact. */
- x = INEXACT;
- }
- if (idx != len)
- {
- int sign = 1;
- unsigned int start;
- scm_t_wchar c;
- int exponent;
- SCM e;
- /* R5RS, section 7.1.1, lexical structure of numbers: <suffix> */
- switch (scm_i_string_ref (mem, idx))
- {
- case 'd': case 'D':
- case 'e': case 'E':
- case 'f': case 'F':
- case 'l': case 'L':
- case 's': case 'S':
- idx++;
- if (idx == len)
- return SCM_BOOL_F;
- start = idx;
- c = scm_i_string_ref (mem, idx);
- if (c == '-')
- {
- idx++;
- if (idx == len)
- return SCM_BOOL_F;
- sign = -1;
- c = scm_i_string_ref (mem, idx);
- }
- else if (c == '+')
- {
- idx++;
- if (idx == len)
- return SCM_BOOL_F;
- sign = 1;
- c = scm_i_string_ref (mem, idx);
- }
- else
- sign = 1;
- if (!uc_is_property_decimal_digit ((scm_t_uint32) c))
- return SCM_BOOL_F;
- idx++;
- exponent = DIGIT2UINT (c);
- while (idx != len)
- {
- scm_t_wchar c = scm_i_string_ref (mem, idx);
- if (uc_is_property_decimal_digit ((scm_t_uint32) c))
- {
- idx++;
- if (exponent <= SCM_MAXEXP)
- exponent = exponent * 10 + DIGIT2UINT (c);
- }
- else
- break;
- }
- if (exponent > ((sign == 1) ? SCM_MAXEXP : SCM_MAXEXP + DBL_DIG + 1))
- {
- size_t exp_len = idx - start;
- SCM exp_string = scm_i_substring_copy (mem, start, start + exp_len);
- SCM exp_num = scm_string_to_number (exp_string, SCM_UNDEFINED);
- scm_out_of_range ("string->number", exp_num);
- }
- e = scm_integer_expt (SCM_I_MAKINUM (10), SCM_I_MAKINUM (exponent));
- if (sign == 1)
- result = scm_product (result, e);
- else
- result = scm_divide (result, e);
- /* We've seen an exponent, thus the value is implicitly inexact. */
- x = INEXACT;
- break;
- default:
- break;
- }
- }
- *p_idx = idx;
- if (x == INEXACT)
- *p_exactness = x;
- return result;
- }
- /* R5RS, section 7.1.1, lexical structure of numbers: <ureal R> */
- static SCM
- mem2ureal (SCM mem, unsigned int *p_idx,
- unsigned int radix, enum t_exactness forced_x,
- int allow_inf_or_nan)
- {
- unsigned int idx = *p_idx;
- SCM result;
- size_t len = scm_i_string_length (mem);
- /* Start off believing that the number will be exact. This changes
- to INEXACT if we see a decimal point or a hash. */
- enum t_exactness implicit_x = EXACT;
- if (idx == len)
- return SCM_BOOL_F;
- if (allow_inf_or_nan && forced_x != EXACT && idx+5 <= len)
- switch (scm_i_string_ref (mem, idx))
- {
- case 'i': case 'I':
- switch (scm_i_string_ref (mem, idx + 1))
- {
- case 'n': case 'N':
- switch (scm_i_string_ref (mem, idx + 2))
- {
- case 'f': case 'F':
- if (scm_i_string_ref (mem, idx + 3) == '.'
- && scm_i_string_ref (mem, idx + 4) == '0')
- {
- *p_idx = idx+5;
- return scm_inf ();
- }
- }
- }
- case 'n': case 'N':
- switch (scm_i_string_ref (mem, idx + 1))
- {
- case 'a': case 'A':
- switch (scm_i_string_ref (mem, idx + 2))
- {
- case 'n': case 'N':
- if (scm_i_string_ref (mem, idx + 3) == '.')
- {
- /* Cobble up the fractional part. We might want to
- set the NaN's mantissa from it. */
- idx += 4;
- if (!scm_is_eq (mem2uinteger (mem, &idx, 10, &implicit_x),
- SCM_INUM0))
- {
- #if SCM_ENABLE_DEPRECATED == 1
- scm_c_issue_deprecation_warning
- ("Non-zero suffixes to `+nan.' are deprecated. Use `+nan.0'.");
- #else
- return SCM_BOOL_F;
- #endif
- }
-
- *p_idx = idx;
- return scm_nan ();
- }
- }
- }
- }
- if (scm_i_string_ref (mem, idx) == '.')
- {
- if (radix != 10)
- return SCM_BOOL_F;
- else if (idx + 1 == len)
- return SCM_BOOL_F;
- else if (!uc_is_property_decimal_digit ((scm_t_uint32) scm_i_string_ref (mem, idx+1)))
- return SCM_BOOL_F;
- else
- result = mem2decimal_from_point (SCM_INUM0, mem,
- p_idx, &implicit_x);
- }
- else
- {
- SCM uinteger;
- uinteger = mem2uinteger (mem, &idx, radix, &implicit_x);
- if (scm_is_false (uinteger))
- return SCM_BOOL_F;
- if (idx == len)
- result = uinteger;
- else if (scm_i_string_ref (mem, idx) == '/')
- {
- SCM divisor;
- idx++;
- if (idx == len)
- return SCM_BOOL_F;
- divisor = mem2uinteger (mem, &idx, radix, &implicit_x);
- if (scm_is_false (divisor) || scm_is_eq (divisor, SCM_INUM0))
- return SCM_BOOL_F;
- /* both are int/big here, I assume */
- result = scm_i_make_ratio (uinteger, divisor);
- }
- else if (radix == 10)
- {
- result = mem2decimal_from_point (uinteger, mem, &idx, &implicit_x);
- if (scm_is_false (result))
- return SCM_BOOL_F;
- }
- else
- result = uinteger;
- *p_idx = idx;
- }
- switch (forced_x)
- {
- case EXACT:
- if (SCM_INEXACTP (result))
- return scm_inexact_to_exact (result);
- else
- return result;
- case INEXACT:
- if (SCM_INEXACTP (result))
- return result;
- else
- return scm_exact_to_inexact (result);
- case NO_EXACTNESS:
- if (implicit_x == INEXACT)
- {
- if (SCM_INEXACTP (result))
- return result;
- else
- return scm_exact_to_inexact (result);
- }
- else
- return result;
- }
- /* We should never get here */
- assert (0);
- }
- /* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
- static SCM
- mem2complex (SCM mem, unsigned int idx,
- unsigned int radix, enum t_exactness forced_x)
- {
- scm_t_wchar c;
- int sign = 0;
- SCM ureal;
- size_t len = scm_i_string_length (mem);
- if (idx == len)
- return SCM_BOOL_F;
- c = scm_i_string_ref (mem, idx);
- if (c == '+')
- {
- idx++;
- sign = 1;
- }
- else if (c == '-')
- {
- idx++;
- sign = -1;
- }
- if (idx == len)
- return SCM_BOOL_F;
- ureal = mem2ureal (mem, &idx, radix, forced_x, sign != 0);
- if (scm_is_false (ureal))
- {
- /* input must be either +i or -i */
- if (sign == 0)
- return SCM_BOOL_F;
- if (scm_i_string_ref (mem, idx) == 'i'
- || scm_i_string_ref (mem, idx) == 'I')
- {
- idx++;
- if (idx != len)
- return SCM_BOOL_F;
-
- return scm_make_rectangular (SCM_INUM0, SCM_I_MAKINUM (sign));
- }
- else
- return SCM_BOOL_F;
- }
- else
- {
- if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
- ureal = scm_difference (ureal, SCM_UNDEFINED);
- if (idx == len)
- return ureal;
- c = scm_i_string_ref (mem, idx);
- switch (c)
- {
- case 'i': case 'I':
- /* either +<ureal>i or -<ureal>i */
- idx++;
- if (sign == 0)
- return SCM_BOOL_F;
- if (idx != len)
- return SCM_BOOL_F;
- return scm_make_rectangular (SCM_INUM0, ureal);
- case '@':
- /* polar input: <real>@<real>. */
- idx++;
- if (idx == len)
- return SCM_BOOL_F;
- else
- {
- int sign;
- SCM angle;
- SCM result;
- c = scm_i_string_ref (mem, idx);
- if (c == '+')
- {
- idx++;
- if (idx == len)
- return SCM_BOOL_F;
- sign = 1;
- }
- else if (c == '-')
- {
- idx++;
- if (idx == len)
- return SCM_BOOL_F;
- sign = -1;
- }
- else
- sign = 0;
- angle = mem2ureal (mem, &idx, radix, forced_x, sign != 0);
- if (scm_is_false (angle))
- return SCM_BOOL_F;
- if (idx != len)
- return SCM_BOOL_F;
- if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
- angle = scm_difference (angle, SCM_UNDEFINED);
- result = scm_make_polar (ureal, angle);
- return result;
- }
- case '+':
- case '-':
- /* expecting input matching <real>[+-]<ureal>?i */
- idx++;
- if (idx == len)
- return SCM_BOOL_F;
- else
- {
- int sign = (c == '+') ? 1 : -1;
- SCM imag = mem2ureal (mem, &idx, radix, forced_x, sign != 0);
- if (scm_is_false (imag))
- imag = SCM_I_MAKINUM (sign);
- else if (sign == -1 && scm_is_false (scm_nan_p (imag)))
- imag = scm_difference (imag, SCM_UNDEFINED);
- if (idx == len)
- return SCM_BOOL_F;
- if (scm_i_string_ref (mem, idx) != 'i'
- && scm_i_string_ref (mem, idx) != 'I')
- return SCM_BOOL_F;
- idx++;
- if (idx != len)
- return SCM_BOOL_F;
- return scm_make_rectangular (ureal, imag);
- }
- default:
- return SCM_BOOL_F;
- }
- }
- }
- /* R5RS, section 7.1.1, lexical structure of numbers: <number> */
- enum t_radix {NO_RADIX=0, DUAL=2, OCT=8, DEC=10, HEX=16};
- SCM
- scm_i_string_to_number (SCM mem, unsigned int default_radix)
- {
- unsigned int idx = 0;
- unsigned int radix = NO_RADIX;
- enum t_exactness forced_x = NO_EXACTNESS;
- size_t len = scm_i_string_length (mem);
- /* R5RS, section 7.1.1, lexical structure of numbers: <prefix R> */
- while (idx + 2 < len && scm_i_string_ref (mem, idx) == '#')
- {
- switch (scm_i_string_ref (mem, idx + 1))
- {
- case 'b': case 'B':
- if (radix != NO_RADIX)
- return SCM_BOOL_F;
- radix = DUAL;
- break;
- case 'd': case 'D':
- if (radix != NO_RADIX)
- return SCM_BOOL_F;
- radix = DEC;
- break;
- case 'i': case 'I':
- if (forced_x != NO_EXACTNESS)
- return SCM_BOOL_F;
- forced_x = INEXACT;
- break;
- case 'e': case 'E':
- if (forced_x != NO_EXACTNESS)
- return SCM_BOOL_F;
- forced_x = EXACT;
- break;
- case 'o': case 'O':
- if (radix != NO_RADIX)
- return SCM_BOOL_F;
- radix = OCT;
- break;
- case 'x': case 'X':
- if (radix != NO_RADIX)
- return SCM_BOOL_F;
- radix = HEX;
- break;
- default:
- return SCM_BOOL_F;
- }
- idx += 2;
- }
- /* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
- if (radix == NO_RADIX)
- radix = default_radix;
- return mem2complex (mem, idx, radix, forced_x);
- }
- SCM
- scm_c_locale_stringn_to_number (const char* mem, size_t len,
- unsigned int default_radix)
- {
- SCM str = scm_from_locale_stringn (mem, len);
- return scm_i_string_to_number (str, default_radix);
- }
- SCM_DEFINE (scm_string_to_number, "string->number", 1, 1, 0,
- (SCM string, SCM radix),
- "Return a number of the maximally precise representation\n"
- "expressed by the given @var{string}. @var{radix} must be an\n"
- "exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}\n"
- "is a default radix that may be overridden by an explicit radix\n"
- "prefix in @var{string} (e.g. \"#o177\"). If @var{radix} is not\n"
- "supplied, then the default radix is 10. If string is not a\n"
- "syntactically valid notation for a number, then\n"
- "@code{string->number} returns @code{#f}.")
- #define FUNC_NAME s_scm_string_to_number
- {
- SCM answer;
- unsigned int base;
- SCM_VALIDATE_STRING (1, string);
- if (SCM_UNBNDP (radix))
- base = 10;
- else
- base = scm_to_unsigned_integer (radix, 2, INT_MAX);
- answer = scm_i_string_to_number (string, base);
- scm_remember_upto_here_1 (string);
- return answer;
- }
- #undef FUNC_NAME
- /*** END strs->nums ***/
- SCM_DEFINE (scm_number_p, "number?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is a number, @code{#f}\n"
- "otherwise.")
- #define FUNC_NAME s_scm_number_p
- {
- return scm_from_bool (SCM_NUMBERP (x));
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_complex_p, "complex?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is a complex number, @code{#f}\n"
- "otherwise. Note that the sets of real, rational and integer\n"
- "values form subsets of the set of complex numbers, i. e. the\n"
- "predicate will also be fulfilled if @var{x} is a real,\n"
- "rational or integer number.")
- #define FUNC_NAME s_scm_complex_p
- {
- /* all numbers are complex. */
- return scm_number_p (x);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_real_p, "real?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is a real number, @code{#f}\n"
- "otherwise. Note that the set of integer values forms a subset of\n"
- "the set of real numbers, i. e. the predicate will also be\n"
- "fulfilled if @var{x} is an integer number.")
- #define FUNC_NAME s_scm_real_p
- {
- return scm_from_bool
- (SCM_I_INUMP (x) || SCM_REALP (x) || SCM_BIGP (x) || SCM_FRACTIONP (x));
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_rational_p, "rational?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is a rational number, @code{#f}\n"
- "otherwise. Note that the set of integer values forms a subset of\n"
- "the set of rational numbers, i. e. the predicate will also be\n"
- "fulfilled if @var{x} is an integer number.")
- #define FUNC_NAME s_scm_rational_p
- {
- if (SCM_I_INUMP (x) || SCM_BIGP (x) || SCM_FRACTIONP (x))
- return SCM_BOOL_T;
- else if (SCM_REALP (x))
- /* due to their limited precision, finite floating point numbers are
- rational as well. (finite means neither infinity nor a NaN) */
- return scm_from_bool (isfinite (SCM_REAL_VALUE (x)));
- else
- return SCM_BOOL_F;
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_integer_p, "integer?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is an integer number,\n"
- "else return @code{#f}.")
- #define FUNC_NAME s_scm_integer_p
- {
- if (SCM_I_INUMP (x) || SCM_BIGP (x))
- return SCM_BOOL_T;
- else if (SCM_REALP (x))
- {
- double val = SCM_REAL_VALUE (x);
- return scm_from_bool (!isinf (val) && (val == floor (val)));
- }
- else
- return SCM_BOOL_F;
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_exact_integer_p, "exact-integer?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is an exact integer number,\n"
- "else return @code{#f}.")
- #define FUNC_NAME s_scm_exact_integer_p
- {
- if (SCM_I_INUMP (x) || SCM_BIGP (x))
- return SCM_BOOL_T;
- else
- return SCM_BOOL_F;
- }
- #undef FUNC_NAME
- SCM scm_i_num_eq_p (SCM, SCM, SCM);
- SCM_PRIMITIVE_GENERIC (scm_i_num_eq_p, "=", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return @code{#t} if all parameters are numerically equal.")
- #define FUNC_NAME s_scm_i_num_eq_p
- {
- if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
- return SCM_BOOL_T;
- while (!scm_is_null (rest))
- {
- if (scm_is_false (scm_num_eq_p (x, y)))
- return SCM_BOOL_F;
- x = y;
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_num_eq_p (x, y);
- }
- #undef FUNC_NAME
- SCM
- scm_num_eq_p (SCM x, SCM y)
- {
- again:
- if (SCM_I_INUMP (x))
- {
- scm_t_signed_bits xx = SCM_I_INUM (x);
- if (SCM_I_INUMP (y))
- {
- scm_t_signed_bits yy = SCM_I_INUM (y);
- return scm_from_bool (xx == yy);
- }
- else if (SCM_BIGP (y))
- return SCM_BOOL_F;
- else if (SCM_REALP (y))
- {
- /* On a 32-bit system an inum fits a double, we can cast the inum
- to a double and compare.
- But on a 64-bit system an inum is bigger than a double and
- casting it to a double (call that dxx) will round.
- Although dxx will not in general be equal to xx, dxx will
- always be an integer and within a factor of 2 of xx, so if
- dxx==yy, we know that yy is an integer and fits in
- scm_t_signed_bits. So we cast yy to scm_t_signed_bits and
- compare with plain xx.
- An alternative (for any size system actually) would be to check
- yy is an integer (with floor) and is in range of an inum
- (compare against appropriate powers of 2) then test
- xx==(scm_t_signed_bits)yy. It's just a matter of which
- casts/comparisons might be fastest or easiest for the cpu. */
- double yy = SCM_REAL_VALUE (y);
- return scm_from_bool ((double) xx == yy
- && (DBL_MANT_DIG >= SCM_I_FIXNUM_BIT-1
- || xx == (scm_t_signed_bits) yy));
- }
- else if (SCM_COMPLEXP (y))
- {
- /* see comments with inum/real above */
- double ry = SCM_COMPLEX_REAL (y);
- return scm_from_bool ((double) xx == ry
- && 0.0 == SCM_COMPLEX_IMAG (y)
- && (DBL_MANT_DIG >= SCM_I_FIXNUM_BIT-1
- || xx == (scm_t_signed_bits) ry));
- }
- else if (SCM_FRACTIONP (y))
- return SCM_BOOL_F;
- else
- return scm_wta_dispatch_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn,
- s_scm_i_num_eq_p);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- return SCM_BOOL_F;
- else if (SCM_BIGP (y))
- {
- int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- return scm_from_bool (0 == cmp);
- }
- else if (SCM_REALP (y))
- {
- int cmp;
- if (isnan (SCM_REAL_VALUE (y)))
- return SCM_BOOL_F;
- cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
- scm_remember_upto_here_1 (x);
- return scm_from_bool (0 == cmp);
- }
- else if (SCM_COMPLEXP (y))
- {
- int cmp;
- if (0.0 != SCM_COMPLEX_IMAG (y))
- return SCM_BOOL_F;
- if (isnan (SCM_COMPLEX_REAL (y)))
- return SCM_BOOL_F;
- cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_COMPLEX_REAL (y));
- scm_remember_upto_here_1 (x);
- return scm_from_bool (0 == cmp);
- }
- else if (SCM_FRACTIONP (y))
- return SCM_BOOL_F;
- else
- return scm_wta_dispatch_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn,
- s_scm_i_num_eq_p);
- }
- else if (SCM_REALP (x))
- {
- double xx = SCM_REAL_VALUE (x);
- if (SCM_I_INUMP (y))
- {
- /* see comments with inum/real above */
- scm_t_signed_bits yy = SCM_I_INUM (y);
- return scm_from_bool (xx == (double) yy
- && (DBL_MANT_DIG >= SCM_I_FIXNUM_BIT-1
- || (scm_t_signed_bits) xx == yy));
- }
- else if (SCM_BIGP (y))
- {
- int cmp;
- if (isnan (xx))
- return SCM_BOOL_F;
- cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), xx);
- scm_remember_upto_here_1 (y);
- return scm_from_bool (0 == cmp);
- }
- else if (SCM_REALP (y))
- return scm_from_bool (xx == SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- return scm_from_bool ((xx == SCM_COMPLEX_REAL (y))
- && (0.0 == SCM_COMPLEX_IMAG (y)));
- else if (SCM_FRACTIONP (y))
- {
- if (isnan (xx) || isinf (xx))
- return SCM_BOOL_F;
- x = scm_inexact_to_exact (x); /* with x as frac or int */
- goto again;
- }
- else
- return scm_wta_dispatch_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn,
- s_scm_i_num_eq_p);
- }
- else if (SCM_COMPLEXP (x))
- {
- if (SCM_I_INUMP (y))
- {
- /* see comments with inum/real above */
- double rx = SCM_COMPLEX_REAL (x);
- scm_t_signed_bits yy = SCM_I_INUM (y);
- return scm_from_bool (rx == (double) yy
- && 0.0 == SCM_COMPLEX_IMAG (x)
- && (DBL_MANT_DIG >= SCM_I_FIXNUM_BIT-1
- || (scm_t_signed_bits) rx == yy));
- }
- else if (SCM_BIGP (y))
- {
- int cmp;
- if (0.0 != SCM_COMPLEX_IMAG (x))
- return SCM_BOOL_F;
- if (isnan (SCM_COMPLEX_REAL (x)))
- return SCM_BOOL_F;
- cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_COMPLEX_REAL (x));
- scm_remember_upto_here_1 (y);
- return scm_from_bool (0 == cmp);
- }
- else if (SCM_REALP (y))
- return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_REAL_VALUE (y))
- && (SCM_COMPLEX_IMAG (x) == 0.0));
- else if (SCM_COMPLEXP (y))
- return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y))
- && (SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y)));
- else if (SCM_FRACTIONP (y))
- {
- double xx;
- if (SCM_COMPLEX_IMAG (x) != 0.0)
- return SCM_BOOL_F;
- xx = SCM_COMPLEX_REAL (x);
- if (isnan (xx) || isinf (xx))
- return SCM_BOOL_F;
- x = scm_inexact_to_exact (x); /* with x as frac or int */
- goto again;
- }
- else
- return scm_wta_dispatch_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn,
- s_scm_i_num_eq_p);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_I_INUMP (y))
- return SCM_BOOL_F;
- else if (SCM_BIGP (y))
- return SCM_BOOL_F;
- else if (SCM_REALP (y))
- {
- double yy = SCM_REAL_VALUE (y);
- if (isnan (yy) || isinf (yy))
- return SCM_BOOL_F;
- y = scm_inexact_to_exact (y); /* with y as frac or int */
- goto again;
- }
- else if (SCM_COMPLEXP (y))
- {
- double yy;
- if (SCM_COMPLEX_IMAG (y) != 0.0)
- return SCM_BOOL_F;
- yy = SCM_COMPLEX_REAL (y);
- if (isnan (yy) || isinf(yy))
- return SCM_BOOL_F;
- y = scm_inexact_to_exact (y); /* with y as frac or int */
- goto again;
- }
- else if (SCM_FRACTIONP (y))
- return scm_i_fraction_equalp (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn,
- s_scm_i_num_eq_p);
- }
- else
- return scm_wta_dispatch_2 (g_scm_i_num_eq_p, x, y, SCM_ARG1,
- s_scm_i_num_eq_p);
- }
- /* OPTIMIZE-ME: For int/frac and frac/frac compares, the multiplications
- done are good for inums, but for bignums an answer can almost always be
- had by just examining a few high bits of the operands, as done by GMP in
- mpq_cmp. flonum/frac compares likewise, but with the slight complication
- of the float exponent to take into account. */
- SCM_INTERNAL SCM scm_i_num_less_p (SCM, SCM, SCM);
- SCM_PRIMITIVE_GENERIC (scm_i_num_less_p, "<", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return @code{#t} if the list of parameters is monotonically\n"
- "increasing.")
- #define FUNC_NAME s_scm_i_num_less_p
- {
- if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
- return SCM_BOOL_T;
- while (!scm_is_null (rest))
- {
- if (scm_is_false (scm_less_p (x, y)))
- return SCM_BOOL_F;
- x = y;
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_less_p (x, y);
- }
- #undef FUNC_NAME
- SCM
- scm_less_p (SCM x, SCM y)
- {
- again:
- if (SCM_I_INUMP (x))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- if (SCM_I_INUMP (y))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- return scm_from_bool (xx < yy);
- }
- else if (SCM_BIGP (y))
- {
- int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_1 (y);
- return scm_from_bool (sgn > 0);
- }
- else if (SCM_REALP (y))
- {
- /* We can safely take the ceiling of y without changing the
- result of x<y, given that x is an integer. */
- double yy = ceil (SCM_REAL_VALUE (y));
- /* In the following comparisons, it's important that the right
- hand side always be a power of 2, so that it can be
- losslessly converted to a double even on 64-bit
- machines. */
- if (yy >= (double) (SCM_MOST_POSITIVE_FIXNUM+1))
- return SCM_BOOL_T;
- else if (!(yy > (double) SCM_MOST_NEGATIVE_FIXNUM))
- /* The condition above is carefully written to include the
- case where yy==NaN. */
- return SCM_BOOL_F;
- else
- /* yy is a finite integer that fits in an inum. */
- return scm_from_bool (xx < (scm_t_inum) yy);
- }
- else if (SCM_FRACTIONP (y))
- {
- /* "x < a/b" becomes "x*b < a" */
- int_frac:
- x = scm_product (x, SCM_FRACTION_DENOMINATOR (y));
- y = SCM_FRACTION_NUMERATOR (y);
- goto again;
- }
- else
- return scm_wta_dispatch_2 (g_scm_i_num_less_p, x, y, SCM_ARGn,
- s_scm_i_num_less_p);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- {
- int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
- scm_remember_upto_here_1 (x);
- return scm_from_bool (sgn < 0);
- }
- else if (SCM_BIGP (y))
- {
- int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- return scm_from_bool (cmp < 0);
- }
- else if (SCM_REALP (y))
- {
- int cmp;
- if (isnan (SCM_REAL_VALUE (y)))
- return SCM_BOOL_F;
- cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
- scm_remember_upto_here_1 (x);
- return scm_from_bool (cmp < 0);
- }
- else if (SCM_FRACTIONP (y))
- goto int_frac;
- else
- return scm_wta_dispatch_2 (g_scm_i_num_less_p, x, y, SCM_ARGn,
- s_scm_i_num_less_p);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_I_INUMP (y))
- {
- /* We can safely take the floor of x without changing the
- result of x<y, given that y is an integer. */
- double xx = floor (SCM_REAL_VALUE (x));
- /* In the following comparisons, it's important that the right
- hand side always be a power of 2, so that it can be
- losslessly converted to a double even on 64-bit
- machines. */
- if (xx < (double) SCM_MOST_NEGATIVE_FIXNUM)
- return SCM_BOOL_T;
- else if (!(xx < (double) (SCM_MOST_POSITIVE_FIXNUM+1)))
- /* The condition above is carefully written to include the
- case where xx==NaN. */
- return SCM_BOOL_F;
- else
- /* xx is a finite integer that fits in an inum. */
- return scm_from_bool ((scm_t_inum) xx < SCM_I_INUM (y));
- }
- else if (SCM_BIGP (y))
- {
- int cmp;
- if (isnan (SCM_REAL_VALUE (x)))
- return SCM_BOOL_F;
- cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
- scm_remember_upto_here_1 (y);
- return scm_from_bool (cmp > 0);
- }
- else if (SCM_REALP (y))
- return scm_from_bool (SCM_REAL_VALUE (x) < SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- {
- double xx = SCM_REAL_VALUE (x);
- if (isnan (xx))
- return SCM_BOOL_F;
- if (isinf (xx))
- return scm_from_bool (xx < 0.0);
- x = scm_inexact_to_exact (x); /* with x as frac or int */
- goto again;
- }
- else
- return scm_wta_dispatch_2 (g_scm_i_num_less_p, x, y, SCM_ARGn,
- s_scm_i_num_less_p);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_I_INUMP (y) || SCM_BIGP (y))
- {
- /* "a/b < y" becomes "a < y*b" */
- y = scm_product (y, SCM_FRACTION_DENOMINATOR (x));
- x = SCM_FRACTION_NUMERATOR (x);
- goto again;
- }
- else if (SCM_REALP (y))
- {
- double yy = SCM_REAL_VALUE (y);
- if (isnan (yy))
- return SCM_BOOL_F;
- if (isinf (yy))
- return scm_from_bool (0.0 < yy);
- y = scm_inexact_to_exact (y); /* with y as frac or int */
- goto again;
- }
- else if (SCM_FRACTIONP (y))
- {
- /* "a/b < c/d" becomes "a*d < c*b" */
- SCM new_x = scm_product (SCM_FRACTION_NUMERATOR (x),
- SCM_FRACTION_DENOMINATOR (y));
- SCM new_y = scm_product (SCM_FRACTION_NUMERATOR (y),
- SCM_FRACTION_DENOMINATOR (x));
- x = new_x;
- y = new_y;
- goto again;
- }
- else
- return scm_wta_dispatch_2 (g_scm_i_num_less_p, x, y, SCM_ARGn,
- s_scm_i_num_less_p);
- }
- else
- return scm_wta_dispatch_2 (g_scm_i_num_less_p, x, y, SCM_ARG1,
- s_scm_i_num_less_p);
- }
- SCM scm_i_num_gr_p (SCM, SCM, SCM);
- SCM_PRIMITIVE_GENERIC (scm_i_num_gr_p, ">", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return @code{#t} if the list of parameters is monotonically\n"
- "decreasing.")
- #define FUNC_NAME s_scm_i_num_gr_p
- {
- if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
- return SCM_BOOL_T;
- while (!scm_is_null (rest))
- {
- if (scm_is_false (scm_gr_p (x, y)))
- return SCM_BOOL_F;
- x = y;
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_gr_p (x, y);
- }
- #undef FUNC_NAME
- #define FUNC_NAME s_scm_i_num_gr_p
- SCM
- scm_gr_p (SCM x, SCM y)
- {
- if (!SCM_NUMBERP (x))
- return scm_wta_dispatch_2 (g_scm_i_num_gr_p, x, y, SCM_ARG1, FUNC_NAME);
- else if (!SCM_NUMBERP (y))
- return scm_wta_dispatch_2 (g_scm_i_num_gr_p, x, y, SCM_ARG2, FUNC_NAME);
- else
- return scm_less_p (y, x);
- }
- #undef FUNC_NAME
- SCM scm_i_num_leq_p (SCM, SCM, SCM);
- SCM_PRIMITIVE_GENERIC (scm_i_num_leq_p, "<=", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return @code{#t} if the list of parameters is monotonically\n"
- "non-decreasing.")
- #define FUNC_NAME s_scm_i_num_leq_p
- {
- if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
- return SCM_BOOL_T;
- while (!scm_is_null (rest))
- {
- if (scm_is_false (scm_leq_p (x, y)))
- return SCM_BOOL_F;
- x = y;
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_leq_p (x, y);
- }
- #undef FUNC_NAME
- #define FUNC_NAME s_scm_i_num_leq_p
- SCM
- scm_leq_p (SCM x, SCM y)
- {
- if (!SCM_NUMBERP (x))
- return scm_wta_dispatch_2 (g_scm_i_num_leq_p, x, y, SCM_ARG1, FUNC_NAME);
- else if (!SCM_NUMBERP (y))
- return scm_wta_dispatch_2 (g_scm_i_num_leq_p, x, y, SCM_ARG2, FUNC_NAME);
- else if (scm_is_true (scm_nan_p (x)) || scm_is_true (scm_nan_p (y)))
- return SCM_BOOL_F;
- else
- return scm_not (scm_less_p (y, x));
- }
- #undef FUNC_NAME
- SCM scm_i_num_geq_p (SCM, SCM, SCM);
- SCM_PRIMITIVE_GENERIC (scm_i_num_geq_p, ">=", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return @code{#t} if the list of parameters is monotonically\n"
- "non-increasing.")
- #define FUNC_NAME s_scm_i_num_geq_p
- {
- if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
- return SCM_BOOL_T;
- while (!scm_is_null (rest))
- {
- if (scm_is_false (scm_geq_p (x, y)))
- return SCM_BOOL_F;
- x = y;
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_geq_p (x, y);
- }
- #undef FUNC_NAME
- #define FUNC_NAME s_scm_i_num_geq_p
- SCM
- scm_geq_p (SCM x, SCM y)
- {
- if (!SCM_NUMBERP (x))
- return scm_wta_dispatch_2 (g_scm_i_num_geq_p, x, y, SCM_ARG1, FUNC_NAME);
- else if (!SCM_NUMBERP (y))
- return scm_wta_dispatch_2 (g_scm_i_num_geq_p, x, y, SCM_ARG2, FUNC_NAME);
- else if (scm_is_true (scm_nan_p (x)) || scm_is_true (scm_nan_p (y)))
- return SCM_BOOL_F;
- else
- return scm_not (scm_less_p (x, y));
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_zero_p, "zero?", 1, 0, 0,
- (SCM z),
- "Return @code{#t} if @var{z} is an exact or inexact number equal to\n"
- "zero.")
- #define FUNC_NAME s_scm_zero_p
- {
- if (SCM_I_INUMP (z))
- return scm_from_bool (scm_is_eq (z, SCM_INUM0));
- else if (SCM_BIGP (z))
- return SCM_BOOL_F;
- else if (SCM_REALP (z))
- return scm_from_bool (SCM_REAL_VALUE (z) == 0.0);
- else if (SCM_COMPLEXP (z))
- return scm_from_bool (SCM_COMPLEX_REAL (z) == 0.0
- && SCM_COMPLEX_IMAG (z) == 0.0);
- else if (SCM_FRACTIONP (z))
- return SCM_BOOL_F;
- else
- return scm_wta_dispatch_1 (g_scm_zero_p, z, SCM_ARG1, s_scm_zero_p);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_positive_p, "positive?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is an exact or inexact number greater than\n"
- "zero.")
- #define FUNC_NAME s_scm_positive_p
- {
- if (SCM_I_INUMP (x))
- return scm_from_bool (SCM_I_INUM (x) > 0);
- else if (SCM_BIGP (x))
- {
- int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
- scm_remember_upto_here_1 (x);
- return scm_from_bool (sgn > 0);
- }
- else if (SCM_REALP (x))
- return scm_from_bool(SCM_REAL_VALUE (x) > 0.0);
- else if (SCM_FRACTIONP (x))
- return scm_positive_p (SCM_FRACTION_NUMERATOR (x));
- else
- return scm_wta_dispatch_1 (g_scm_positive_p, x, SCM_ARG1, s_scm_positive_p);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_negative_p, "negative?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is an exact or inexact number less than\n"
- "zero.")
- #define FUNC_NAME s_scm_negative_p
- {
- if (SCM_I_INUMP (x))
- return scm_from_bool (SCM_I_INUM (x) < 0);
- else if (SCM_BIGP (x))
- {
- int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
- scm_remember_upto_here_1 (x);
- return scm_from_bool (sgn < 0);
- }
- else if (SCM_REALP (x))
- return scm_from_bool(SCM_REAL_VALUE (x) < 0.0);
- else if (SCM_FRACTIONP (x))
- return scm_negative_p (SCM_FRACTION_NUMERATOR (x));
- else
- return scm_wta_dispatch_1 (g_scm_negative_p, x, SCM_ARG1, s_scm_negative_p);
- }
- #undef FUNC_NAME
- /* scm_min and scm_max return an inexact when either argument is inexact, as
- required by r5rs. On that basis, for exact/inexact combinations the
- exact is converted to inexact to compare and possibly return. This is
- unlike scm_less_p above which takes some trouble to preserve all bits in
- its test, such trouble is not required for min and max. */
- SCM_PRIMITIVE_GENERIC (scm_i_max, "max", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return the maximum of all parameter values.")
- #define FUNC_NAME s_scm_i_max
- {
- while (!scm_is_null (rest))
- { x = scm_max (x, y);
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_max (x, y);
- }
- #undef FUNC_NAME
-
- #define s_max s_scm_i_max
- #define g_max g_scm_i_max
- SCM
- scm_max (SCM x, SCM y)
- {
- if (SCM_UNBNDP (y))
- {
- if (SCM_UNBNDP (x))
- return scm_wta_dispatch_0 (g_max, s_max);
- else if (SCM_I_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
- return x;
- else
- return scm_wta_dispatch_1 (g_max, x, SCM_ARG1, s_max);
- }
-
- if (SCM_I_INUMP (x))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- if (SCM_I_INUMP (y))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- return (xx < yy) ? y : x;
- }
- else if (SCM_BIGP (y))
- {
- int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_1 (y);
- return (sgn < 0) ? x : y;
- }
- else if (SCM_REALP (y))
- {
- double xxd = xx;
- double yyd = SCM_REAL_VALUE (y);
- if (xxd > yyd)
- return scm_i_from_double (xxd);
- /* If y is a NaN, then "==" is false and we return the NaN */
- else if (SCM_LIKELY (!(xxd == yyd)))
- return y;
- /* Handle signed zeroes properly */
- else if (xx == 0)
- return flo0;
- else
- return y;
- }
- else if (SCM_FRACTIONP (y))
- {
- use_less:
- return (scm_is_false (scm_less_p (x, y)) ? x : y);
- }
- else
- return scm_wta_dispatch_2 (g_max, x, y, SCM_ARGn, s_max);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- {
- int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
- scm_remember_upto_here_1 (x);
- return (sgn < 0) ? y : x;
- }
- else if (SCM_BIGP (y))
- {
- int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- return (cmp > 0) ? x : y;
- }
- else if (SCM_REALP (y))
- {
- /* if y==NaN then xx>yy is false, so we return the NaN y */
- double xx, yy;
- big_real:
- xx = scm_i_big2dbl (x);
- yy = SCM_REAL_VALUE (y);
- return (xx > yy ? scm_i_from_double (xx) : y);
- }
- else if (SCM_FRACTIONP (y))
- {
- goto use_less;
- }
- else
- return scm_wta_dispatch_2 (g_max, x, y, SCM_ARGn, s_max);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_I_INUMP (y))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- double xxd = SCM_REAL_VALUE (x);
- double yyd = yy;
- if (yyd > xxd)
- return scm_i_from_double (yyd);
- /* If x is a NaN, then "==" is false and we return the NaN */
- else if (SCM_LIKELY (!(xxd == yyd)))
- return x;
- /* Handle signed zeroes properly */
- else if (yy == 0)
- return flo0;
- else
- return x;
- }
- else if (SCM_BIGP (y))
- {
- SCM_SWAP (x, y);
- goto big_real;
- }
- else if (SCM_REALP (y))
- {
- double xx = SCM_REAL_VALUE (x);
- double yy = SCM_REAL_VALUE (y);
- /* For purposes of max: nan > +inf.0 > everything else,
- per the R6RS errata */
- if (xx > yy)
- return x;
- else if (SCM_LIKELY (xx < yy))
- return y;
- /* If neither (xx > yy) nor (xx < yy), then
- either they're equal or one is a NaN */
- else if (SCM_UNLIKELY (xx != yy))
- return (xx != xx) ? x : y; /* Return the NaN */
- /* xx == yy, but handle signed zeroes properly */
- else if (copysign (1.0, yy) < 0.0)
- return x;
- else
- return y;
- }
- else if (SCM_FRACTIONP (y))
- {
- double yy = scm_i_fraction2double (y);
- double xx = SCM_REAL_VALUE (x);
- return (xx < yy) ? scm_i_from_double (yy) : x;
- }
- else
- return scm_wta_dispatch_2 (g_max, x, y, SCM_ARGn, s_max);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_I_INUMP (y))
- {
- goto use_less;
- }
- else if (SCM_BIGP (y))
- {
- goto use_less;
- }
- else if (SCM_REALP (y))
- {
- double xx = scm_i_fraction2double (x);
- /* if y==NaN then ">" is false, so we return the NaN y */
- return (xx > SCM_REAL_VALUE (y)) ? scm_i_from_double (xx) : y;
- }
- else if (SCM_FRACTIONP (y))
- {
- goto use_less;
- }
- else
- return scm_wta_dispatch_2 (g_max, x, y, SCM_ARGn, s_max);
- }
- else
- return scm_wta_dispatch_2 (g_max, x, y, SCM_ARG1, s_max);
- }
- SCM_PRIMITIVE_GENERIC (scm_i_min, "min", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return the minimum of all parameter values.")
- #define FUNC_NAME s_scm_i_min
- {
- while (!scm_is_null (rest))
- { x = scm_min (x, y);
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_min (x, y);
- }
- #undef FUNC_NAME
-
- #define s_min s_scm_i_min
- #define g_min g_scm_i_min
- SCM
- scm_min (SCM x, SCM y)
- {
- if (SCM_UNBNDP (y))
- {
- if (SCM_UNBNDP (x))
- return scm_wta_dispatch_0 (g_min, s_min);
- else if (SCM_I_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
- return x;
- else
- return scm_wta_dispatch_1 (g_min, x, SCM_ARG1, s_min);
- }
-
- if (SCM_I_INUMP (x))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- if (SCM_I_INUMP (y))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- return (xx < yy) ? x : y;
- }
- else if (SCM_BIGP (y))
- {
- int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_1 (y);
- return (sgn < 0) ? y : x;
- }
- else if (SCM_REALP (y))
- {
- double z = xx;
- /* if y==NaN then "<" is false and we return NaN */
- return (z < SCM_REAL_VALUE (y)) ? scm_i_from_double (z) : y;
- }
- else if (SCM_FRACTIONP (y))
- {
- use_less:
- return (scm_is_false (scm_less_p (x, y)) ? y : x);
- }
- else
- return scm_wta_dispatch_2 (g_min, x, y, SCM_ARGn, s_min);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- {
- int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
- scm_remember_upto_here_1 (x);
- return (sgn < 0) ? x : y;
- }
- else if (SCM_BIGP (y))
- {
- int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- return (cmp > 0) ? y : x;
- }
- else if (SCM_REALP (y))
- {
- /* if y==NaN then xx<yy is false, so we return the NaN y */
- double xx, yy;
- big_real:
- xx = scm_i_big2dbl (x);
- yy = SCM_REAL_VALUE (y);
- return (xx < yy ? scm_i_from_double (xx) : y);
- }
- else if (SCM_FRACTIONP (y))
- {
- goto use_less;
- }
- else
- return scm_wta_dispatch_2 (g_min, x, y, SCM_ARGn, s_min);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_I_INUMP (y))
- {
- double z = SCM_I_INUM (y);
- /* if x==NaN then "<" is false and we return NaN */
- return (z < SCM_REAL_VALUE (x)) ? scm_i_from_double (z) : x;
- }
- else if (SCM_BIGP (y))
- {
- SCM_SWAP (x, y);
- goto big_real;
- }
- else if (SCM_REALP (y))
- {
- double xx = SCM_REAL_VALUE (x);
- double yy = SCM_REAL_VALUE (y);
- /* For purposes of min: nan < -inf.0 < everything else,
- per the R6RS errata */
- if (xx < yy)
- return x;
- else if (SCM_LIKELY (xx > yy))
- return y;
- /* If neither (xx < yy) nor (xx > yy), then
- either they're equal or one is a NaN */
- else if (SCM_UNLIKELY (xx != yy))
- return (xx != xx) ? x : y; /* Return the NaN */
- /* xx == yy, but handle signed zeroes properly */
- else if (copysign (1.0, xx) < 0.0)
- return x;
- else
- return y;
- }
- else if (SCM_FRACTIONP (y))
- {
- double yy = scm_i_fraction2double (y);
- double xx = SCM_REAL_VALUE (x);
- return (yy < xx) ? scm_i_from_double (yy) : x;
- }
- else
- return scm_wta_dispatch_2 (g_min, x, y, SCM_ARGn, s_min);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_I_INUMP (y))
- {
- goto use_less;
- }
- else if (SCM_BIGP (y))
- {
- goto use_less;
- }
- else if (SCM_REALP (y))
- {
- double xx = scm_i_fraction2double (x);
- /* if y==NaN then "<" is false, so we return the NaN y */
- return (xx < SCM_REAL_VALUE (y)) ? scm_i_from_double (xx) : y;
- }
- else if (SCM_FRACTIONP (y))
- {
- goto use_less;
- }
- else
- return scm_wta_dispatch_2 (g_min, x, y, SCM_ARGn, s_min);
- }
- else
- return scm_wta_dispatch_2 (g_min, x, y, SCM_ARG1, s_min);
- }
- SCM_PRIMITIVE_GENERIC (scm_i_sum, "+", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return the sum of all parameter values. Return 0 if called without\n"
- "any parameters." )
- #define FUNC_NAME s_scm_i_sum
- {
- while (!scm_is_null (rest))
- { x = scm_sum (x, y);
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_sum (x, y);
- }
- #undef FUNC_NAME
-
- #define s_sum s_scm_i_sum
- #define g_sum g_scm_i_sum
- SCM
- scm_sum (SCM x, SCM y)
- {
- if (SCM_UNLIKELY (SCM_UNBNDP (y)))
- {
- if (SCM_NUMBERP (x)) return x;
- if (SCM_UNBNDP (x)) return SCM_INUM0;
- return scm_wta_dispatch_1 (g_sum, x, SCM_ARG1, s_sum);
- }
- if (SCM_LIKELY (SCM_I_INUMP (x)))
- {
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- scm_t_inum yy = SCM_I_INUM (y);
- scm_t_inum z = xx + yy;
- return SCM_FIXABLE (z) ? SCM_I_MAKINUM (z) : scm_i_inum2big (z);
- }
- else if (SCM_BIGP (y))
- {
- SCM_SWAP (x, y);
- goto add_big_inum;
- }
- else if (SCM_REALP (y))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- return scm_i_from_double (xx + SCM_REAL_VALUE (y));
- }
- else if (SCM_COMPLEXP (y))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- return scm_c_make_rectangular (xx + SCM_COMPLEX_REAL (y),
- SCM_COMPLEX_IMAG (y));
- }
- else if (SCM_FRACTIONP (y))
- return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
- scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
- SCM_FRACTION_DENOMINATOR (y));
- else
- return scm_wta_dispatch_2 (g_sum, x, y, SCM_ARGn, s_sum);
- } else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- {
- scm_t_inum inum;
- int bigsgn;
- add_big_inum:
- inum = SCM_I_INUM (y);
- if (inum == 0)
- return x;
- bigsgn = mpz_sgn (SCM_I_BIG_MPZ (x));
- if (inum < 0)
- {
- SCM result = scm_i_mkbig ();
- mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), - inum);
- scm_remember_upto_here_1 (x);
- /* we know the result will have to be a bignum */
- if (bigsgn == -1)
- return result;
- return scm_i_normbig (result);
- }
- else
- {
- SCM result = scm_i_mkbig ();
- mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), inum);
- scm_remember_upto_here_1 (x);
- /* we know the result will have to be a bignum */
- if (bigsgn == 1)
- return result;
- return scm_i_normbig (result);
- }
- }
- else if (SCM_BIGP (y))
- {
- SCM result = scm_i_mkbig ();
- int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
- int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
- mpz_add (SCM_I_BIG_MPZ (result),
- SCM_I_BIG_MPZ (x),
- SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- /* we know the result will have to be a bignum */
- if (sgn_x == sgn_y)
- return result;
- return scm_i_normbig (result);
- }
- else if (SCM_REALP (y))
- {
- double result = mpz_get_d (SCM_I_BIG_MPZ (x)) + SCM_REAL_VALUE (y);
- scm_remember_upto_here_1 (x);
- return scm_i_from_double (result);
- }
- else if (SCM_COMPLEXP (y))
- {
- double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
- + SCM_COMPLEX_REAL (y));
- scm_remember_upto_here_1 (x);
- return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (y));
- }
- else if (SCM_FRACTIONP (y))
- return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
- scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
- SCM_FRACTION_DENOMINATOR (y));
- else
- return scm_wta_dispatch_2 (g_sum, x, y, SCM_ARGn, s_sum);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_i_from_double (SCM_REAL_VALUE (x) + SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- {
- double result = mpz_get_d (SCM_I_BIG_MPZ (y)) + SCM_REAL_VALUE (x);
- scm_remember_upto_here_1 (y);
- return scm_i_from_double (result);
- }
- else if (SCM_REALP (y))
- return scm_i_from_double (SCM_REAL_VALUE (x) + SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- return scm_c_make_rectangular (SCM_REAL_VALUE (x) + SCM_COMPLEX_REAL (y),
- SCM_COMPLEX_IMAG (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_from_double (SCM_REAL_VALUE (x) + scm_i_fraction2double (y));
- else
- return scm_wta_dispatch_2 (g_sum, x, y, SCM_ARGn, s_sum);
- }
- else if (SCM_COMPLEXP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_I_INUM (y),
- SCM_COMPLEX_IMAG (x));
- else if (SCM_BIGP (y))
- {
- double real_part = (mpz_get_d (SCM_I_BIG_MPZ (y))
- + SCM_COMPLEX_REAL (x));
- scm_remember_upto_here_1 (y);
- return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (x));
- }
- else if (SCM_REALP (y))
- return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_REAL_VALUE (y),
- SCM_COMPLEX_IMAG (x));
- else if (SCM_COMPLEXP (y))
- return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_COMPLEX_REAL (y),
- SCM_COMPLEX_IMAG (x) + SCM_COMPLEX_IMAG (y));
- else if (SCM_FRACTIONP (y))
- return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + scm_i_fraction2double (y),
- SCM_COMPLEX_IMAG (x));
- else
- return scm_wta_dispatch_2 (g_sum, x, y, SCM_ARGn, s_sum);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
- scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
- SCM_FRACTION_DENOMINATOR (x));
- else if (SCM_BIGP (y))
- return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
- scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
- SCM_FRACTION_DENOMINATOR (x));
- else if (SCM_REALP (y))
- return scm_i_from_double (SCM_REAL_VALUE (y) + scm_i_fraction2double (x));
- else if (SCM_COMPLEXP (y))
- return scm_c_make_rectangular (SCM_COMPLEX_REAL (y) + scm_i_fraction2double (x),
- SCM_COMPLEX_IMAG (y));
- else if (SCM_FRACTIONP (y))
- /* a/b + c/d = (ad + bc) / bd */
- return scm_i_make_ratio (scm_sum (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
- scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
- scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
- else
- return scm_wta_dispatch_2 (g_sum, x, y, SCM_ARGn, s_sum);
- }
- else
- return scm_wta_dispatch_2 (g_sum, x, y, SCM_ARG1, s_sum);
- }
- SCM_DEFINE (scm_oneplus, "1+", 1, 0, 0,
- (SCM x),
- "Return @math{@var{x}+1}.")
- #define FUNC_NAME s_scm_oneplus
- {
- return scm_sum (x, SCM_INUM1);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_i_difference, "-", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "If called with one argument @var{z1}, -@var{z1} returned. Otherwise\n"
- "the sum of all but the first argument are subtracted from the first\n"
- "argument.")
- #define FUNC_NAME s_scm_i_difference
- {
- while (!scm_is_null (rest))
- { x = scm_difference (x, y);
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_difference (x, y);
- }
- #undef FUNC_NAME
-
- #define s_difference s_scm_i_difference
- #define g_difference g_scm_i_difference
- SCM
- scm_difference (SCM x, SCM y)
- #define FUNC_NAME s_difference
- {
- if (SCM_UNLIKELY (SCM_UNBNDP (y)))
- {
- if (SCM_UNBNDP (x))
- return scm_wta_dispatch_0 (g_difference, s_difference);
- else
- if (SCM_I_INUMP (x))
- {
- scm_t_inum xx = -SCM_I_INUM (x);
- if (SCM_FIXABLE (xx))
- return SCM_I_MAKINUM (xx);
- else
- return scm_i_inum2big (xx);
- }
- else if (SCM_BIGP (x))
- /* Must scm_i_normbig here because -SCM_MOST_NEGATIVE_FIXNUM is a
- bignum, but negating that gives a fixnum. */
- return scm_i_normbig (scm_i_clonebig (x, 0));
- else if (SCM_REALP (x))
- return scm_i_from_double (-SCM_REAL_VALUE (x));
- else if (SCM_COMPLEXP (x))
- return scm_c_make_rectangular (-SCM_COMPLEX_REAL (x),
- -SCM_COMPLEX_IMAG (x));
- else if (SCM_FRACTIONP (x))
- return scm_i_make_ratio_already_reduced
- (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
- SCM_FRACTION_DENOMINATOR (x));
- else
- return scm_wta_dispatch_1 (g_difference, x, SCM_ARG1, s_difference);
- }
-
- if (SCM_LIKELY (SCM_I_INUMP (x)))
- {
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- scm_t_inum yy = SCM_I_INUM (y);
- scm_t_inum z = xx - yy;
- if (SCM_FIXABLE (z))
- return SCM_I_MAKINUM (z);
- else
- return scm_i_inum2big (z);
- }
- else if (SCM_BIGP (y))
- {
- /* inum-x - big-y */
- scm_t_inum xx = SCM_I_INUM (x);
- if (xx == 0)
- {
- /* Must scm_i_normbig here because -SCM_MOST_NEGATIVE_FIXNUM is a
- bignum, but negating that gives a fixnum. */
- return scm_i_normbig (scm_i_clonebig (y, 0));
- }
- else
- {
- int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
- SCM result = scm_i_mkbig ();
- if (xx >= 0)
- mpz_ui_sub (SCM_I_BIG_MPZ (result), xx, SCM_I_BIG_MPZ (y));
- else
- {
- /* x - y == -(y + -x) */
- mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), -xx);
- mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
- }
- scm_remember_upto_here_1 (y);
- if ((xx < 0 && (sgn_y > 0)) || ((xx > 0) && sgn_y < 0))
- /* we know the result will have to be a bignum */
- return result;
- else
- return scm_i_normbig (result);
- }
- }
- else if (SCM_REALP (y))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- /*
- * We need to handle x == exact 0
- * specially because R6RS states that:
- * (- 0.0) ==> -0.0 and
- * (- 0.0 0.0) ==> 0.0
- * and the scheme compiler changes
- * (- 0.0) into (- 0 0.0)
- * So we need to treat (- 0 0.0) like (- 0.0).
- * At the C level, (-x) is different than (0.0 - x).
- * (0.0 - 0.0) ==> 0.0, but (- 0.0) ==> -0.0.
- */
- if (xx == 0)
- return scm_i_from_double (- SCM_REAL_VALUE (y));
- else
- return scm_i_from_double (xx - SCM_REAL_VALUE (y));
- }
- else if (SCM_COMPLEXP (y))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- /* We need to handle x == exact 0 specially.
- See the comment above (for SCM_REALP (y)) */
- if (xx == 0)
- return scm_c_make_rectangular (- SCM_COMPLEX_REAL (y),
- - SCM_COMPLEX_IMAG (y));
- else
- return scm_c_make_rectangular (xx - SCM_COMPLEX_REAL (y),
- - SCM_COMPLEX_IMAG (y));
- }
- else if (SCM_FRACTIONP (y))
- /* a - b/c = (ac - b) / c */
- return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
- SCM_FRACTION_NUMERATOR (y)),
- SCM_FRACTION_DENOMINATOR (y));
- else
- return scm_wta_dispatch_2 (g_difference, x, y, SCM_ARGn, s_difference);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- {
- /* big-x - inum-y */
- scm_t_inum yy = SCM_I_INUM (y);
- int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
- scm_remember_upto_here_1 (x);
- if (sgn_x == 0)
- return (SCM_FIXABLE (-yy) ?
- SCM_I_MAKINUM (-yy) : scm_from_inum (-yy));
- else
- {
- SCM result = scm_i_mkbig ();
- if (yy >= 0)
- mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), yy);
- else
- mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), -yy);
- scm_remember_upto_here_1 (x);
- if ((sgn_x < 0 && (yy > 0)) || ((sgn_x > 0) && yy < 0))
- /* we know the result will have to be a bignum */
- return result;
- else
- return scm_i_normbig (result);
- }
- }
- else if (SCM_BIGP (y))
- {
- int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
- int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
- SCM result = scm_i_mkbig ();
- mpz_sub (SCM_I_BIG_MPZ (result),
- SCM_I_BIG_MPZ (x),
- SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- /* we know the result will have to be a bignum */
- if ((sgn_x == 1) && (sgn_y == -1))
- return result;
- if ((sgn_x == -1) && (sgn_y == 1))
- return result;
- return scm_i_normbig (result);
- }
- else if (SCM_REALP (y))
- {
- double result = mpz_get_d (SCM_I_BIG_MPZ (x)) - SCM_REAL_VALUE (y);
- scm_remember_upto_here_1 (x);
- return scm_i_from_double (result);
- }
- else if (SCM_COMPLEXP (y))
- {
- double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
- - SCM_COMPLEX_REAL (y));
- scm_remember_upto_here_1 (x);
- return scm_c_make_rectangular (real_part, - SCM_COMPLEX_IMAG (y));
- }
- else if (SCM_FRACTIONP (y))
- return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
- SCM_FRACTION_NUMERATOR (y)),
- SCM_FRACTION_DENOMINATOR (y));
- else
- return scm_wta_dispatch_2 (g_difference, x, y, SCM_ARGn, s_difference);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_i_from_double (SCM_REAL_VALUE (x) - SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- {
- double result = SCM_REAL_VALUE (x) - mpz_get_d (SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_1 (x);
- return scm_i_from_double (result);
- }
- else if (SCM_REALP (y))
- return scm_i_from_double (SCM_REAL_VALUE (x) - SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- return scm_c_make_rectangular (SCM_REAL_VALUE (x) - SCM_COMPLEX_REAL (y),
- -SCM_COMPLEX_IMAG (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_from_double (SCM_REAL_VALUE (x) - scm_i_fraction2double (y));
- else
- return scm_wta_dispatch_2 (g_difference, x, y, SCM_ARGn, s_difference);
- }
- else if (SCM_COMPLEXP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_I_INUM (y),
- SCM_COMPLEX_IMAG (x));
- else if (SCM_BIGP (y))
- {
- double real_part = (SCM_COMPLEX_REAL (x)
- - mpz_get_d (SCM_I_BIG_MPZ (y)));
- scm_remember_upto_here_1 (x);
- return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (y));
- }
- else if (SCM_REALP (y))
- return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_REAL_VALUE (y),
- SCM_COMPLEX_IMAG (x));
- else if (SCM_COMPLEXP (y))
- return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_COMPLEX_REAL (y),
- SCM_COMPLEX_IMAG (x) - SCM_COMPLEX_IMAG (y));
- else if (SCM_FRACTIONP (y))
- return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - scm_i_fraction2double (y),
- SCM_COMPLEX_IMAG (x));
- else
- return scm_wta_dispatch_2 (g_difference, x, y, SCM_ARGn, s_difference);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_I_INUMP (y))
- /* a/b - c = (a - cb) / b */
- return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
- scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
- SCM_FRACTION_DENOMINATOR (x));
- else if (SCM_BIGP (y))
- return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
- scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
- SCM_FRACTION_DENOMINATOR (x));
- else if (SCM_REALP (y))
- return scm_i_from_double (scm_i_fraction2double (x) - SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- return scm_c_make_rectangular (scm_i_fraction2double (x) - SCM_COMPLEX_REAL (y),
- -SCM_COMPLEX_IMAG (y));
- else if (SCM_FRACTIONP (y))
- /* a/b - c/d = (ad - bc) / bd */
- return scm_i_make_ratio (scm_difference (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
- scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
- scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
- else
- return scm_wta_dispatch_2 (g_difference, x, y, SCM_ARGn, s_difference);
- }
- else
- return scm_wta_dispatch_2 (g_difference, x, y, SCM_ARG1, s_difference);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_oneminus, "1-", 1, 0, 0,
- (SCM x),
- "Return @math{@var{x}-1}.")
- #define FUNC_NAME s_scm_oneminus
- {
- return scm_difference (x, SCM_INUM1);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_i_product, "*", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return the product of all arguments. If called without arguments,\n"
- "1 is returned.")
- #define FUNC_NAME s_scm_i_product
- {
- while (!scm_is_null (rest))
- { x = scm_product (x, y);
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_product (x, y);
- }
- #undef FUNC_NAME
-
- #define s_product s_scm_i_product
- #define g_product g_scm_i_product
- SCM
- scm_product (SCM x, SCM y)
- {
- if (SCM_UNLIKELY (SCM_UNBNDP (y)))
- {
- if (SCM_UNBNDP (x))
- return SCM_I_MAKINUM (1L);
- else if (SCM_NUMBERP (x))
- return x;
- else
- return scm_wta_dispatch_1 (g_product, x, SCM_ARG1, s_product);
- }
-
- if (SCM_LIKELY (SCM_I_INUMP (x)))
- {
- scm_t_inum xx;
- xinum:
- xx = SCM_I_INUM (x);
- switch (xx)
- {
- case 1:
- /* exact1 is the universal multiplicative identity */
- return y;
- break;
- case 0:
- /* exact0 times a fixnum is exact0: optimize this case */
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- return SCM_INUM0;
- /* if the other argument is inexact, the result is inexact,
- and we must do the multiplication in order to handle
- infinities and NaNs properly. */
- else if (SCM_REALP (y))
- return scm_i_from_double (0.0 * SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- return scm_c_make_rectangular (0.0 * SCM_COMPLEX_REAL (y),
- 0.0 * SCM_COMPLEX_IMAG (y));
- /* we've already handled inexact numbers,
- so y must be exact, and we return exact0 */
- else if (SCM_NUMP (y))
- return SCM_INUM0;
- else
- return scm_wta_dispatch_2 (g_product, x, y, SCM_ARGn, s_product);
- break;
- case -1:
- /*
- * This case is important for more than just optimization.
- * It handles the case of negating
- * (+ 1 most-positive-fixnum) aka (- most-negative-fixnum),
- * which is a bignum that must be changed back into a fixnum.
- * Failure to do so will cause the following to return #f:
- * (= most-negative-fixnum (* -1 (- most-negative-fixnum)))
- */
- return scm_difference(y, SCM_UNDEFINED);
- break;
- }
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- #if SCM_I_FIXNUM_BIT < 32 && SCM_HAVE_T_INT64
- scm_t_int64 kk = xx * (scm_t_int64) yy;
- if (SCM_FIXABLE (kk))
- return SCM_I_MAKINUM (kk);
- #else
- scm_t_inum axx = (xx > 0) ? xx : -xx;
- scm_t_inum ayy = (yy > 0) ? yy : -yy;
- if (SCM_MOST_POSITIVE_FIXNUM / axx >= ayy)
- return SCM_I_MAKINUM (xx * yy);
- #endif
- else
- {
- SCM result = scm_i_inum2big (xx);
- mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), yy);
- return scm_i_normbig (result);
- }
- }
- else if (SCM_BIGP (y))
- {
- SCM result = scm_i_mkbig ();
- mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), xx);
- scm_remember_upto_here_1 (y);
- return result;
- }
- else if (SCM_REALP (y))
- return scm_i_from_double (xx * SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- return scm_c_make_rectangular (xx * SCM_COMPLEX_REAL (y),
- xx * SCM_COMPLEX_IMAG (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
- SCM_FRACTION_DENOMINATOR (y));
- else
- return scm_wta_dispatch_2 (g_product, x, y, SCM_ARGn, s_product);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- {
- SCM_SWAP (x, y);
- goto xinum;
- }
- else if (SCM_BIGP (y))
- {
- SCM result = scm_i_mkbig ();
- mpz_mul (SCM_I_BIG_MPZ (result),
- SCM_I_BIG_MPZ (x),
- SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- return result;
- }
- else if (SCM_REALP (y))
- {
- double result = mpz_get_d (SCM_I_BIG_MPZ (x)) * SCM_REAL_VALUE (y);
- scm_remember_upto_here_1 (x);
- return scm_i_from_double (result);
- }
- else if (SCM_COMPLEXP (y))
- {
- double z = mpz_get_d (SCM_I_BIG_MPZ (x));
- scm_remember_upto_here_1 (x);
- return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (y),
- z * SCM_COMPLEX_IMAG (y));
- }
- else if (SCM_FRACTIONP (y))
- return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
- SCM_FRACTION_DENOMINATOR (y));
- else
- return scm_wta_dispatch_2 (g_product, x, y, SCM_ARGn, s_product);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_I_INUMP (y))
- {
- SCM_SWAP (x, y);
- goto xinum;
- }
- else if (SCM_BIGP (y))
- {
- double result = mpz_get_d (SCM_I_BIG_MPZ (y)) * SCM_REAL_VALUE (x);
- scm_remember_upto_here_1 (y);
- return scm_i_from_double (result);
- }
- else if (SCM_REALP (y))
- return scm_i_from_double (SCM_REAL_VALUE (x) * SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- return scm_c_make_rectangular (SCM_REAL_VALUE (x) * SCM_COMPLEX_REAL (y),
- SCM_REAL_VALUE (x) * SCM_COMPLEX_IMAG (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_from_double (SCM_REAL_VALUE (x) * scm_i_fraction2double (y));
- else
- return scm_wta_dispatch_2 (g_product, x, y, SCM_ARGn, s_product);
- }
- else if (SCM_COMPLEXP (x))
- {
- if (SCM_I_INUMP (y))
- {
- SCM_SWAP (x, y);
- goto xinum;
- }
- else if (SCM_BIGP (y))
- {
- double z = mpz_get_d (SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_1 (y);
- return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (x),
- z * SCM_COMPLEX_IMAG (x));
- }
- else if (SCM_REALP (y))
- return scm_c_make_rectangular (SCM_REAL_VALUE (y) * SCM_COMPLEX_REAL (x),
- SCM_REAL_VALUE (y) * SCM_COMPLEX_IMAG (x));
- else if (SCM_COMPLEXP (y))
- {
- return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) * SCM_COMPLEX_REAL (y)
- - SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_IMAG (y),
- SCM_COMPLEX_REAL (x) * SCM_COMPLEX_IMAG (y)
- + SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_REAL (y));
- }
- else if (SCM_FRACTIONP (y))
- {
- double yy = scm_i_fraction2double (y);
- return scm_c_make_rectangular (yy * SCM_COMPLEX_REAL (x),
- yy * SCM_COMPLEX_IMAG (x));
- }
- else
- return scm_wta_dispatch_2 (g_product, x, y, SCM_ARGn, s_product);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_i_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
- SCM_FRACTION_DENOMINATOR (x));
- else if (SCM_BIGP (y))
- return scm_i_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
- SCM_FRACTION_DENOMINATOR (x));
- else if (SCM_REALP (y))
- return scm_i_from_double (scm_i_fraction2double (x) * SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- {
- double xx = scm_i_fraction2double (x);
- return scm_c_make_rectangular (xx * SCM_COMPLEX_REAL (y),
- xx * SCM_COMPLEX_IMAG (y));
- }
- else if (SCM_FRACTIONP (y))
- /* a/b * c/d = ac / bd */
- return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x),
- SCM_FRACTION_NUMERATOR (y)),
- scm_product (SCM_FRACTION_DENOMINATOR (x),
- SCM_FRACTION_DENOMINATOR (y)));
- else
- return scm_wta_dispatch_2 (g_product, x, y, SCM_ARGn, s_product);
- }
- else
- return scm_wta_dispatch_2 (g_product, x, y, SCM_ARG1, s_product);
- }
- #if ((defined (HAVE_ISINF) && defined (HAVE_ISNAN)) \
- || (defined (HAVE_FINITE) && defined (HAVE_ISNAN)))
- #define ALLOW_DIVIDE_BY_ZERO
- /* #define ALLOW_DIVIDE_BY_EXACT_ZERO */
- #endif
- /* The code below for complex division is adapted from the GNU
- libstdc++, which adapted it from f2c's libF77, and is subject to
- this copyright: */
- /****************************************************************
- Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories and Bellcore.
- Permission to use, copy, modify, and distribute this software
- and its documentation for any purpose and without fee is hereby
- granted, provided that the above copyright notice appear in all
- copies and that both that the copyright notice and this
- permission notice and warranty disclaimer appear in supporting
- documentation, and that the names of AT&T Bell Laboratories or
- Bellcore or any of their entities not be used in advertising or
- publicity pertaining to distribution of the software without
- specific, written prior permission.
- AT&T and Bellcore disclaim all warranties with regard to this
- software, including all implied warranties of merchantability
- and fitness. In no event shall AT&T or Bellcore be liable for
- any special, indirect or consequential damages or any damages
- whatsoever resulting from loss of use, data or profits, whether
- in an action of contract, negligence or other tortious action,
- arising out of or in connection with the use or performance of
- this software.
- ****************************************************************/
- SCM_PRIMITIVE_GENERIC (scm_i_divide, "/", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Divide the first argument by the product of the remaining\n"
- "arguments. If called with one argument @var{z1}, 1/@var{z1} is\n"
- "returned.")
- #define FUNC_NAME s_scm_i_divide
- {
- while (!scm_is_null (rest))
- { x = scm_divide (x, y);
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_divide (x, y);
- }
- #undef FUNC_NAME
-
- #define s_divide s_scm_i_divide
- #define g_divide g_scm_i_divide
- SCM
- scm_divide (SCM x, SCM y)
- #define FUNC_NAME s_divide
- {
- double a;
- if (SCM_UNLIKELY (SCM_UNBNDP (y)))
- {
- if (SCM_UNBNDP (x))
- return scm_wta_dispatch_0 (g_divide, s_divide);
- else if (SCM_I_INUMP (x))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- if (xx == 1 || xx == -1)
- return x;
- #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
- else if (xx == 0)
- scm_num_overflow (s_divide);
- #endif
- else
- return scm_i_make_ratio_already_reduced (SCM_INUM1, x);
- }
- else if (SCM_BIGP (x))
- return scm_i_make_ratio_already_reduced (SCM_INUM1, x);
- else if (SCM_REALP (x))
- {
- double xx = SCM_REAL_VALUE (x);
- #ifndef ALLOW_DIVIDE_BY_ZERO
- if (xx == 0.0)
- scm_num_overflow (s_divide);
- else
- #endif
- return scm_i_from_double (1.0 / xx);
- }
- else if (SCM_COMPLEXP (x))
- {
- double r = SCM_COMPLEX_REAL (x);
- double i = SCM_COMPLEX_IMAG (x);
- if (fabs(r) <= fabs(i))
- {
- double t = r / i;
- double d = i * (1.0 + t * t);
- return scm_c_make_rectangular (t / d, -1.0 / d);
- }
- else
- {
- double t = i / r;
- double d = r * (1.0 + t * t);
- return scm_c_make_rectangular (1.0 / d, -t / d);
- }
- }
- else if (SCM_FRACTIONP (x))
- return scm_i_make_ratio_already_reduced (SCM_FRACTION_DENOMINATOR (x),
- SCM_FRACTION_NUMERATOR (x));
- else
- return scm_wta_dispatch_1 (g_divide, x, SCM_ARG1, s_divide);
- }
- if (SCM_LIKELY (SCM_I_INUMP (x)))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (yy == 0)
- {
- #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
- scm_num_overflow (s_divide);
- #else
- return scm_i_from_double ((double) xx / (double) yy);
- #endif
- }
- else if (xx % yy != 0)
- return scm_i_make_ratio (x, y);
- else
- {
- scm_t_inum z = xx / yy;
- if (SCM_FIXABLE (z))
- return SCM_I_MAKINUM (z);
- else
- return scm_i_inum2big (z);
- }
- }
- else if (SCM_BIGP (y))
- return scm_i_make_ratio (x, y);
- else if (SCM_REALP (y))
- {
- double yy = SCM_REAL_VALUE (y);
- #ifndef ALLOW_DIVIDE_BY_ZERO
- if (yy == 0.0)
- scm_num_overflow (s_divide);
- else
- #endif
- /* FIXME: Precision may be lost here due to:
- (1) The cast from 'scm_t_inum' to 'double'
- (2) Double rounding */
- return scm_i_from_double ((double) xx / yy);
- }
- else if (SCM_COMPLEXP (y))
- {
- a = xx;
- complex_div: /* y _must_ be a complex number */
- {
- double r = SCM_COMPLEX_REAL (y);
- double i = SCM_COMPLEX_IMAG (y);
- if (fabs(r) <= fabs(i))
- {
- double t = r / i;
- double d = i * (1.0 + t * t);
- return scm_c_make_rectangular ((a * t) / d, -a / d);
- }
- else
- {
- double t = i / r;
- double d = r * (1.0 + t * t);
- return scm_c_make_rectangular (a / d, -(a * t) / d);
- }
- }
- }
- else if (SCM_FRACTIONP (y))
- /* a / b/c = ac / b */
- return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
- SCM_FRACTION_NUMERATOR (y));
- else
- return scm_wta_dispatch_2 (g_divide, x, y, SCM_ARGn, s_divide);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (yy == 0)
- {
- #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
- scm_num_overflow (s_divide);
- #else
- int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
- scm_remember_upto_here_1 (x);
- return (sgn == 0) ? scm_nan () : scm_inf ();
- #endif
- }
- else if (yy == 1)
- return x;
- else
- {
- /* FIXME: HMM, what are the relative performance issues here?
- We need to test. Is it faster on average to test
- divisible_p, then perform whichever operation, or is it
- faster to perform the integer div opportunistically and
- switch to real if there's a remainder? For now we take the
- middle ground: test, then if divisible, use the faster div
- func. */
- scm_t_inum abs_yy = yy < 0 ? -yy : yy;
- int divisible_p = mpz_divisible_ui_p (SCM_I_BIG_MPZ (x), abs_yy);
- if (divisible_p)
- {
- SCM result = scm_i_mkbig ();
- mpz_divexact_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), abs_yy);
- scm_remember_upto_here_1 (x);
- if (yy < 0)
- mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
- return scm_i_normbig (result);
- }
- else
- return scm_i_make_ratio (x, y);
- }
- }
- else if (SCM_BIGP (y))
- {
- int divisible_p = mpz_divisible_p (SCM_I_BIG_MPZ (x),
- SCM_I_BIG_MPZ (y));
- if (divisible_p)
- {
- SCM result = scm_i_mkbig ();
- mpz_divexact (SCM_I_BIG_MPZ (result),
- SCM_I_BIG_MPZ (x),
- SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- return scm_i_normbig (result);
- }
- else
- return scm_i_make_ratio (x, y);
- }
- else if (SCM_REALP (y))
- {
- double yy = SCM_REAL_VALUE (y);
- #ifndef ALLOW_DIVIDE_BY_ZERO
- if (yy == 0.0)
- scm_num_overflow (s_divide);
- else
- #endif
- /* FIXME: Precision may be lost here due to:
- (1) scm_i_big2dbl (2) Double rounding */
- return scm_i_from_double (scm_i_big2dbl (x) / yy);
- }
- else if (SCM_COMPLEXP (y))
- {
- a = scm_i_big2dbl (x);
- goto complex_div;
- }
- else if (SCM_FRACTIONP (y))
- return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
- SCM_FRACTION_NUMERATOR (y));
- else
- return scm_wta_dispatch_2 (g_divide, x, y, SCM_ARGn, s_divide);
- }
- else if (SCM_REALP (x))
- {
- double rx = SCM_REAL_VALUE (x);
- if (SCM_I_INUMP (y))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
- if (yy == 0)
- scm_num_overflow (s_divide);
- else
- #endif
- /* FIXME: Precision may be lost here due to:
- (1) The cast from 'scm_t_inum' to 'double'
- (2) Double rounding */
- return scm_i_from_double (rx / (double) yy);
- }
- else if (SCM_BIGP (y))
- {
- /* FIXME: Precision may be lost here due to:
- (1) The conversion from bignum to double
- (2) Double rounding */
- double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_1 (y);
- return scm_i_from_double (rx / dby);
- }
- else if (SCM_REALP (y))
- {
- double yy = SCM_REAL_VALUE (y);
- #ifndef ALLOW_DIVIDE_BY_ZERO
- if (yy == 0.0)
- scm_num_overflow (s_divide);
- else
- #endif
- return scm_i_from_double (rx / yy);
- }
- else if (SCM_COMPLEXP (y))
- {
- a = rx;
- goto complex_div;
- }
- else if (SCM_FRACTIONP (y))
- return scm_i_from_double (rx / scm_i_fraction2double (y));
- else
- return scm_wta_dispatch_2 (g_divide, x, y, SCM_ARGn, s_divide);
- }
- else if (SCM_COMPLEXP (x))
- {
- double rx = SCM_COMPLEX_REAL (x);
- double ix = SCM_COMPLEX_IMAG (x);
- if (SCM_I_INUMP (y))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
- if (yy == 0)
- scm_num_overflow (s_divide);
- else
- #endif
- {
- /* FIXME: Precision may be lost here due to:
- (1) The conversion from 'scm_t_inum' to double
- (2) Double rounding */
- double d = yy;
- return scm_c_make_rectangular (rx / d, ix / d);
- }
- }
- else if (SCM_BIGP (y))
- {
- /* FIXME: Precision may be lost here due to:
- (1) The conversion from bignum to double
- (2) Double rounding */
- double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_1 (y);
- return scm_c_make_rectangular (rx / dby, ix / dby);
- }
- else if (SCM_REALP (y))
- {
- double yy = SCM_REAL_VALUE (y);
- #ifndef ALLOW_DIVIDE_BY_ZERO
- if (yy == 0.0)
- scm_num_overflow (s_divide);
- else
- #endif
- return scm_c_make_rectangular (rx / yy, ix / yy);
- }
- else if (SCM_COMPLEXP (y))
- {
- double ry = SCM_COMPLEX_REAL (y);
- double iy = SCM_COMPLEX_IMAG (y);
- if (fabs(ry) <= fabs(iy))
- {
- double t = ry / iy;
- double d = iy * (1.0 + t * t);
- return scm_c_make_rectangular ((rx * t + ix) / d, (ix * t - rx) / d);
- }
- else
- {
- double t = iy / ry;
- double d = ry * (1.0 + t * t);
- return scm_c_make_rectangular ((rx + ix * t) / d, (ix - rx * t) / d);
- }
- }
- else if (SCM_FRACTIONP (y))
- {
- /* FIXME: Precision may be lost here due to:
- (1) The conversion from fraction to double
- (2) Double rounding */
- double yy = scm_i_fraction2double (y);
- return scm_c_make_rectangular (rx / yy, ix / yy);
- }
- else
- return scm_wta_dispatch_2 (g_divide, x, y, SCM_ARGn, s_divide);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_I_INUMP (y))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
- if (yy == 0)
- scm_num_overflow (s_divide);
- else
- #endif
- return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
- scm_product (SCM_FRACTION_DENOMINATOR (x), y));
- }
- else if (SCM_BIGP (y))
- {
- return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
- scm_product (SCM_FRACTION_DENOMINATOR (x), y));
- }
- else if (SCM_REALP (y))
- {
- double yy = SCM_REAL_VALUE (y);
- #ifndef ALLOW_DIVIDE_BY_ZERO
- if (yy == 0.0)
- scm_num_overflow (s_divide);
- else
- #endif
- /* FIXME: Precision may be lost here due to:
- (1) The conversion from fraction to double
- (2) Double rounding */
- return scm_i_from_double (scm_i_fraction2double (x) / yy);
- }
- else if (SCM_COMPLEXP (y))
- {
- /* FIXME: Precision may be lost here due to:
- (1) The conversion from fraction to double
- (2) Double rounding */
- a = scm_i_fraction2double (x);
- goto complex_div;
- }
- else if (SCM_FRACTIONP (y))
- return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
- scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x)));
- else
- return scm_wta_dispatch_2 (g_divide, x, y, SCM_ARGn, s_divide);
- }
- else
- return scm_wta_dispatch_2 (g_divide, x, y, SCM_ARG1, s_divide);
- }
- #undef FUNC_NAME
- double
- scm_c_truncate (double x)
- {
- return trunc (x);
- }
- /* scm_c_round is done using floor(x+0.5) to round to nearest and with
- half-way case (ie. when x is an integer plus 0.5) going upwards.
- Then half-way cases are identified and adjusted down if the
- round-upwards didn't give the desired even integer.
- "plus_half == result" identifies a half-way case. If plus_half, which is
- x + 0.5, is an integer then x must be an integer plus 0.5.
- An odd "result" value is identified with result/2 != floor(result/2).
- This is done with plus_half, since that value is ready for use sooner in
- a pipelined cpu, and we're already requiring plus_half == result.
- Note however that we need to be careful when x is big and already an
- integer. In that case "x+0.5" may round to an adjacent integer, causing
- us to return such a value, incorrectly. For instance if the hardware is
- in the usual default nearest-even rounding, then for x = 0x1FFFFFFFFFFFFF
- (ie. 53 one bits) we will have x+0.5 = 0x20000000000000 and that value
- returned. Or if the hardware is in round-upwards mode, then other bigger
- values like say x == 2^128 will see x+0.5 rounding up to the next higher
- representable value, 2^128+2^76 (or whatever), again incorrect.
- These bad roundings of x+0.5 are avoided by testing at the start whether
- x is already an integer. If it is then clearly that's the desired result
- already. And if it's not then the exponent must be small enough to allow
- an 0.5 to be represented, and hence added without a bad rounding. */
- double
- scm_c_round (double x)
- {
- double plus_half, result;
- if (x == floor (x))
- return x;
- plus_half = x + 0.5;
- result = floor (plus_half);
- /* Adjust so that the rounding is towards even. */
- return ((plus_half == result && plus_half / 2 != floor (plus_half / 2))
- ? result - 1
- : result);
- }
- SCM_PRIMITIVE_GENERIC (scm_truncate_number, "truncate", 1, 0, 0,
- (SCM x),
- "Round the number @var{x} towards zero.")
- #define FUNC_NAME s_scm_truncate_number
- {
- if (SCM_I_INUMP (x) || SCM_BIGP (x))
- return x;
- else if (SCM_REALP (x))
- return scm_i_from_double (trunc (SCM_REAL_VALUE (x)));
- else if (SCM_FRACTIONP (x))
- return scm_truncate_quotient (SCM_FRACTION_NUMERATOR (x),
- SCM_FRACTION_DENOMINATOR (x));
- else
- return scm_wta_dispatch_1 (g_scm_truncate_number, x, SCM_ARG1,
- s_scm_truncate_number);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_round_number, "round", 1, 0, 0,
- (SCM x),
- "Round the number @var{x} towards the nearest integer. "
- "When it is exactly halfway between two integers, "
- "round towards the even one.")
- #define FUNC_NAME s_scm_round_number
- {
- if (SCM_I_INUMP (x) || SCM_BIGP (x))
- return x;
- else if (SCM_REALP (x))
- return scm_i_from_double (scm_c_round (SCM_REAL_VALUE (x)));
- else if (SCM_FRACTIONP (x))
- return scm_round_quotient (SCM_FRACTION_NUMERATOR (x),
- SCM_FRACTION_DENOMINATOR (x));
- else
- return scm_wta_dispatch_1 (g_scm_round_number, x, SCM_ARG1,
- s_scm_round_number);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_floor, "floor", 1, 0, 0,
- (SCM x),
- "Round the number @var{x} towards minus infinity.")
- #define FUNC_NAME s_scm_floor
- {
- if (SCM_I_INUMP (x) || SCM_BIGP (x))
- return x;
- else if (SCM_REALP (x))
- return scm_i_from_double (floor (SCM_REAL_VALUE (x)));
- else if (SCM_FRACTIONP (x))
- return scm_floor_quotient (SCM_FRACTION_NUMERATOR (x),
- SCM_FRACTION_DENOMINATOR (x));
- else
- return scm_wta_dispatch_1 (g_scm_floor, x, 1, s_scm_floor);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_ceiling, "ceiling", 1, 0, 0,
- (SCM x),
- "Round the number @var{x} towards infinity.")
- #define FUNC_NAME s_scm_ceiling
- {
- if (SCM_I_INUMP (x) || SCM_BIGP (x))
- return x;
- else if (SCM_REALP (x))
- return scm_i_from_double (ceil (SCM_REAL_VALUE (x)));
- else if (SCM_FRACTIONP (x))
- return scm_ceiling_quotient (SCM_FRACTION_NUMERATOR (x),
- SCM_FRACTION_DENOMINATOR (x));
- else
- return scm_wta_dispatch_1 (g_scm_ceiling, x, 1, s_scm_ceiling);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_expt, "expt", 2, 0, 0,
- (SCM x, SCM y),
- "Return @var{x} raised to the power of @var{y}.")
- #define FUNC_NAME s_scm_expt
- {
- if (scm_is_integer (y))
- {
- if (scm_is_true (scm_exact_p (y)))
- return scm_integer_expt (x, y);
- else
- {
- /* Here we handle the case where the exponent is an inexact
- integer. We make the exponent exact in order to use
- scm_integer_expt, and thus avoid the spurious imaginary
- parts that may result from round-off errors in the general
- e^(y log x) method below (for example when squaring a large
- negative number). In this case, we must return an inexact
- result for correctness. We also make the base inexact so
- that scm_integer_expt will use fast inexact arithmetic
- internally. Note that making the base inexact is not
- sufficient to guarantee an inexact result, because
- scm_integer_expt will return an exact 1 when the exponent
- is 0, even if the base is inexact. */
- return scm_exact_to_inexact
- (scm_integer_expt (scm_exact_to_inexact (x),
- scm_inexact_to_exact (y)));
- }
- }
- else if (scm_is_real (x) && scm_is_real (y) && scm_to_double (x) >= 0.0)
- {
- return scm_i_from_double (pow (scm_to_double (x), scm_to_double (y)));
- }
- else if (scm_is_complex (x) && scm_is_complex (y))
- return scm_exp (scm_product (scm_log (x), y));
- else if (scm_is_complex (x))
- return scm_wta_dispatch_2 (g_scm_expt, x, y, SCM_ARG2, s_scm_expt);
- else
- return scm_wta_dispatch_2 (g_scm_expt, x, y, SCM_ARG1, s_scm_expt);
- }
- #undef FUNC_NAME
- /* sin/cos/tan/asin/acos/atan
- sinh/cosh/tanh/asinh/acosh/atanh
- Derived from "Transcen.scm", Complex trancendental functions for SCM.
- Written by Jerry D. Hedden, (C) FSF.
- See the file `COPYING' for terms applying to this program. */
- SCM_PRIMITIVE_GENERIC (scm_sin, "sin", 1, 0, 0,
- (SCM z),
- "Compute the sine of @var{z}.")
- #define FUNC_NAME s_scm_sin
- {
- if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
- return z; /* sin(exact0) = exact0 */
- else if (scm_is_real (z))
- return scm_i_from_double (sin (scm_to_double (z)));
- else if (SCM_COMPLEXP (z))
- { double x, y;
- x = SCM_COMPLEX_REAL (z);
- y = SCM_COMPLEX_IMAG (z);
- return scm_c_make_rectangular (sin (x) * cosh (y),
- cos (x) * sinh (y));
- }
- else
- return scm_wta_dispatch_1 (g_scm_sin, z, 1, s_scm_sin);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_cos, "cos", 1, 0, 0,
- (SCM z),
- "Compute the cosine of @var{z}.")
- #define FUNC_NAME s_scm_cos
- {
- if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
- return SCM_INUM1; /* cos(exact0) = exact1 */
- else if (scm_is_real (z))
- return scm_i_from_double (cos (scm_to_double (z)));
- else if (SCM_COMPLEXP (z))
- { double x, y;
- x = SCM_COMPLEX_REAL (z);
- y = SCM_COMPLEX_IMAG (z);
- return scm_c_make_rectangular (cos (x) * cosh (y),
- -sin (x) * sinh (y));
- }
- else
- return scm_wta_dispatch_1 (g_scm_cos, z, 1, s_scm_cos);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_tan, "tan", 1, 0, 0,
- (SCM z),
- "Compute the tangent of @var{z}.")
- #define FUNC_NAME s_scm_tan
- {
- if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
- return z; /* tan(exact0) = exact0 */
- else if (scm_is_real (z))
- return scm_i_from_double (tan (scm_to_double (z)));
- else if (SCM_COMPLEXP (z))
- { double x, y, w;
- x = 2.0 * SCM_COMPLEX_REAL (z);
- y = 2.0 * SCM_COMPLEX_IMAG (z);
- w = cos (x) + cosh (y);
- #ifndef ALLOW_DIVIDE_BY_ZERO
- if (w == 0.0)
- scm_num_overflow (s_scm_tan);
- #endif
- return scm_c_make_rectangular (sin (x) / w, sinh (y) / w);
- }
- else
- return scm_wta_dispatch_1 (g_scm_tan, z, 1, s_scm_tan);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_sinh, "sinh", 1, 0, 0,
- (SCM z),
- "Compute the hyperbolic sine of @var{z}.")
- #define FUNC_NAME s_scm_sinh
- {
- if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
- return z; /* sinh(exact0) = exact0 */
- else if (scm_is_real (z))
- return scm_i_from_double (sinh (scm_to_double (z)));
- else if (SCM_COMPLEXP (z))
- { double x, y;
- x = SCM_COMPLEX_REAL (z);
- y = SCM_COMPLEX_IMAG (z);
- return scm_c_make_rectangular (sinh (x) * cos (y),
- cosh (x) * sin (y));
- }
- else
- return scm_wta_dispatch_1 (g_scm_sinh, z, 1, s_scm_sinh);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_cosh, "cosh", 1, 0, 0,
- (SCM z),
- "Compute the hyperbolic cosine of @var{z}.")
- #define FUNC_NAME s_scm_cosh
- {
- if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
- return SCM_INUM1; /* cosh(exact0) = exact1 */
- else if (scm_is_real (z))
- return scm_i_from_double (cosh (scm_to_double (z)));
- else if (SCM_COMPLEXP (z))
- { double x, y;
- x = SCM_COMPLEX_REAL (z);
- y = SCM_COMPLEX_IMAG (z);
- return scm_c_make_rectangular (cosh (x) * cos (y),
- sinh (x) * sin (y));
- }
- else
- return scm_wta_dispatch_1 (g_scm_cosh, z, 1, s_scm_cosh);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_tanh, "tanh", 1, 0, 0,
- (SCM z),
- "Compute the hyperbolic tangent of @var{z}.")
- #define FUNC_NAME s_scm_tanh
- {
- if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
- return z; /* tanh(exact0) = exact0 */
- else if (scm_is_real (z))
- return scm_i_from_double (tanh (scm_to_double (z)));
- else if (SCM_COMPLEXP (z))
- { double x, y, w;
- x = 2.0 * SCM_COMPLEX_REAL (z);
- y = 2.0 * SCM_COMPLEX_IMAG (z);
- w = cosh (x) + cos (y);
- #ifndef ALLOW_DIVIDE_BY_ZERO
- if (w == 0.0)
- scm_num_overflow (s_scm_tanh);
- #endif
- return scm_c_make_rectangular (sinh (x) / w, sin (y) / w);
- }
- else
- return scm_wta_dispatch_1 (g_scm_tanh, z, 1, s_scm_tanh);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_asin, "asin", 1, 0, 0,
- (SCM z),
- "Compute the arc sine of @var{z}.")
- #define FUNC_NAME s_scm_asin
- {
- if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
- return z; /* asin(exact0) = exact0 */
- else if (scm_is_real (z))
- {
- double w = scm_to_double (z);
- if (w >= -1.0 && w <= 1.0)
- return scm_i_from_double (asin (w));
- else
- return scm_product (scm_c_make_rectangular (0, -1),
- scm_sys_asinh (scm_c_make_rectangular (0, w)));
- }
- else if (SCM_COMPLEXP (z))
- { double x, y;
- x = SCM_COMPLEX_REAL (z);
- y = SCM_COMPLEX_IMAG (z);
- return scm_product (scm_c_make_rectangular (0, -1),
- scm_sys_asinh (scm_c_make_rectangular (-y, x)));
- }
- else
- return scm_wta_dispatch_1 (g_scm_asin, z, 1, s_scm_asin);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_acos, "acos", 1, 0, 0,
- (SCM z),
- "Compute the arc cosine of @var{z}.")
- #define FUNC_NAME s_scm_acos
- {
- if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM1)))
- return SCM_INUM0; /* acos(exact1) = exact0 */
- else if (scm_is_real (z))
- {
- double w = scm_to_double (z);
- if (w >= -1.0 && w <= 1.0)
- return scm_i_from_double (acos (w));
- else
- return scm_sum (scm_i_from_double (acos (0.0)),
- scm_product (scm_c_make_rectangular (0, 1),
- scm_sys_asinh (scm_c_make_rectangular (0, w))));
- }
- else if (SCM_COMPLEXP (z))
- { double x, y;
- x = SCM_COMPLEX_REAL (z);
- y = SCM_COMPLEX_IMAG (z);
- return scm_sum (scm_i_from_double (acos (0.0)),
- scm_product (scm_c_make_rectangular (0, 1),
- scm_sys_asinh (scm_c_make_rectangular (-y, x))));
- }
- else
- return scm_wta_dispatch_1 (g_scm_acos, z, 1, s_scm_acos);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_atan, "atan", 1, 1, 0,
- (SCM z, SCM y),
- "With one argument, compute the arc tangent of @var{z}.\n"
- "If @var{y} is present, compute the arc tangent of @var{z}/@var{y},\n"
- "using the sign of @var{z} and @var{y} to determine the quadrant.")
- #define FUNC_NAME s_scm_atan
- {
- if (SCM_UNBNDP (y))
- {
- if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
- return z; /* atan(exact0) = exact0 */
- else if (scm_is_real (z))
- return scm_i_from_double (atan (scm_to_double (z)));
- else if (SCM_COMPLEXP (z))
- {
- double v, w;
- v = SCM_COMPLEX_REAL (z);
- w = SCM_COMPLEX_IMAG (z);
- return scm_divide (scm_log (scm_divide (scm_c_make_rectangular (v, w - 1.0),
- scm_c_make_rectangular (v, w + 1.0))),
- scm_c_make_rectangular (0, 2));
- }
- else
- return scm_wta_dispatch_1 (g_scm_atan, z, SCM_ARG1, s_scm_atan);
- }
- else if (scm_is_real (z))
- {
- if (scm_is_real (y))
- return scm_i_from_double (atan2 (scm_to_double (z), scm_to_double (y)));
- else
- return scm_wta_dispatch_2 (g_scm_atan, z, y, SCM_ARG2, s_scm_atan);
- }
- else
- return scm_wta_dispatch_2 (g_scm_atan, z, y, SCM_ARG1, s_scm_atan);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_sys_asinh, "asinh", 1, 0, 0,
- (SCM z),
- "Compute the inverse hyperbolic sine of @var{z}.")
- #define FUNC_NAME s_scm_sys_asinh
- {
- if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
- return z; /* asinh(exact0) = exact0 */
- else if (scm_is_real (z))
- return scm_i_from_double (asinh (scm_to_double (z)));
- else if (scm_is_number (z))
- return scm_log (scm_sum (z,
- scm_sqrt (scm_sum (scm_product (z, z),
- SCM_INUM1))));
- else
- return scm_wta_dispatch_1 (g_scm_sys_asinh, z, 1, s_scm_sys_asinh);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_sys_acosh, "acosh", 1, 0, 0,
- (SCM z),
- "Compute the inverse hyperbolic cosine of @var{z}.")
- #define FUNC_NAME s_scm_sys_acosh
- {
- if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM1)))
- return SCM_INUM0; /* acosh(exact1) = exact0 */
- else if (scm_is_real (z) && scm_to_double (z) >= 1.0)
- return scm_i_from_double (acosh (scm_to_double (z)));
- else if (scm_is_number (z))
- return scm_log (scm_sum (z,
- scm_sqrt (scm_difference (scm_product (z, z),
- SCM_INUM1))));
- else
- return scm_wta_dispatch_1 (g_scm_sys_acosh, z, 1, s_scm_sys_acosh);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_sys_atanh, "atanh", 1, 0, 0,
- (SCM z),
- "Compute the inverse hyperbolic tangent of @var{z}.")
- #define FUNC_NAME s_scm_sys_atanh
- {
- if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
- return z; /* atanh(exact0) = exact0 */
- else if (scm_is_real (z) && scm_to_double (z) >= -1.0 && scm_to_double (z) <= 1.0)
- return scm_i_from_double (atanh (scm_to_double (z)));
- else if (scm_is_number (z))
- return scm_divide (scm_log (scm_divide (scm_sum (SCM_INUM1, z),
- scm_difference (SCM_INUM1, z))),
- SCM_I_MAKINUM (2));
- else
- return scm_wta_dispatch_1 (g_scm_sys_atanh, z, 1, s_scm_sys_atanh);
- }
- #undef FUNC_NAME
- SCM
- scm_c_make_rectangular (double re, double im)
- {
- SCM z;
- z = SCM_PACK_POINTER (scm_gc_malloc_pointerless (sizeof (scm_t_complex),
- "complex"));
- SCM_SET_CELL_TYPE (z, scm_tc16_complex);
- SCM_COMPLEX_REAL (z) = re;
- SCM_COMPLEX_IMAG (z) = im;
- return z;
- }
- SCM_DEFINE (scm_make_rectangular, "make-rectangular", 2, 0, 0,
- (SCM real_part, SCM imaginary_part),
- "Return a complex number constructed of the given @var{real_part} "
- "and @var{imaginary_part} parts.")
- #define FUNC_NAME s_scm_make_rectangular
- {
- SCM_ASSERT_TYPE (scm_is_real (real_part), real_part,
- SCM_ARG1, FUNC_NAME, "real");
- SCM_ASSERT_TYPE (scm_is_real (imaginary_part), imaginary_part,
- SCM_ARG2, FUNC_NAME, "real");
- /* Return a real if and only if the imaginary_part is an _exact_ 0 */
- if (scm_is_eq (imaginary_part, SCM_INUM0))
- return real_part;
- else
- return scm_c_make_rectangular (scm_to_double (real_part),
- scm_to_double (imaginary_part));
- }
- #undef FUNC_NAME
- SCM
- scm_c_make_polar (double mag, double ang)
- {
- double s, c;
- /* The sincos(3) function is undocumented an broken on Tru64. Thus we only
- use it on Glibc-based systems that have it (it's a GNU extension). See
- http://lists.gnu.org/archive/html/guile-user/2009-04/msg00033.html for
- details. */
- #if (defined HAVE_SINCOS) && (defined __GLIBC__) && (defined _GNU_SOURCE)
- sincos (ang, &s, &c);
- #else
- s = sin (ang);
- c = cos (ang);
- #endif
- /* If s and c are NaNs, this indicates that the angle is a NaN,
- infinite, or perhaps simply too large to determine its value
- mod 2*pi. However, we know something that the floating-point
- implementation doesn't know: We know that s and c are finite.
- Therefore, if the magnitude is zero, return a complex zero.
- The reason we check for the NaNs instead of using this case
- whenever mag == 0.0 is because when the angle is known, we'd
- like to return the correct kind of non-real complex zero:
- +0.0+0.0i, -0.0+0.0i, -0.0-0.0i, or +0.0-0.0i, depending
- on which quadrant the angle is in.
- */
- if (SCM_UNLIKELY (isnan(s)) && isnan(c) && (mag == 0.0))
- return scm_c_make_rectangular (0.0, 0.0);
- else
- return scm_c_make_rectangular (mag * c, mag * s);
- }
- SCM_DEFINE (scm_make_polar, "make-polar", 2, 0, 0,
- (SCM mag, SCM ang),
- "Return the complex number @var{mag} * e^(i * @var{ang}).")
- #define FUNC_NAME s_scm_make_polar
- {
- SCM_ASSERT_TYPE (scm_is_real (mag), mag, SCM_ARG1, FUNC_NAME, "real");
- SCM_ASSERT_TYPE (scm_is_real (ang), ang, SCM_ARG2, FUNC_NAME, "real");
- /* If mag is exact0, return exact0 */
- if (scm_is_eq (mag, SCM_INUM0))
- return SCM_INUM0;
- /* Return a real if ang is exact0 */
- else if (scm_is_eq (ang, SCM_INUM0))
- return mag;
- else
- return scm_c_make_polar (scm_to_double (mag), scm_to_double (ang));
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_real_part, "real-part", 1, 0, 0,
- (SCM z),
- "Return the real part of the number @var{z}.")
- #define FUNC_NAME s_scm_real_part
- {
- if (SCM_COMPLEXP (z))
- return scm_i_from_double (SCM_COMPLEX_REAL (z));
- else if (SCM_I_INUMP (z) || SCM_BIGP (z) || SCM_REALP (z) || SCM_FRACTIONP (z))
- return z;
- else
- return scm_wta_dispatch_1 (g_scm_real_part, z, SCM_ARG1, s_scm_real_part);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_imag_part, "imag-part", 1, 0, 0,
- (SCM z),
- "Return the imaginary part of the number @var{z}.")
- #define FUNC_NAME s_scm_imag_part
- {
- if (SCM_COMPLEXP (z))
- return scm_i_from_double (SCM_COMPLEX_IMAG (z));
- else if (SCM_I_INUMP (z) || SCM_REALP (z) || SCM_BIGP (z) || SCM_FRACTIONP (z))
- return SCM_INUM0;
- else
- return scm_wta_dispatch_1 (g_scm_imag_part, z, SCM_ARG1, s_scm_imag_part);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_numerator, "numerator", 1, 0, 0,
- (SCM z),
- "Return the numerator of the number @var{z}.")
- #define FUNC_NAME s_scm_numerator
- {
- if (SCM_I_INUMP (z) || SCM_BIGP (z))
- return z;
- else if (SCM_FRACTIONP (z))
- return SCM_FRACTION_NUMERATOR (z);
- else if (SCM_REALP (z))
- {
- double zz = SCM_REAL_VALUE (z);
- if (zz == floor (zz))
- /* Handle -0.0 and infinities in accordance with R6RS
- flnumerator, and optimize handling of integers. */
- return z;
- else
- return scm_exact_to_inexact (scm_numerator (scm_inexact_to_exact (z)));
- }
- else
- return scm_wta_dispatch_1 (g_scm_numerator, z, SCM_ARG1, s_scm_numerator);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_denominator, "denominator", 1, 0, 0,
- (SCM z),
- "Return the denominator of the number @var{z}.")
- #define FUNC_NAME s_scm_denominator
- {
- if (SCM_I_INUMP (z) || SCM_BIGP (z))
- return SCM_INUM1;
- else if (SCM_FRACTIONP (z))
- return SCM_FRACTION_DENOMINATOR (z);
- else if (SCM_REALP (z))
- {
- double zz = SCM_REAL_VALUE (z);
- if (zz == floor (zz))
- /* Handle infinities in accordance with R6RS fldenominator, and
- optimize handling of integers. */
- return scm_i_from_double (1.0);
- else
- return scm_exact_to_inexact (scm_denominator (scm_inexact_to_exact (z)));
- }
- else
- return scm_wta_dispatch_1 (g_scm_denominator, z, SCM_ARG1,
- s_scm_denominator);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_magnitude, "magnitude", 1, 0, 0,
- (SCM z),
- "Return the magnitude of the number @var{z}. This is the same as\n"
- "@code{abs} for real arguments, but also allows complex numbers.")
- #define FUNC_NAME s_scm_magnitude
- {
- if (SCM_I_INUMP (z))
- {
- scm_t_inum zz = SCM_I_INUM (z);
- if (zz >= 0)
- return z;
- else if (SCM_POSFIXABLE (-zz))
- return SCM_I_MAKINUM (-zz);
- else
- return scm_i_inum2big (-zz);
- }
- else if (SCM_BIGP (z))
- {
- int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
- scm_remember_upto_here_1 (z);
- if (sgn < 0)
- return scm_i_clonebig (z, 0);
- else
- return z;
- }
- else if (SCM_REALP (z))
- return scm_i_from_double (fabs (SCM_REAL_VALUE (z)));
- else if (SCM_COMPLEXP (z))
- return scm_i_from_double (hypot (SCM_COMPLEX_REAL (z), SCM_COMPLEX_IMAG (z)));
- else if (SCM_FRACTIONP (z))
- {
- if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
- return z;
- return scm_i_make_ratio_already_reduced
- (scm_difference (SCM_FRACTION_NUMERATOR (z), SCM_UNDEFINED),
- SCM_FRACTION_DENOMINATOR (z));
- }
- else
- return scm_wta_dispatch_1 (g_scm_magnitude, z, SCM_ARG1,
- s_scm_magnitude);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_angle, "angle", 1, 0, 0,
- (SCM z),
- "Return the angle of the complex number @var{z}.")
- #define FUNC_NAME s_scm_angle
- {
- /* atan(0,-1) is pi and it'd be possible to have that as a constant like
- flo0 to save allocating a new flonum with scm_i_from_double each time.
- But if atan2 follows the floating point rounding mode, then the value
- is not a constant. Maybe it'd be close enough though. */
- if (SCM_I_INUMP (z))
- {
- if (SCM_I_INUM (z) >= 0)
- return flo0;
- else
- return scm_i_from_double (atan2 (0.0, -1.0));
- }
- else if (SCM_BIGP (z))
- {
- int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
- scm_remember_upto_here_1 (z);
- if (sgn < 0)
- return scm_i_from_double (atan2 (0.0, -1.0));
- else
- return flo0;
- }
- else if (SCM_REALP (z))
- {
- double x = SCM_REAL_VALUE (z);
- if (copysign (1.0, x) > 0.0)
- return flo0;
- else
- return scm_i_from_double (atan2 (0.0, -1.0));
- }
- else if (SCM_COMPLEXP (z))
- return scm_i_from_double (atan2 (SCM_COMPLEX_IMAG (z), SCM_COMPLEX_REAL (z)));
- else if (SCM_FRACTIONP (z))
- {
- if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
- return flo0;
- else return scm_i_from_double (atan2 (0.0, -1.0));
- }
- else
- return scm_wta_dispatch_1 (g_scm_angle, z, SCM_ARG1, s_scm_angle);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_exact_to_inexact, "exact->inexact", 1, 0, 0,
- (SCM z),
- "Convert the number @var{z} to its inexact representation.\n")
- #define FUNC_NAME s_scm_exact_to_inexact
- {
- if (SCM_I_INUMP (z))
- return scm_i_from_double ((double) SCM_I_INUM (z));
- else if (SCM_BIGP (z))
- return scm_i_from_double (scm_i_big2dbl (z));
- else if (SCM_FRACTIONP (z))
- return scm_i_from_double (scm_i_fraction2double (z));
- else if (SCM_INEXACTP (z))
- return z;
- else
- return scm_wta_dispatch_1 (g_scm_exact_to_inexact, z, 1,
- s_scm_exact_to_inexact);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_inexact_to_exact, "inexact->exact", 1, 0, 0,
- (SCM z),
- "Return an exact number that is numerically closest to @var{z}.")
- #define FUNC_NAME s_scm_inexact_to_exact
- {
- if (SCM_I_INUMP (z) || SCM_BIGP (z) || SCM_FRACTIONP (z))
- return z;
- else
- {
- double val;
- if (SCM_REALP (z))
- val = SCM_REAL_VALUE (z);
- else if (SCM_COMPLEXP (z) && SCM_COMPLEX_IMAG (z) == 0.0)
- val = SCM_COMPLEX_REAL (z);
- else
- return scm_wta_dispatch_1 (g_scm_inexact_to_exact, z, 1,
- s_scm_inexact_to_exact);
- if (!SCM_LIKELY (isfinite (val)))
- SCM_OUT_OF_RANGE (1, z);
- else if (val == 0.0)
- return SCM_INUM0;
- else
- {
- int expon;
- SCM numerator;
- numerator = scm_i_dbl2big (ldexp (frexp (val, &expon),
- DBL_MANT_DIG));
- expon -= DBL_MANT_DIG;
- if (expon < 0)
- {
- int shift = mpz_scan1 (SCM_I_BIG_MPZ (numerator), 0);
- if (shift > -expon)
- shift = -expon;
- mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (numerator),
- SCM_I_BIG_MPZ (numerator),
- shift);
- expon += shift;
- }
- numerator = scm_i_normbig (numerator);
- if (expon < 0)
- return scm_i_make_ratio_already_reduced
- (numerator, left_shift_exact_integer (SCM_INUM1, -expon));
- else if (expon > 0)
- return left_shift_exact_integer (numerator, expon);
- else
- return numerator;
- }
- }
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_rationalize, "rationalize", 2, 0, 0,
- (SCM x, SCM eps),
- "Returns the @emph{simplest} rational number differing\n"
- "from @var{x} by no more than @var{eps}.\n"
- "\n"
- "As required by @acronym{R5RS}, @code{rationalize} only returns an\n"
- "exact result when both its arguments are exact. Thus, you might need\n"
- "to use @code{inexact->exact} on the arguments.\n"
- "\n"
- "@lisp\n"
- "(rationalize (inexact->exact 1.2) 1/100)\n"
- "@result{} 6/5\n"
- "@end lisp")
- #define FUNC_NAME s_scm_rationalize
- {
- SCM_ASSERT_TYPE (scm_is_real (x), x, SCM_ARG1, FUNC_NAME, "real");
- SCM_ASSERT_TYPE (scm_is_real (eps), eps, SCM_ARG2, FUNC_NAME, "real");
- if (SCM_UNLIKELY (!scm_is_exact (eps) || !scm_is_exact (x)))
- {
- if (SCM_UNLIKELY (scm_is_false (scm_finite_p (eps))))
- {
- if (scm_is_false (scm_nan_p (eps)) && scm_is_true (scm_finite_p (x)))
- return flo0;
- else
- return scm_nan ();
- }
- else if (SCM_UNLIKELY (scm_is_false (scm_finite_p (x))))
- return x;
- else
- return scm_exact_to_inexact
- (scm_rationalize (scm_inexact_to_exact (x),
- scm_inexact_to_exact (eps)));
- }
- else
- {
- /* X and EPS are exact rationals.
- The code that follows is equivalent to the following Scheme code:
- (define (exact-rationalize x eps)
- (let ((n1 (if (negative? x) -1 1))
- (x (abs x))
- (eps (abs eps)))
- (let ((lo (- x eps))
- (hi (+ x eps)))
- (if (<= lo 0)
- 0
- (let loop ((nlo (numerator lo)) (dlo (denominator lo))
- (nhi (numerator hi)) (dhi (denominator hi))
- (n1 n1) (d1 0) (n2 0) (d2 1))
- (let-values (((qlo rlo) (floor/ nlo dlo))
- ((qhi rhi) (floor/ nhi dhi)))
- (let ((n0 (+ n2 (* n1 qlo)))
- (d0 (+ d2 (* d1 qlo))))
- (cond ((zero? rlo) (/ n0 d0))
- ((< qlo qhi) (/ (+ n0 n1) (+ d0 d1)))
- (else (loop dhi rhi dlo rlo n0 d0 n1 d1))))))))))
- */
- int n1_init = 1;
- SCM lo, hi;
- eps = scm_abs (eps);
- if (scm_is_true (scm_negative_p (x)))
- {
- n1_init = -1;
- x = scm_difference (x, SCM_UNDEFINED);
- }
- /* X and EPS are non-negative exact rationals. */
- lo = scm_difference (x, eps);
- hi = scm_sum (x, eps);
- if (scm_is_false (scm_positive_p (lo)))
- /* If zero is included in the interval, return it.
- It is the simplest rational of all. */
- return SCM_INUM0;
- else
- {
- SCM result;
- mpz_t n0, d0, n1, d1, n2, d2;
- mpz_t nlo, dlo, nhi, dhi;
- mpz_t qlo, rlo, qhi, rhi;
- /* LO and HI are positive exact rationals. */
- /* Our approach here follows the method described by Alan
- Bawden in a message entitled "(rationalize x y)" on the
- rrrs-authors mailing list, dated 16 Feb 1988 14:08:28 EST:
- http://groups.csail.mit.edu/mac/ftpdir/scheme-mail/HTML/rrrs-1988/msg00063.html
- In brief, we compute the continued fractions of the two
- endpoints of the interval (LO and HI). The continued
- fraction of the result consists of the common prefix of the
- continued fractions of LO and HI, plus one final term. The
- final term of the result is the smallest integer contained
- in the interval between the remainders of LO and HI after
- the common prefix has been removed.
- The following code lazily computes the continued fraction
- representations of LO and HI, and simultaneously converts
- the continued fraction of the result into a rational
- number. We use MPZ functions directly to avoid type
- dispatch and GC allocation during the loop. */
- mpz_inits (n0, d0, n1, d1, n2, d2,
- nlo, dlo, nhi, dhi,
- qlo, rlo, qhi, rhi,
- NULL);
- /* The variables N1, D1, N2 and D2 are used to compute the
- resulting rational from its continued fraction. At each
- step, N2/D2 and N1/D1 are the last two convergents. They
- are normally initialized to 0/1 and 1/0, respectively.
- However, if we negated X then we must negate the result as
- well, and we do that by initializing N1/D1 to -1/0. */
- mpz_set_si (n1, n1_init);
- mpz_set_ui (d1, 0);
- mpz_set_ui (n2, 0);
- mpz_set_ui (d2, 1);
- /* The variables NLO, DLO, NHI, and DHI are used to lazily
- compute the continued fraction representations of LO and HI
- using Euclid's algorithm. Initially, NLO/DLO == LO and
- NHI/DHI == HI. */
- scm_to_mpz (scm_numerator (lo), nlo);
- scm_to_mpz (scm_denominator (lo), dlo);
- scm_to_mpz (scm_numerator (hi), nhi);
- scm_to_mpz (scm_denominator (hi), dhi);
- /* As long as we're using exact arithmetic, the following loop
- is guaranteed to terminate. */
- for (;;)
- {
- /* Compute the next terms (QLO and QHI) of the continued
- fractions of LO and HI. */
- mpz_fdiv_qr (qlo, rlo, nlo, dlo); /* QLO <-- floor (NLO/DLO), RLO <-- NLO - QLO * DLO */
- mpz_fdiv_qr (qhi, rhi, nhi, dhi); /* QHI <-- floor (NHI/DHI), RHI <-- NHI - QHI * DHI */
- /* The next term of the result will be either QLO or
- QLO+1. Here we compute the next convergent of the
- result based on the assumption that QLO is the next
- term. If that turns out to be wrong, we'll adjust
- these later by adding N1 to N0 and D1 to D0. */
- mpz_set (n0, n2); mpz_addmul (n0, n1, qlo); /* N0 <-- N2 + (QLO * N1) */
- mpz_set (d0, d2); mpz_addmul (d0, d1, qlo); /* D0 <-- D2 + (QLO * D1) */
- /* We stop iterating when an integer is contained in the
- interval between the remainders NLO/DLO and NHI/DHI.
- There are two cases to consider: either NLO/DLO == QLO
- is an integer (indicated by RLO == 0), or QLO < QHI. */
- if (mpz_sgn (rlo) == 0 || mpz_cmp (qlo, qhi) != 0)
- break;
- /* Efficiently shuffle variables around for the next
- iteration. First we shift the recent convergents. */
- mpz_swap (n2, n1); mpz_swap (n1, n0); /* N2 <-- N1 <-- N0 */
- mpz_swap (d2, d1); mpz_swap (d1, d0); /* D2 <-- D1 <-- D0 */
- /* The following shuffling is a bit confusing, so some
- explanation is in order. Conceptually, we're doing a
- couple of things here. After substracting the floor of
- NLO/DLO, the remainder is RLO/DLO. The rest of the
- continued fraction will represent the remainder's
- reciprocal DLO/RLO. Similarly for the HI endpoint.
- So in the next iteration, the new endpoints will be
- DLO/RLO and DHI/RHI. However, when we take the
- reciprocals of these endpoints, their order is
- switched. So in summary, we want NLO/DLO <-- DHI/RHI
- and NHI/DHI <-- DLO/RLO. */
- mpz_swap (nlo, dhi); mpz_swap (dhi, rlo); /* NLO <-- DHI <-- RLO */
- mpz_swap (nhi, dlo); mpz_swap (dlo, rhi); /* NHI <-- DLO <-- RHI */
- }
- /* There is now an integer in the interval [NLO/DLO NHI/DHI].
- The last term of the result will be the smallest integer in
- that interval, which is ceiling(NLO/DLO). We have already
- computed floor(NLO/DLO) in QLO, so now we adjust QLO to be
- equal to the ceiling. */
- if (mpz_sgn (rlo) != 0)
- {
- /* If RLO is non-zero, then NLO/DLO is not an integer and
- the next term will be QLO+1. QLO was used in the
- computation of N0 and D0 above. Here we adjust N0 and
- D0 to be based on QLO+1 instead of QLO. */
- mpz_add (n0, n0, n1); /* N0 <-- N0 + N1 */
- mpz_add (d0, d0, d1); /* D0 <-- D0 + D1 */
- }
- /* The simplest rational in the interval is N0/D0 */
- result = scm_i_make_ratio_already_reduced (scm_from_mpz (n0),
- scm_from_mpz (d0));
- mpz_clears (n0, d0, n1, d1, n2, d2,
- nlo, dlo, nhi, dhi,
- qlo, rlo, qhi, rhi,
- NULL);
- return result;
- }
- }
- }
- #undef FUNC_NAME
- /* conversion functions */
- int
- scm_is_integer (SCM val)
- {
- return scm_is_true (scm_integer_p (val));
- }
- int
- scm_is_exact_integer (SCM val)
- {
- return scm_is_true (scm_exact_integer_p (val));
- }
- int
- scm_is_signed_integer (SCM val, scm_t_intmax min, scm_t_intmax max)
- {
- if (SCM_I_INUMP (val))
- {
- scm_t_signed_bits n = SCM_I_INUM (val);
- return n >= min && n <= max;
- }
- else if (SCM_BIGP (val))
- {
- if (min >= SCM_MOST_NEGATIVE_FIXNUM && max <= SCM_MOST_POSITIVE_FIXNUM)
- return 0;
- else if (min >= LONG_MIN && max <= LONG_MAX)
- {
- if (mpz_fits_slong_p (SCM_I_BIG_MPZ (val)))
- {
- long n = mpz_get_si (SCM_I_BIG_MPZ (val));
- return n >= min && n <= max;
- }
- else
- return 0;
- }
- else
- {
- scm_t_intmax n;
- size_t count;
- if (mpz_sizeinbase (SCM_I_BIG_MPZ (val), 2)
- > CHAR_BIT*sizeof (scm_t_uintmax))
- return 0;
-
- mpz_export (&n, &count, 1, sizeof (scm_t_uintmax), 0, 0,
- SCM_I_BIG_MPZ (val));
- if (mpz_sgn (SCM_I_BIG_MPZ (val)) >= 0)
- {
- if (n < 0)
- return 0;
- }
- else
- {
- n = -n;
- if (n >= 0)
- return 0;
- }
- return n >= min && n <= max;
- }
- }
- else
- return 0;
- }
- int
- scm_is_unsigned_integer (SCM val, scm_t_uintmax min, scm_t_uintmax max)
- {
- if (SCM_I_INUMP (val))
- {
- scm_t_signed_bits n = SCM_I_INUM (val);
- return n >= 0 && ((scm_t_uintmax)n) >= min && ((scm_t_uintmax)n) <= max;
- }
- else if (SCM_BIGP (val))
- {
- if (max <= SCM_MOST_POSITIVE_FIXNUM)
- return 0;
- else if (max <= ULONG_MAX)
- {
- if (mpz_fits_ulong_p (SCM_I_BIG_MPZ (val)))
- {
- unsigned long n = mpz_get_ui (SCM_I_BIG_MPZ (val));
- return n >= min && n <= max;
- }
- else
- return 0;
- }
- else
- {
- scm_t_uintmax n;
- size_t count;
- if (mpz_sgn (SCM_I_BIG_MPZ (val)) < 0)
- return 0;
- if (mpz_sizeinbase (SCM_I_BIG_MPZ (val), 2)
- > CHAR_BIT*sizeof (scm_t_uintmax))
- return 0;
-
- mpz_export (&n, &count, 1, sizeof (scm_t_uintmax), 0, 0,
- SCM_I_BIG_MPZ (val));
- return n >= min && n <= max;
- }
- }
- else
- return 0;
- }
- static void
- scm_i_range_error (SCM bad_val, SCM min, SCM max)
- {
- scm_error (scm_out_of_range_key,
- NULL,
- "Value out of range ~S to ~S: ~S",
- scm_list_3 (min, max, bad_val),
- scm_list_1 (bad_val));
- }
- #define TYPE scm_t_intmax
- #define TYPE_MIN min
- #define TYPE_MAX max
- #define SIZEOF_TYPE 0
- #define SCM_TO_TYPE_PROTO(arg) scm_to_signed_integer (arg, scm_t_intmax min, scm_t_intmax max)
- #define SCM_FROM_TYPE_PROTO(arg) scm_from_signed_integer (arg)
- #include "libguile/conv-integer.i.c"
- #define TYPE scm_t_uintmax
- #define TYPE_MIN min
- #define TYPE_MAX max
- #define SIZEOF_TYPE 0
- #define SCM_TO_TYPE_PROTO(arg) scm_to_unsigned_integer (arg, scm_t_uintmax min, scm_t_uintmax max)
- #define SCM_FROM_TYPE_PROTO(arg) scm_from_unsigned_integer (arg)
- #include "libguile/conv-uinteger.i.c"
- #define TYPE scm_t_int8
- #define TYPE_MIN SCM_T_INT8_MIN
- #define TYPE_MAX SCM_T_INT8_MAX
- #define SIZEOF_TYPE 1
- #define SCM_TO_TYPE_PROTO(arg) scm_to_int8 (arg)
- #define SCM_FROM_TYPE_PROTO(arg) scm_from_int8 (arg)
- #include "libguile/conv-integer.i.c"
- #define TYPE scm_t_uint8
- #define TYPE_MIN 0
- #define TYPE_MAX SCM_T_UINT8_MAX
- #define SIZEOF_TYPE 1
- #define SCM_TO_TYPE_PROTO(arg) scm_to_uint8 (arg)
- #define SCM_FROM_TYPE_PROTO(arg) scm_from_uint8 (arg)
- #include "libguile/conv-uinteger.i.c"
- #define TYPE scm_t_int16
- #define TYPE_MIN SCM_T_INT16_MIN
- #define TYPE_MAX SCM_T_INT16_MAX
- #define SIZEOF_TYPE 2
- #define SCM_TO_TYPE_PROTO(arg) scm_to_int16 (arg)
- #define SCM_FROM_TYPE_PROTO(arg) scm_from_int16 (arg)
- #include "libguile/conv-integer.i.c"
- #define TYPE scm_t_uint16
- #define TYPE_MIN 0
- #define TYPE_MAX SCM_T_UINT16_MAX
- #define SIZEOF_TYPE 2
- #define SCM_TO_TYPE_PROTO(arg) scm_to_uint16 (arg)
- #define SCM_FROM_TYPE_PROTO(arg) scm_from_uint16 (arg)
- #include "libguile/conv-uinteger.i.c"
- #define TYPE scm_t_int32
- #define TYPE_MIN SCM_T_INT32_MIN
- #define TYPE_MAX SCM_T_INT32_MAX
- #define SIZEOF_TYPE 4
- #define SCM_TO_TYPE_PROTO(arg) scm_to_int32 (arg)
- #define SCM_FROM_TYPE_PROTO(arg) scm_from_int32 (arg)
- #include "libguile/conv-integer.i.c"
- #define TYPE scm_t_uint32
- #define TYPE_MIN 0
- #define TYPE_MAX SCM_T_UINT32_MAX
- #define SIZEOF_TYPE 4
- #define SCM_TO_TYPE_PROTO(arg) scm_to_uint32 (arg)
- #define SCM_FROM_TYPE_PROTO(arg) scm_from_uint32 (arg)
- #include "libguile/conv-uinteger.i.c"
- #define TYPE scm_t_wchar
- #define TYPE_MIN (scm_t_int32)-1
- #define TYPE_MAX (scm_t_int32)0x10ffff
- #define SIZEOF_TYPE 4
- #define SCM_TO_TYPE_PROTO(arg) scm_to_wchar (arg)
- #define SCM_FROM_TYPE_PROTO(arg) scm_from_wchar (arg)
- #include "libguile/conv-integer.i.c"
- #define TYPE scm_t_int64
- #define TYPE_MIN SCM_T_INT64_MIN
- #define TYPE_MAX SCM_T_INT64_MAX
- #define SIZEOF_TYPE 8
- #define SCM_TO_TYPE_PROTO(arg) scm_to_int64 (arg)
- #define SCM_FROM_TYPE_PROTO(arg) scm_from_int64 (arg)
- #include "libguile/conv-integer.i.c"
- #define TYPE scm_t_uint64
- #define TYPE_MIN 0
- #define TYPE_MAX SCM_T_UINT64_MAX
- #define SIZEOF_TYPE 8
- #define SCM_TO_TYPE_PROTO(arg) scm_to_uint64 (arg)
- #define SCM_FROM_TYPE_PROTO(arg) scm_from_uint64 (arg)
- #include "libguile/conv-uinteger.i.c"
- void
- scm_to_mpz (SCM val, mpz_t rop)
- {
- if (SCM_I_INUMP (val))
- mpz_set_si (rop, SCM_I_INUM (val));
- else if (SCM_BIGP (val))
- mpz_set (rop, SCM_I_BIG_MPZ (val));
- else
- scm_wrong_type_arg_msg (NULL, 0, val, "exact integer");
- }
- SCM
- scm_from_mpz (mpz_t val)
- {
- return scm_i_mpz2num (val);
- }
- int
- scm_is_real (SCM val)
- {
- return scm_is_true (scm_real_p (val));
- }
- int
- scm_is_rational (SCM val)
- {
- return scm_is_true (scm_rational_p (val));
- }
- double
- scm_to_double (SCM val)
- {
- if (SCM_I_INUMP (val))
- return SCM_I_INUM (val);
- else if (SCM_BIGP (val))
- return scm_i_big2dbl (val);
- else if (SCM_FRACTIONP (val))
- return scm_i_fraction2double (val);
- else if (SCM_REALP (val))
- return SCM_REAL_VALUE (val);
- else
- scm_wrong_type_arg_msg (NULL, 0, val, "real number");
- }
- SCM
- scm_from_double (double val)
- {
- return scm_i_from_double (val);
- }
- int
- scm_is_complex (SCM val)
- {
- return scm_is_true (scm_complex_p (val));
- }
- double
- scm_c_real_part (SCM z)
- {
- if (SCM_COMPLEXP (z))
- return SCM_COMPLEX_REAL (z);
- else
- {
- /* Use the scm_real_part to get proper error checking and
- dispatching.
- */
- return scm_to_double (scm_real_part (z));
- }
- }
- double
- scm_c_imag_part (SCM z)
- {
- if (SCM_COMPLEXP (z))
- return SCM_COMPLEX_IMAG (z);
- else
- {
- /* Use the scm_imag_part to get proper error checking and
- dispatching. The result will almost always be 0.0, but not
- always.
- */
- return scm_to_double (scm_imag_part (z));
- }
- }
- double
- scm_c_magnitude (SCM z)
- {
- return scm_to_double (scm_magnitude (z));
- }
- double
- scm_c_angle (SCM z)
- {
- return scm_to_double (scm_angle (z));
- }
- int
- scm_is_number (SCM z)
- {
- return scm_is_true (scm_number_p (z));
- }
- /* Returns log(x * 2^shift) */
- static SCM
- log_of_shifted_double (double x, long shift)
- {
- double ans = log (fabs (x)) + shift * M_LN2;
- if (copysign (1.0, x) > 0.0)
- return scm_i_from_double (ans);
- else
- return scm_c_make_rectangular (ans, M_PI);
- }
- /* Returns log(n), for exact integer n */
- static SCM
- log_of_exact_integer (SCM n)
- {
- if (SCM_I_INUMP (n))
- return log_of_shifted_double (SCM_I_INUM (n), 0);
- else if (SCM_BIGP (n))
- {
- long expon;
- double signif = scm_i_big2dbl_2exp (n, &expon);
- return log_of_shifted_double (signif, expon);
- }
- else
- scm_wrong_type_arg ("log_of_exact_integer", SCM_ARG1, n);
- }
- /* Returns log(n/d), for exact non-zero integers n and d */
- static SCM
- log_of_fraction (SCM n, SCM d)
- {
- long n_size = scm_to_long (scm_integer_length (n));
- long d_size = scm_to_long (scm_integer_length (d));
- if (abs (n_size - d_size) > 1)
- return (scm_difference (log_of_exact_integer (n),
- log_of_exact_integer (d)));
- else if (scm_is_false (scm_negative_p (n)))
- return scm_i_from_double
- (log1p (scm_i_divide2double (scm_difference (n, d), d)));
- else
- return scm_c_make_rectangular
- (log1p (scm_i_divide2double (scm_difference (scm_abs (n), d),
- d)),
- M_PI);
- }
- /* In the following functions we dispatch to the real-arg funcs like log()
- when we know the arg is real, instead of just handing everything to
- clog() for instance. This is in case clog() doesn't optimize for a
- real-only case, and because we have to test SCM_COMPLEXP anyway so may as
- well use it to go straight to the applicable C func. */
- SCM_PRIMITIVE_GENERIC (scm_log, "log", 1, 0, 0,
- (SCM z),
- "Return the natural logarithm of @var{z}.")
- #define FUNC_NAME s_scm_log
- {
- if (SCM_COMPLEXP (z))
- {
- #if defined HAVE_COMPLEX_DOUBLE && defined HAVE_CLOG \
- && defined (SCM_COMPLEX_VALUE)
- return scm_from_complex_double (clog (SCM_COMPLEX_VALUE (z)));
- #else
- double re = SCM_COMPLEX_REAL (z);
- double im = SCM_COMPLEX_IMAG (z);
- return scm_c_make_rectangular (log (hypot (re, im)),
- atan2 (im, re));
- #endif
- }
- else if (SCM_REALP (z))
- return log_of_shifted_double (SCM_REAL_VALUE (z), 0);
- else if (SCM_I_INUMP (z))
- {
- #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
- if (scm_is_eq (z, SCM_INUM0))
- scm_num_overflow (s_scm_log);
- #endif
- return log_of_shifted_double (SCM_I_INUM (z), 0);
- }
- else if (SCM_BIGP (z))
- return log_of_exact_integer (z);
- else if (SCM_FRACTIONP (z))
- return log_of_fraction (SCM_FRACTION_NUMERATOR (z),
- SCM_FRACTION_DENOMINATOR (z));
- else
- return scm_wta_dispatch_1 (g_scm_log, z, 1, s_scm_log);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_log10, "log10", 1, 0, 0,
- (SCM z),
- "Return the base 10 logarithm of @var{z}.")
- #define FUNC_NAME s_scm_log10
- {
- if (SCM_COMPLEXP (z))
- {
- /* Mingw has clog() but not clog10(). (Maybe it'd be worth using
- clog() and a multiply by M_LOG10E, rather than the fallback
- log10+hypot+atan2.) */
- #if defined HAVE_COMPLEX_DOUBLE && defined HAVE_CLOG10 \
- && defined SCM_COMPLEX_VALUE
- return scm_from_complex_double (clog10 (SCM_COMPLEX_VALUE (z)));
- #else
- double re = SCM_COMPLEX_REAL (z);
- double im = SCM_COMPLEX_IMAG (z);
- return scm_c_make_rectangular (log10 (hypot (re, im)),
- M_LOG10E * atan2 (im, re));
- #endif
- }
- else if (SCM_REALP (z) || SCM_I_INUMP (z))
- {
- #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
- if (scm_is_eq (z, SCM_INUM0))
- scm_num_overflow (s_scm_log10);
- #endif
- {
- double re = scm_to_double (z);
- double l = log10 (fabs (re));
- if (copysign (1.0, re) > 0.0)
- return scm_i_from_double (l);
- else
- return scm_c_make_rectangular (l, M_LOG10E * M_PI);
- }
- }
- else if (SCM_BIGP (z))
- return scm_product (flo_log10e, log_of_exact_integer (z));
- else if (SCM_FRACTIONP (z))
- return scm_product (flo_log10e,
- log_of_fraction (SCM_FRACTION_NUMERATOR (z),
- SCM_FRACTION_DENOMINATOR (z)));
- else
- return scm_wta_dispatch_1 (g_scm_log10, z, 1, s_scm_log10);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_exp, "exp", 1, 0, 0,
- (SCM z),
- "Return @math{e} to the power of @var{z}, where @math{e} is the\n"
- "base of natural logarithms (2.71828@dots{}).")
- #define FUNC_NAME s_scm_exp
- {
- if (SCM_COMPLEXP (z))
- {
- #if defined HAVE_COMPLEX_DOUBLE && defined HAVE_CEXP \
- && defined (SCM_COMPLEX_VALUE)
- return scm_from_complex_double (cexp (SCM_COMPLEX_VALUE (z)));
- #else
- return scm_c_make_polar (exp (SCM_COMPLEX_REAL (z)),
- SCM_COMPLEX_IMAG (z));
- #endif
- }
- else if (SCM_NUMBERP (z))
- {
- /* When z is a negative bignum the conversion to double overflows,
- giving -infinity, but that's ok, the exp is still 0.0. */
- return scm_i_from_double (exp (scm_to_double (z)));
- }
- else
- return scm_wta_dispatch_1 (g_scm_exp, z, 1, s_scm_exp);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_i_exact_integer_sqrt, "exact-integer-sqrt", 1, 0, 0,
- (SCM k),
- "Return two exact non-negative integers @var{s} and @var{r}\n"
- "such that @math{@var{k} = @var{s}^2 + @var{r}} and\n"
- "@math{@var{s}^2 <= @var{k} < (@var{s} + 1)^2}.\n"
- "An error is raised if @var{k} is not an exact non-negative integer.\n"
- "\n"
- "@lisp\n"
- "(exact-integer-sqrt 10) @result{} 3 and 1\n"
- "@end lisp")
- #define FUNC_NAME s_scm_i_exact_integer_sqrt
- {
- SCM s, r;
- scm_exact_integer_sqrt (k, &s, &r);
- return scm_values (scm_list_2 (s, r));
- }
- #undef FUNC_NAME
- void
- scm_exact_integer_sqrt (SCM k, SCM *sp, SCM *rp)
- {
- if (SCM_LIKELY (SCM_I_INUMP (k)))
- {
- mpz_t kk, ss, rr;
- if (SCM_I_INUM (k) < 0)
- scm_wrong_type_arg_msg ("exact-integer-sqrt", SCM_ARG1, k,
- "exact non-negative integer");
- mpz_init_set_ui (kk, SCM_I_INUM (k));
- mpz_inits (ss, rr, NULL);
- mpz_sqrtrem (ss, rr, kk);
- *sp = SCM_I_MAKINUM (mpz_get_ui (ss));
- *rp = SCM_I_MAKINUM (mpz_get_ui (rr));
- mpz_clears (kk, ss, rr, NULL);
- }
- else if (SCM_LIKELY (SCM_BIGP (k)))
- {
- SCM s, r;
- if (mpz_sgn (SCM_I_BIG_MPZ (k)) < 0)
- scm_wrong_type_arg_msg ("exact-integer-sqrt", SCM_ARG1, k,
- "exact non-negative integer");
- s = scm_i_mkbig ();
- r = scm_i_mkbig ();
- mpz_sqrtrem (SCM_I_BIG_MPZ (s), SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (k));
- scm_remember_upto_here_1 (k);
- *sp = scm_i_normbig (s);
- *rp = scm_i_normbig (r);
- }
- else
- scm_wrong_type_arg_msg ("exact-integer-sqrt", SCM_ARG1, k,
- "exact non-negative integer");
- }
- /* Return true iff K is a perfect square.
- K must be an exact integer. */
- static int
- exact_integer_is_perfect_square (SCM k)
- {
- int result;
- if (SCM_LIKELY (SCM_I_INUMP (k)))
- {
- mpz_t kk;
- mpz_init_set_si (kk, SCM_I_INUM (k));
- result = mpz_perfect_square_p (kk);
- mpz_clear (kk);
- }
- else
- {
- result = mpz_perfect_square_p (SCM_I_BIG_MPZ (k));
- scm_remember_upto_here_1 (k);
- }
- return result;
- }
- /* Return the floor of the square root of K.
- K must be an exact integer. */
- static SCM
- exact_integer_floor_square_root (SCM k)
- {
- if (SCM_LIKELY (SCM_I_INUMP (k)))
- {
- mpz_t kk;
- scm_t_inum ss;
- mpz_init_set_ui (kk, SCM_I_INUM (k));
- mpz_sqrt (kk, kk);
- ss = mpz_get_ui (kk);
- mpz_clear (kk);
- return SCM_I_MAKINUM (ss);
- }
- else
- {
- SCM s;
- s = scm_i_mkbig ();
- mpz_sqrt (SCM_I_BIG_MPZ (s), SCM_I_BIG_MPZ (k));
- scm_remember_upto_here_1 (k);
- return scm_i_normbig (s);
- }
- }
- SCM_PRIMITIVE_GENERIC (scm_sqrt, "sqrt", 1, 0, 0,
- (SCM z),
- "Return the square root of @var{z}. Of the two possible roots\n"
- "(positive and negative), the one with positive real part\n"
- "is returned, or if that's zero then a positive imaginary part.\n"
- "Thus,\n"
- "\n"
- "@example\n"
- "(sqrt 9.0) @result{} 3.0\n"
- "(sqrt -9.0) @result{} 0.0+3.0i\n"
- "(sqrt 1.0+1.0i) @result{} 1.09868411346781+0.455089860562227i\n"
- "(sqrt -1.0-1.0i) @result{} 0.455089860562227-1.09868411346781i\n"
- "@end example")
- #define FUNC_NAME s_scm_sqrt
- {
- if (SCM_COMPLEXP (z))
- {
- #if defined HAVE_COMPLEX_DOUBLE && defined HAVE_USABLE_CSQRT \
- && defined SCM_COMPLEX_VALUE
- return scm_from_complex_double (csqrt (SCM_COMPLEX_VALUE (z)));
- #else
- double re = SCM_COMPLEX_REAL (z);
- double im = SCM_COMPLEX_IMAG (z);
- return scm_c_make_polar (sqrt (hypot (re, im)),
- 0.5 * atan2 (im, re));
- #endif
- }
- else if (SCM_NUMBERP (z))
- {
- if (SCM_I_INUMP (z))
- {
- scm_t_inum x = SCM_I_INUM (z);
- if (SCM_LIKELY (x >= 0))
- {
- if (SCM_LIKELY (SCM_I_FIXNUM_BIT < DBL_MANT_DIG
- || x < (1L << (DBL_MANT_DIG - 1))))
- {
- double root = sqrt (x);
- /* If 0 <= x < 2^(DBL_MANT_DIG-1) and sqrt(x) is an
- integer, then the result is exact. */
- if (root == floor (root))
- return SCM_I_MAKINUM ((scm_t_inum) root);
- else
- return scm_i_from_double (root);
- }
- else
- {
- mpz_t xx;
- scm_t_inum root;
- mpz_init_set_ui (xx, x);
- if (mpz_perfect_square_p (xx))
- {
- mpz_sqrt (xx, xx);
- root = mpz_get_ui (xx);
- mpz_clear (xx);
- return SCM_I_MAKINUM (root);
- }
- else
- mpz_clear (xx);
- }
- }
- }
- else if (SCM_BIGP (z))
- {
- if (mpz_perfect_square_p (SCM_I_BIG_MPZ (z)))
- {
- SCM root = scm_i_mkbig ();
- mpz_sqrt (SCM_I_BIG_MPZ (root), SCM_I_BIG_MPZ (z));
- scm_remember_upto_here_1 (z);
- return scm_i_normbig (root);
- }
- else
- {
- long expon;
- double signif = scm_i_big2dbl_2exp (z, &expon);
- if (expon & 1)
- {
- signif *= 2;
- expon--;
- }
- if (signif < 0)
- return scm_c_make_rectangular
- (0.0, ldexp (sqrt (-signif), expon / 2));
- else
- return scm_i_from_double (ldexp (sqrt (signif), expon / 2));
- }
- }
- else if (SCM_FRACTIONP (z))
- {
- SCM n = SCM_FRACTION_NUMERATOR (z);
- SCM d = SCM_FRACTION_DENOMINATOR (z);
- if (exact_integer_is_perfect_square (n)
- && exact_integer_is_perfect_square (d))
- return scm_i_make_ratio_already_reduced
- (exact_integer_floor_square_root (n),
- exact_integer_floor_square_root (d));
- else
- {
- double xx = scm_i_divide2double (n, d);
- double abs_xx = fabs (xx);
- long shift = 0;
- if (SCM_UNLIKELY (abs_xx > DBL_MAX || abs_xx < DBL_MIN))
- {
- shift = (scm_to_long (scm_integer_length (n))
- - scm_to_long (scm_integer_length (d))) / 2;
- if (shift > 0)
- d = left_shift_exact_integer (d, 2 * shift);
- else
- n = left_shift_exact_integer (n, -2 * shift);
- xx = scm_i_divide2double (n, d);
- }
- if (xx < 0)
- return scm_c_make_rectangular (0.0, ldexp (sqrt (-xx), shift));
- else
- return scm_i_from_double (ldexp (sqrt (xx), shift));
- }
- }
- /* Fallback method, when the cases above do not apply. */
- {
- double xx = scm_to_double (z);
- if (xx < 0)
- return scm_c_make_rectangular (0.0, sqrt (-xx));
- else
- return scm_i_from_double (sqrt (xx));
- }
- }
- else
- return scm_wta_dispatch_1 (g_scm_sqrt, z, 1, s_scm_sqrt);
- }
- #undef FUNC_NAME
- void
- scm_init_numbers ()
- {
- if (scm_install_gmp_memory_functions)
- mp_set_memory_functions (custom_gmp_malloc,
- custom_gmp_realloc,
- custom_gmp_free);
- mpz_init_set_si (z_negative_one, -1);
- /* It may be possible to tune the performance of some algorithms by using
- * the following constants to avoid the creation of bignums. Please, before
- * using these values, remember the two rules of program optimization:
- * 1st Rule: Don't do it. 2nd Rule (experts only): Don't do it yet. */
- scm_c_define ("most-positive-fixnum",
- SCM_I_MAKINUM (SCM_MOST_POSITIVE_FIXNUM));
- scm_c_define ("most-negative-fixnum",
- SCM_I_MAKINUM (SCM_MOST_NEGATIVE_FIXNUM));
- scm_add_feature ("complex");
- scm_add_feature ("inexact");
- flo0 = scm_i_from_double (0.0);
- flo_log10e = scm_i_from_double (M_LOG10E);
- exactly_one_half = scm_divide (SCM_INUM1, SCM_I_MAKINUM (2));
- {
- /* Set scm_i_divide2double_lo2b to (2 b^p - 1) */
- mpz_init_set_ui (scm_i_divide2double_lo2b, 1);
- mpz_mul_2exp (scm_i_divide2double_lo2b,
- scm_i_divide2double_lo2b,
- DBL_MANT_DIG + 1); /* 2 b^p */
- mpz_sub_ui (scm_i_divide2double_lo2b, scm_i_divide2double_lo2b, 1);
- }
- {
- /* Set dbl_minimum_normal_mantissa to b^{p-1} */
- mpz_init_set_ui (dbl_minimum_normal_mantissa, 1);
- mpz_mul_2exp (dbl_minimum_normal_mantissa,
- dbl_minimum_normal_mantissa,
- DBL_MANT_DIG - 1);
- }
- #include "libguile/numbers.x"
- }
- /*
- Local Variables:
- c-file-style: "gnu"
- End:
- */
|