vm_kern.c 28 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045
  1. /*-
  2. * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
  3. *
  4. * Copyright (c) 1991, 1993
  5. * The Regents of the University of California. All rights reserved.
  6. *
  7. * This code is derived from software contributed to Berkeley by
  8. * The Mach Operating System project at Carnegie-Mellon University.
  9. *
  10. * Redistribution and use in source and binary forms, with or without
  11. * modification, are permitted provided that the following conditions
  12. * are met:
  13. * 1. Redistributions of source code must retain the above copyright
  14. * notice, this list of conditions and the following disclaimer.
  15. * 2. Redistributions in binary form must reproduce the above copyright
  16. * notice, this list of conditions and the following disclaimer in the
  17. * documentation and/or other materials provided with the distribution.
  18. * 3. Neither the name of the University nor the names of its contributors
  19. * may be used to endorse or promote products derived from this software
  20. * without specific prior written permission.
  21. *
  22. * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
  23. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  24. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  25. * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
  26. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  27. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  28. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  29. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  30. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  31. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  32. * SUCH DAMAGE.
  33. *
  34. *
  35. * Copyright (c) 1987, 1990 Carnegie-Mellon University.
  36. * All rights reserved.
  37. *
  38. * Authors: Avadis Tevanian, Jr., Michael Wayne Young
  39. *
  40. * Permission to use, copy, modify and distribute this software and
  41. * its documentation is hereby granted, provided that both the copyright
  42. * notice and this permission notice appear in all copies of the
  43. * software, derivative works or modified versions, and any portions
  44. * thereof, and that both notices appear in supporting documentation.
  45. *
  46. * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
  47. * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
  48. * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
  49. *
  50. * Carnegie Mellon requests users of this software to return to
  51. *
  52. * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
  53. * School of Computer Science
  54. * Carnegie Mellon University
  55. * Pittsburgh PA 15213-3890
  56. *
  57. * any improvements or extensions that they make and grant Carnegie the
  58. * rights to redistribute these changes.
  59. */
  60. /*
  61. * Kernel memory management.
  62. */
  63. #include <sys/cdefs.h>
  64. #include "opt_vm.h"
  65. #include <sys/param.h>
  66. #include <sys/systm.h>
  67. #include <sys/asan.h>
  68. #include <sys/domainset.h>
  69. #include <sys/eventhandler.h>
  70. #include <sys/kernel.h>
  71. #include <sys/lock.h>
  72. #include <sys/malloc.h>
  73. #include <sys/msan.h>
  74. #include <sys/proc.h>
  75. #include <sys/rwlock.h>
  76. #include <sys/smp.h>
  77. #include <sys/sysctl.h>
  78. #include <sys/vmem.h>
  79. #include <sys/vmmeter.h>
  80. #include <vm/vm.h>
  81. #include <vm/vm_param.h>
  82. #include <vm/vm_domainset.h>
  83. #include <vm/vm_kern.h>
  84. #include <vm/pmap.h>
  85. #include <vm/vm_map.h>
  86. #include <vm/vm_object.h>
  87. #include <vm/vm_page.h>
  88. #include <vm/vm_pageout.h>
  89. #include <vm/vm_pagequeue.h>
  90. #include <vm/vm_phys.h>
  91. #include <vm/vm_radix.h>
  92. #include <vm/vm_extern.h>
  93. #include <vm/uma.h>
  94. struct vm_map kernel_map_store;
  95. struct vm_map exec_map_store;
  96. struct vm_map pipe_map_store;
  97. const void *zero_region;
  98. CTASSERT((ZERO_REGION_SIZE & PAGE_MASK) == 0);
  99. /* NB: Used by kernel debuggers. */
  100. const u_long vm_maxuser_address = VM_MAXUSER_ADDRESS;
  101. u_int exec_map_entry_size;
  102. u_int exec_map_entries;
  103. SYSCTL_ULONG(_vm, OID_AUTO, min_kernel_address, CTLFLAG_RD,
  104. SYSCTL_NULL_ULONG_PTR, VM_MIN_KERNEL_ADDRESS, "Min kernel address");
  105. SYSCTL_ULONG(_vm, OID_AUTO, max_kernel_address, CTLFLAG_RD,
  106. #if defined(__arm__)
  107. &vm_max_kernel_address, 0,
  108. #else
  109. SYSCTL_NULL_ULONG_PTR, VM_MAX_KERNEL_ADDRESS,
  110. #endif
  111. "Max kernel address");
  112. #if VM_NRESERVLEVEL > 1
  113. #define KVA_QUANTUM_SHIFT (VM_LEVEL_1_ORDER + VM_LEVEL_0_ORDER + \
  114. PAGE_SHIFT)
  115. #elif VM_NRESERVLEVEL > 0
  116. #define KVA_QUANTUM_SHIFT (VM_LEVEL_0_ORDER + PAGE_SHIFT)
  117. #else
  118. /* On non-superpage architectures we want large import sizes. */
  119. #define KVA_QUANTUM_SHIFT (8 + PAGE_SHIFT)
  120. #endif
  121. #define KVA_QUANTUM (1ul << KVA_QUANTUM_SHIFT)
  122. #define KVA_NUMA_IMPORT_QUANTUM (KVA_QUANTUM * 128)
  123. extern void uma_startup2(void);
  124. /*
  125. * kva_alloc:
  126. *
  127. * Allocate a virtual address range with no underlying object and
  128. * no initial mapping to physical memory. Any mapping from this
  129. * range to physical memory must be explicitly created prior to
  130. * its use, typically with pmap_qenter(). Any attempt to create
  131. * a mapping on demand through vm_fault() will result in a panic.
  132. */
  133. vm_offset_t
  134. kva_alloc(vm_size_t size)
  135. {
  136. vm_offset_t addr;
  137. TSENTER();
  138. size = round_page(size);
  139. if (vmem_xalloc(kernel_arena, size, 0, 0, 0, VMEM_ADDR_MIN,
  140. VMEM_ADDR_MAX, M_BESTFIT | M_NOWAIT, &addr))
  141. return (0);
  142. TSEXIT();
  143. return (addr);
  144. }
  145. /*
  146. * kva_alloc_aligned:
  147. *
  148. * Allocate a virtual address range as in kva_alloc where the base
  149. * address is aligned to align.
  150. */
  151. vm_offset_t
  152. kva_alloc_aligned(vm_size_t size, vm_size_t align)
  153. {
  154. vm_offset_t addr;
  155. TSENTER();
  156. size = round_page(size);
  157. if (vmem_xalloc(kernel_arena, size, align, 0, 0, VMEM_ADDR_MIN,
  158. VMEM_ADDR_MAX, M_BESTFIT | M_NOWAIT, &addr))
  159. return (0);
  160. TSEXIT();
  161. return (addr);
  162. }
  163. /*
  164. * kva_free:
  165. *
  166. * Release a region of kernel virtual memory allocated
  167. * with kva_alloc, and return the physical pages
  168. * associated with that region.
  169. *
  170. * This routine may not block on kernel maps.
  171. */
  172. void
  173. kva_free(vm_offset_t addr, vm_size_t size)
  174. {
  175. size = round_page(size);
  176. vmem_xfree(kernel_arena, addr, size);
  177. }
  178. /*
  179. * Update sanitizer shadow state to reflect a new allocation. Force inlining to
  180. * help make KMSAN origin tracking more precise.
  181. */
  182. static __always_inline void
  183. kmem_alloc_san(vm_offset_t addr, vm_size_t size, vm_size_t asize, int flags)
  184. {
  185. if ((flags & M_ZERO) == 0) {
  186. kmsan_mark((void *)addr, asize, KMSAN_STATE_UNINIT);
  187. kmsan_orig((void *)addr, asize, KMSAN_TYPE_KMEM,
  188. KMSAN_RET_ADDR);
  189. } else {
  190. kmsan_mark((void *)addr, asize, KMSAN_STATE_INITED);
  191. }
  192. kasan_mark((void *)addr, size, asize, KASAN_KMEM_REDZONE);
  193. }
  194. static vm_page_t
  195. kmem_alloc_contig_pages(vm_object_t object, vm_pindex_t pindex, int domain,
  196. int pflags, u_long npages, vm_paddr_t low, vm_paddr_t high,
  197. u_long alignment, vm_paddr_t boundary, vm_memattr_t memattr)
  198. {
  199. vm_page_t m;
  200. int tries;
  201. bool wait, reclaim;
  202. VM_OBJECT_ASSERT_WLOCKED(object);
  203. wait = (pflags & VM_ALLOC_WAITOK) != 0;
  204. reclaim = (pflags & VM_ALLOC_NORECLAIM) == 0;
  205. pflags &= ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL);
  206. pflags |= VM_ALLOC_NOWAIT;
  207. for (tries = wait ? 3 : 1;; tries--) {
  208. m = vm_page_alloc_contig_domain(object, pindex, domain, pflags,
  209. npages, low, high, alignment, boundary, memattr);
  210. if (m != NULL || tries == 0 || !reclaim)
  211. break;
  212. VM_OBJECT_WUNLOCK(object);
  213. if (vm_page_reclaim_contig_domain(domain, pflags, npages,
  214. low, high, alignment, boundary) == ENOMEM && wait)
  215. vm_wait_domain(domain);
  216. VM_OBJECT_WLOCK(object);
  217. }
  218. return (m);
  219. }
  220. /*
  221. * Allocates a region from the kernel address map and physical pages
  222. * within the specified address range to the kernel object. Creates a
  223. * wired mapping from this region to these pages, and returns the
  224. * region's starting virtual address. The allocated pages are not
  225. * necessarily physically contiguous. If M_ZERO is specified through the
  226. * given flags, then the pages are zeroed before they are mapped.
  227. */
  228. static void *
  229. kmem_alloc_attr_domain(int domain, vm_size_t size, int flags, vm_paddr_t low,
  230. vm_paddr_t high, vm_memattr_t memattr)
  231. {
  232. vmem_t *vmem;
  233. vm_object_t object;
  234. vm_offset_t addr, i, offset;
  235. vm_page_t m;
  236. vm_size_t asize;
  237. int pflags;
  238. vm_prot_t prot;
  239. object = kernel_object;
  240. asize = round_page(size);
  241. vmem = vm_dom[domain].vmd_kernel_arena;
  242. if (vmem_alloc(vmem, asize, M_BESTFIT | flags, &addr))
  243. return (0);
  244. offset = addr - VM_MIN_KERNEL_ADDRESS;
  245. pflags = malloc2vm_flags(flags) | VM_ALLOC_WIRED;
  246. prot = (flags & M_EXEC) != 0 ? VM_PROT_ALL : VM_PROT_RW;
  247. VM_OBJECT_WLOCK(object);
  248. for (i = 0; i < asize; i += PAGE_SIZE) {
  249. m = kmem_alloc_contig_pages(object, atop(offset + i),
  250. domain, pflags, 1, low, high, PAGE_SIZE, 0, memattr);
  251. if (m == NULL) {
  252. VM_OBJECT_WUNLOCK(object);
  253. kmem_unback(object, addr, i);
  254. vmem_free(vmem, addr, asize);
  255. return (0);
  256. }
  257. KASSERT(vm_page_domain(m) == domain,
  258. ("kmem_alloc_attr_domain: Domain mismatch %d != %d",
  259. vm_page_domain(m), domain));
  260. if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
  261. pmap_zero_page(m);
  262. vm_page_valid(m);
  263. pmap_enter(kernel_pmap, addr + i, m, prot,
  264. prot | PMAP_ENTER_WIRED, 0);
  265. }
  266. VM_OBJECT_WUNLOCK(object);
  267. kmem_alloc_san(addr, size, asize, flags);
  268. return ((void *)addr);
  269. }
  270. void *
  271. kmem_alloc_attr(vm_size_t size, int flags, vm_paddr_t low, vm_paddr_t high,
  272. vm_memattr_t memattr)
  273. {
  274. return (kmem_alloc_attr_domainset(DOMAINSET_RR(), size, flags, low,
  275. high, memattr));
  276. }
  277. void *
  278. kmem_alloc_attr_domainset(struct domainset *ds, vm_size_t size, int flags,
  279. vm_paddr_t low, vm_paddr_t high, vm_memattr_t memattr)
  280. {
  281. struct vm_domainset_iter di;
  282. vm_page_t bounds[2];
  283. void *addr;
  284. int domain;
  285. int start_segind;
  286. start_segind = -1;
  287. vm_domainset_iter_policy_init(&di, ds, &domain, &flags);
  288. do {
  289. addr = kmem_alloc_attr_domain(domain, size, flags, low, high,
  290. memattr);
  291. if (addr != NULL)
  292. break;
  293. if (start_segind == -1)
  294. start_segind = vm_phys_lookup_segind(low);
  295. if (vm_phys_find_range(bounds, start_segind, domain,
  296. atop(round_page(size)), low, high) == -1) {
  297. vm_domainset_iter_ignore(&di, domain);
  298. }
  299. } while (vm_domainset_iter_policy(&di, &domain) == 0);
  300. return (addr);
  301. }
  302. /*
  303. * Allocates a region from the kernel address map and physically
  304. * contiguous pages within the specified address range to the kernel
  305. * object. Creates a wired mapping from this region to these pages, and
  306. * returns the region's starting virtual address. If M_ZERO is specified
  307. * through the given flags, then the pages are zeroed before they are
  308. * mapped.
  309. */
  310. static void *
  311. kmem_alloc_contig_domain(int domain, vm_size_t size, int flags, vm_paddr_t low,
  312. vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
  313. vm_memattr_t memattr)
  314. {
  315. vmem_t *vmem;
  316. vm_object_t object;
  317. vm_offset_t addr, offset, tmp;
  318. vm_page_t end_m, m;
  319. vm_size_t asize;
  320. u_long npages;
  321. int pflags;
  322. object = kernel_object;
  323. asize = round_page(size);
  324. vmem = vm_dom[domain].vmd_kernel_arena;
  325. if (vmem_alloc(vmem, asize, flags | M_BESTFIT, &addr))
  326. return (NULL);
  327. offset = addr - VM_MIN_KERNEL_ADDRESS;
  328. pflags = malloc2vm_flags(flags) | VM_ALLOC_WIRED;
  329. npages = atop(asize);
  330. VM_OBJECT_WLOCK(object);
  331. m = kmem_alloc_contig_pages(object, atop(offset), domain,
  332. pflags, npages, low, high, alignment, boundary, memattr);
  333. if (m == NULL) {
  334. VM_OBJECT_WUNLOCK(object);
  335. vmem_free(vmem, addr, asize);
  336. return (NULL);
  337. }
  338. KASSERT(vm_page_domain(m) == domain,
  339. ("kmem_alloc_contig_domain: Domain mismatch %d != %d",
  340. vm_page_domain(m), domain));
  341. end_m = m + npages;
  342. tmp = addr;
  343. for (; m < end_m; m++) {
  344. if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
  345. pmap_zero_page(m);
  346. vm_page_valid(m);
  347. pmap_enter(kernel_pmap, tmp, m, VM_PROT_RW,
  348. VM_PROT_RW | PMAP_ENTER_WIRED, 0);
  349. tmp += PAGE_SIZE;
  350. }
  351. VM_OBJECT_WUNLOCK(object);
  352. kmem_alloc_san(addr, size, asize, flags);
  353. return ((void *)addr);
  354. }
  355. void *
  356. kmem_alloc_contig(vm_size_t size, int flags, vm_paddr_t low, vm_paddr_t high,
  357. u_long alignment, vm_paddr_t boundary, vm_memattr_t memattr)
  358. {
  359. return (kmem_alloc_contig_domainset(DOMAINSET_RR(), size, flags, low,
  360. high, alignment, boundary, memattr));
  361. }
  362. void *
  363. kmem_alloc_contig_domainset(struct domainset *ds, vm_size_t size, int flags,
  364. vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
  365. vm_memattr_t memattr)
  366. {
  367. struct vm_domainset_iter di;
  368. vm_page_t bounds[2];
  369. void *addr;
  370. int domain;
  371. int start_segind;
  372. start_segind = -1;
  373. vm_domainset_iter_policy_init(&di, ds, &domain, &flags);
  374. do {
  375. addr = kmem_alloc_contig_domain(domain, size, flags, low, high,
  376. alignment, boundary, memattr);
  377. if (addr != NULL)
  378. break;
  379. if (start_segind == -1)
  380. start_segind = vm_phys_lookup_segind(low);
  381. if (vm_phys_find_range(bounds, start_segind, domain,
  382. atop(round_page(size)), low, high) == -1) {
  383. vm_domainset_iter_ignore(&di, domain);
  384. }
  385. } while (vm_domainset_iter_policy(&di, &domain) == 0);
  386. return (addr);
  387. }
  388. /*
  389. * kmem_subinit:
  390. *
  391. * Initializes a map to manage a subrange
  392. * of the kernel virtual address space.
  393. *
  394. * Arguments are as follows:
  395. *
  396. * parent Map to take range from
  397. * min, max Returned endpoints of map
  398. * size Size of range to find
  399. * superpage_align Request that min is superpage aligned
  400. */
  401. void
  402. kmem_subinit(vm_map_t map, vm_map_t parent, vm_offset_t *min, vm_offset_t *max,
  403. vm_size_t size, bool superpage_align)
  404. {
  405. int ret;
  406. size = round_page(size);
  407. *min = vm_map_min(parent);
  408. ret = vm_map_find(parent, NULL, 0, min, size, 0, superpage_align ?
  409. VMFS_SUPER_SPACE : VMFS_ANY_SPACE, VM_PROT_ALL, VM_PROT_ALL,
  410. MAP_ACC_NO_CHARGE);
  411. if (ret != KERN_SUCCESS)
  412. panic("kmem_subinit: bad status return of %d", ret);
  413. *max = *min + size;
  414. vm_map_init(map, vm_map_pmap(parent), *min, *max);
  415. if (vm_map_submap(parent, *min, *max, map) != KERN_SUCCESS)
  416. panic("kmem_subinit: unable to change range to submap");
  417. }
  418. /*
  419. * kmem_malloc_domain:
  420. *
  421. * Allocate wired-down pages in the kernel's address space.
  422. */
  423. static void *
  424. kmem_malloc_domain(int domain, vm_size_t size, int flags)
  425. {
  426. vmem_t *arena;
  427. vm_offset_t addr;
  428. vm_size_t asize;
  429. int rv;
  430. if (__predict_true((flags & M_EXEC) == 0))
  431. arena = vm_dom[domain].vmd_kernel_arena;
  432. else
  433. arena = vm_dom[domain].vmd_kernel_rwx_arena;
  434. asize = round_page(size);
  435. if (vmem_alloc(arena, asize, flags | M_BESTFIT, &addr))
  436. return (0);
  437. rv = kmem_back_domain(domain, kernel_object, addr, asize, flags);
  438. if (rv != KERN_SUCCESS) {
  439. vmem_free(arena, addr, asize);
  440. return (0);
  441. }
  442. kasan_mark((void *)addr, size, asize, KASAN_KMEM_REDZONE);
  443. return ((void *)addr);
  444. }
  445. void *
  446. kmem_malloc(vm_size_t size, int flags)
  447. {
  448. void * p;
  449. TSENTER();
  450. p = kmem_malloc_domainset(DOMAINSET_RR(), size, flags);
  451. TSEXIT();
  452. return (p);
  453. }
  454. void *
  455. kmem_malloc_domainset(struct domainset *ds, vm_size_t size, int flags)
  456. {
  457. struct vm_domainset_iter di;
  458. void *addr;
  459. int domain;
  460. vm_domainset_iter_policy_init(&di, ds, &domain, &flags);
  461. do {
  462. addr = kmem_malloc_domain(domain, size, flags);
  463. if (addr != NULL)
  464. break;
  465. } while (vm_domainset_iter_policy(&di, &domain) == 0);
  466. return (addr);
  467. }
  468. /*
  469. * kmem_back_domain:
  470. *
  471. * Allocate physical pages from the specified domain for the specified
  472. * virtual address range.
  473. */
  474. int
  475. kmem_back_domain(int domain, vm_object_t object, vm_offset_t addr,
  476. vm_size_t size, int flags)
  477. {
  478. vm_offset_t offset, i;
  479. vm_page_t m, mpred;
  480. vm_prot_t prot;
  481. int pflags;
  482. KASSERT(object == kernel_object,
  483. ("kmem_back_domain: only supports kernel object."));
  484. offset = addr - VM_MIN_KERNEL_ADDRESS;
  485. pflags = malloc2vm_flags(flags) | VM_ALLOC_WIRED;
  486. pflags &= ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL);
  487. if (flags & M_WAITOK)
  488. pflags |= VM_ALLOC_WAITFAIL;
  489. prot = (flags & M_EXEC) != 0 ? VM_PROT_ALL : VM_PROT_RW;
  490. i = 0;
  491. VM_OBJECT_WLOCK(object);
  492. retry:
  493. mpred = vm_radix_lookup_le(&object->rtree, atop(offset + i));
  494. for (; i < size; i += PAGE_SIZE, mpred = m) {
  495. m = vm_page_alloc_domain_after(object, atop(offset + i),
  496. domain, pflags, mpred);
  497. /*
  498. * Ran out of space, free everything up and return. Don't need
  499. * to lock page queues here as we know that the pages we got
  500. * aren't on any queues.
  501. */
  502. if (m == NULL) {
  503. if ((flags & M_NOWAIT) == 0)
  504. goto retry;
  505. VM_OBJECT_WUNLOCK(object);
  506. kmem_unback(object, addr, i);
  507. return (KERN_NO_SPACE);
  508. }
  509. KASSERT(vm_page_domain(m) == domain,
  510. ("kmem_back_domain: Domain mismatch %d != %d",
  511. vm_page_domain(m), domain));
  512. if (flags & M_ZERO && (m->flags & PG_ZERO) == 0)
  513. pmap_zero_page(m);
  514. KASSERT((m->oflags & VPO_UNMANAGED) != 0,
  515. ("kmem_malloc: page %p is managed", m));
  516. vm_page_valid(m);
  517. pmap_enter(kernel_pmap, addr + i, m, prot,
  518. prot | PMAP_ENTER_WIRED, 0);
  519. if (__predict_false((prot & VM_PROT_EXECUTE) != 0))
  520. m->oflags |= VPO_KMEM_EXEC;
  521. }
  522. VM_OBJECT_WUNLOCK(object);
  523. kmem_alloc_san(addr, size, size, flags);
  524. return (KERN_SUCCESS);
  525. }
  526. /*
  527. * kmem_back:
  528. *
  529. * Allocate physical pages for the specified virtual address range.
  530. */
  531. int
  532. kmem_back(vm_object_t object, vm_offset_t addr, vm_size_t size, int flags)
  533. {
  534. vm_offset_t end, next, start;
  535. int domain, rv;
  536. KASSERT(object == kernel_object,
  537. ("kmem_back: only supports kernel object."));
  538. for (start = addr, end = addr + size; addr < end; addr = next) {
  539. /*
  540. * We must ensure that pages backing a given large virtual page
  541. * all come from the same physical domain.
  542. */
  543. if (vm_ndomains > 1) {
  544. domain = (addr >> KVA_QUANTUM_SHIFT) % vm_ndomains;
  545. while (VM_DOMAIN_EMPTY(domain))
  546. domain++;
  547. next = roundup2(addr + 1, KVA_QUANTUM);
  548. if (next > end || next < start)
  549. next = end;
  550. } else {
  551. domain = 0;
  552. next = end;
  553. }
  554. rv = kmem_back_domain(domain, object, addr, next - addr, flags);
  555. if (rv != KERN_SUCCESS) {
  556. kmem_unback(object, start, addr - start);
  557. break;
  558. }
  559. }
  560. return (rv);
  561. }
  562. /*
  563. * kmem_unback:
  564. *
  565. * Unmap and free the physical pages underlying the specified virtual
  566. * address range.
  567. *
  568. * A physical page must exist within the specified object at each index
  569. * that is being unmapped.
  570. */
  571. static struct vmem *
  572. _kmem_unback(vm_object_t object, vm_offset_t addr, vm_size_t size)
  573. {
  574. struct vmem *arena;
  575. vm_page_t m, next;
  576. vm_offset_t end, offset;
  577. int domain;
  578. KASSERT(object == kernel_object,
  579. ("kmem_unback: only supports kernel object."));
  580. if (size == 0)
  581. return (NULL);
  582. pmap_remove(kernel_pmap, addr, addr + size);
  583. offset = addr - VM_MIN_KERNEL_ADDRESS;
  584. end = offset + size;
  585. VM_OBJECT_WLOCK(object);
  586. m = vm_page_lookup(object, atop(offset));
  587. domain = vm_page_domain(m);
  588. if (__predict_true((m->oflags & VPO_KMEM_EXEC) == 0))
  589. arena = vm_dom[domain].vmd_kernel_arena;
  590. else
  591. arena = vm_dom[domain].vmd_kernel_rwx_arena;
  592. for (; offset < end; offset += PAGE_SIZE, m = next) {
  593. next = vm_page_next(m);
  594. vm_page_xbusy_claim(m);
  595. vm_page_unwire_noq(m);
  596. vm_page_free(m);
  597. }
  598. VM_OBJECT_WUNLOCK(object);
  599. return (arena);
  600. }
  601. void
  602. kmem_unback(vm_object_t object, vm_offset_t addr, vm_size_t size)
  603. {
  604. (void)_kmem_unback(object, addr, size);
  605. }
  606. /*
  607. * kmem_free:
  608. *
  609. * Free memory allocated with kmem_malloc. The size must match the
  610. * original allocation.
  611. */
  612. void
  613. kmem_free(void *addr, vm_size_t size)
  614. {
  615. struct vmem *arena;
  616. size = round_page(size);
  617. kasan_mark(addr, size, size, 0);
  618. arena = _kmem_unback(kernel_object, (uintptr_t)addr, size);
  619. if (arena != NULL)
  620. vmem_free(arena, (uintptr_t)addr, size);
  621. }
  622. /*
  623. * kmap_alloc_wait:
  624. *
  625. * Allocates pageable memory from a sub-map of the kernel. If the submap
  626. * has no room, the caller sleeps waiting for more memory in the submap.
  627. *
  628. * This routine may block.
  629. */
  630. vm_offset_t
  631. kmap_alloc_wait(vm_map_t map, vm_size_t size)
  632. {
  633. vm_offset_t addr;
  634. size = round_page(size);
  635. if (!swap_reserve(size))
  636. return (0);
  637. for (;;) {
  638. /*
  639. * To make this work for more than one map, use the map's lock
  640. * to lock out sleepers/wakers.
  641. */
  642. vm_map_lock(map);
  643. addr = vm_map_findspace(map, vm_map_min(map), size);
  644. if (addr + size <= vm_map_max(map))
  645. break;
  646. /* no space now; see if we can ever get space */
  647. if (vm_map_max(map) - vm_map_min(map) < size) {
  648. vm_map_unlock(map);
  649. swap_release(size);
  650. return (0);
  651. }
  652. map->needs_wakeup = TRUE;
  653. vm_map_unlock_and_wait(map, 0);
  654. }
  655. vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_RW, VM_PROT_RW,
  656. MAP_ACC_CHARGED);
  657. vm_map_unlock(map);
  658. return (addr);
  659. }
  660. /*
  661. * kmap_free_wakeup:
  662. *
  663. * Returns memory to a submap of the kernel, and wakes up any processes
  664. * waiting for memory in that map.
  665. */
  666. void
  667. kmap_free_wakeup(vm_map_t map, vm_offset_t addr, vm_size_t size)
  668. {
  669. vm_map_lock(map);
  670. (void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
  671. if (map->needs_wakeup) {
  672. map->needs_wakeup = FALSE;
  673. vm_map_wakeup(map);
  674. }
  675. vm_map_unlock(map);
  676. }
  677. void
  678. kmem_init_zero_region(void)
  679. {
  680. vm_offset_t addr, i;
  681. vm_page_t m;
  682. /*
  683. * Map a single physical page of zeros to a larger virtual range.
  684. * This requires less looping in places that want large amounts of
  685. * zeros, while not using much more physical resources.
  686. */
  687. addr = kva_alloc(ZERO_REGION_SIZE);
  688. m = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_ZERO);
  689. for (i = 0; i < ZERO_REGION_SIZE; i += PAGE_SIZE)
  690. pmap_qenter(addr + i, &m, 1);
  691. pmap_protect(kernel_pmap, addr, addr + ZERO_REGION_SIZE, VM_PROT_READ);
  692. zero_region = (const void *)addr;
  693. }
  694. /*
  695. * Import KVA from the kernel map into the kernel arena.
  696. */
  697. static int
  698. kva_import(void *unused, vmem_size_t size, int flags, vmem_addr_t *addrp)
  699. {
  700. vm_offset_t addr;
  701. int result;
  702. TSENTER();
  703. KASSERT((size % KVA_QUANTUM) == 0,
  704. ("kva_import: Size %jd is not a multiple of %d",
  705. (intmax_t)size, (int)KVA_QUANTUM));
  706. addr = vm_map_min(kernel_map);
  707. result = vm_map_find(kernel_map, NULL, 0, &addr, size, 0,
  708. VMFS_SUPER_SPACE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
  709. if (result != KERN_SUCCESS) {
  710. TSEXIT();
  711. return (ENOMEM);
  712. }
  713. *addrp = addr;
  714. TSEXIT();
  715. return (0);
  716. }
  717. /*
  718. * Import KVA from a parent arena into a per-domain arena. Imports must be
  719. * KVA_QUANTUM-aligned and a multiple of KVA_QUANTUM in size.
  720. */
  721. static int
  722. kva_import_domain(void *arena, vmem_size_t size, int flags, vmem_addr_t *addrp)
  723. {
  724. KASSERT((size % KVA_QUANTUM) == 0,
  725. ("kva_import_domain: Size %jd is not a multiple of %d",
  726. (intmax_t)size, (int)KVA_QUANTUM));
  727. return (vmem_xalloc(arena, size, KVA_QUANTUM, 0, 0, VMEM_ADDR_MIN,
  728. VMEM_ADDR_MAX, flags, addrp));
  729. }
  730. /*
  731. * kmem_init:
  732. *
  733. * Create the kernel map; insert a mapping covering kernel text,
  734. * data, bss, and all space allocated thus far (`boostrap' data). The
  735. * new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
  736. * `start' as allocated, and the range between `start' and `end' as free.
  737. * Create the kernel vmem arena and its per-domain children.
  738. */
  739. void
  740. kmem_init(vm_offset_t start, vm_offset_t end)
  741. {
  742. vm_size_t quantum;
  743. int domain;
  744. vm_map_init(kernel_map, kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
  745. kernel_map->system_map = 1;
  746. vm_map_lock(kernel_map);
  747. /* N.B.: cannot use kgdb to debug, starting with this assignment ... */
  748. (void)vm_map_insert(kernel_map, NULL, 0,
  749. #ifdef __amd64__
  750. KERNBASE,
  751. #else
  752. VM_MIN_KERNEL_ADDRESS,
  753. #endif
  754. start, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
  755. /* ... and ending with the completion of the above `insert' */
  756. #ifdef __amd64__
  757. /*
  758. * Mark KVA used for the page array as allocated. Other platforms
  759. * that handle vm_page_array allocation can simply adjust virtual_avail
  760. * instead.
  761. */
  762. (void)vm_map_insert(kernel_map, NULL, 0, (vm_offset_t)vm_page_array,
  763. (vm_offset_t)vm_page_array + round_2mpage(vm_page_array_size *
  764. sizeof(struct vm_page)),
  765. VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT);
  766. #endif
  767. vm_map_unlock(kernel_map);
  768. /*
  769. * Use a large import quantum on NUMA systems. This helps minimize
  770. * interleaving of superpages, reducing internal fragmentation within
  771. * the per-domain arenas.
  772. */
  773. if (vm_ndomains > 1 && PMAP_HAS_DMAP)
  774. quantum = KVA_NUMA_IMPORT_QUANTUM;
  775. else
  776. quantum = KVA_QUANTUM;
  777. /*
  778. * Initialize the kernel_arena. This can grow on demand.
  779. */
  780. vmem_init(kernel_arena, "kernel arena", 0, 0, PAGE_SIZE, 0, 0);
  781. vmem_set_import(kernel_arena, kva_import, NULL, NULL, quantum);
  782. for (domain = 0; domain < vm_ndomains; domain++) {
  783. /*
  784. * Initialize the per-domain arenas. These are used to color
  785. * the KVA space in a way that ensures that virtual large pages
  786. * are backed by memory from the same physical domain,
  787. * maximizing the potential for superpage promotion.
  788. */
  789. vm_dom[domain].vmd_kernel_arena = vmem_create(
  790. "kernel arena domain", 0, 0, PAGE_SIZE, 0, M_WAITOK);
  791. vmem_set_import(vm_dom[domain].vmd_kernel_arena,
  792. kva_import_domain, NULL, kernel_arena, quantum);
  793. /*
  794. * In architectures with superpages, maintain separate arenas
  795. * for allocations with permissions that differ from the
  796. * "standard" read/write permissions used for kernel memory,
  797. * so as not to inhibit superpage promotion.
  798. *
  799. * Use the base import quantum since this arena is rarely used.
  800. */
  801. #if VM_NRESERVLEVEL > 0
  802. vm_dom[domain].vmd_kernel_rwx_arena = vmem_create(
  803. "kernel rwx arena domain", 0, 0, PAGE_SIZE, 0, M_WAITOK);
  804. vmem_set_import(vm_dom[domain].vmd_kernel_rwx_arena,
  805. kva_import_domain, (vmem_release_t *)vmem_xfree,
  806. kernel_arena, KVA_QUANTUM);
  807. #else
  808. vm_dom[domain].vmd_kernel_rwx_arena =
  809. vm_dom[domain].vmd_kernel_arena;
  810. #endif
  811. }
  812. /*
  813. * This must be the very first call so that the virtual address
  814. * space used for early allocations is properly marked used in
  815. * the map.
  816. */
  817. uma_startup2();
  818. }
  819. /*
  820. * kmem_bootstrap_free:
  821. *
  822. * Free pages backing preloaded data (e.g., kernel modules) to the
  823. * system. Currently only supported on platforms that create a
  824. * vm_phys segment for preloaded data.
  825. */
  826. void
  827. kmem_bootstrap_free(vm_offset_t start, vm_size_t size)
  828. {
  829. #if defined(__i386__) || defined(__amd64__)
  830. struct vm_domain *vmd;
  831. vm_offset_t end, va;
  832. vm_paddr_t pa;
  833. vm_page_t m;
  834. end = trunc_page(start + size);
  835. start = round_page(start);
  836. #ifdef __amd64__
  837. /*
  838. * Preloaded files do not have execute permissions by default on amd64.
  839. * Restore the default permissions to ensure that the direct map alias
  840. * is updated.
  841. */
  842. pmap_change_prot(start, end - start, VM_PROT_RW);
  843. #endif
  844. for (va = start; va < end; va += PAGE_SIZE) {
  845. pa = pmap_kextract(va);
  846. m = PHYS_TO_VM_PAGE(pa);
  847. vmd = vm_pagequeue_domain(m);
  848. vm_domain_free_lock(vmd);
  849. vm_phys_free_pages(m, 0);
  850. vm_domain_free_unlock(vmd);
  851. vm_domain_freecnt_inc(vmd, 1);
  852. vm_cnt.v_page_count++;
  853. }
  854. pmap_remove(kernel_pmap, start, end);
  855. (void)vmem_add(kernel_arena, start, end - start, M_WAITOK);
  856. #endif
  857. }
  858. #ifdef PMAP_WANT_ACTIVE_CPUS_NAIVE
  859. void
  860. pmap_active_cpus(pmap_t pmap, cpuset_t *res)
  861. {
  862. struct thread *td;
  863. struct proc *p;
  864. struct vmspace *vm;
  865. int c;
  866. CPU_ZERO(res);
  867. CPU_FOREACH(c) {
  868. td = cpuid_to_pcpu[c]->pc_curthread;
  869. p = td->td_proc;
  870. if (p == NULL)
  871. continue;
  872. vm = vmspace_acquire_ref(p);
  873. if (vm == NULL)
  874. continue;
  875. if (pmap == vmspace_pmap(vm))
  876. CPU_SET(c, res);
  877. vmspace_free(vm);
  878. }
  879. }
  880. #endif
  881. /*
  882. * Allow userspace to directly trigger the VM drain routine for testing
  883. * purposes.
  884. */
  885. static int
  886. debug_vm_lowmem(SYSCTL_HANDLER_ARGS)
  887. {
  888. int error, i;
  889. i = 0;
  890. error = sysctl_handle_int(oidp, &i, 0, req);
  891. if (error != 0)
  892. return (error);
  893. if ((i & ~(VM_LOW_KMEM | VM_LOW_PAGES)) != 0)
  894. return (EINVAL);
  895. if (i != 0)
  896. EVENTHANDLER_INVOKE(vm_lowmem, i);
  897. return (0);
  898. }
  899. SYSCTL_PROC(_debug, OID_AUTO, vm_lowmem,
  900. CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, 0, debug_vm_lowmem, "I",
  901. "set to trigger vm_lowmem event with given flags");
  902. static int
  903. debug_uma_reclaim(SYSCTL_HANDLER_ARGS)
  904. {
  905. int error, i;
  906. i = 0;
  907. error = sysctl_handle_int(oidp, &i, 0, req);
  908. if (error != 0 || req->newptr == NULL)
  909. return (error);
  910. if (i != UMA_RECLAIM_TRIM && i != UMA_RECLAIM_DRAIN &&
  911. i != UMA_RECLAIM_DRAIN_CPU)
  912. return (EINVAL);
  913. uma_reclaim(i);
  914. return (0);
  915. }
  916. SYSCTL_PROC(_debug, OID_AUTO, uma_reclaim,
  917. CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, 0, debug_uma_reclaim, "I",
  918. "set to generate request to reclaim uma caches");
  919. static int
  920. debug_uma_reclaim_domain(SYSCTL_HANDLER_ARGS)
  921. {
  922. int domain, error, request;
  923. request = 0;
  924. error = sysctl_handle_int(oidp, &request, 0, req);
  925. if (error != 0 || req->newptr == NULL)
  926. return (error);
  927. domain = request >> 4;
  928. request &= 0xf;
  929. if (request != UMA_RECLAIM_TRIM && request != UMA_RECLAIM_DRAIN &&
  930. request != UMA_RECLAIM_DRAIN_CPU)
  931. return (EINVAL);
  932. if (domain < 0 || domain >= vm_ndomains)
  933. return (EINVAL);
  934. uma_reclaim_domain(request, domain);
  935. return (0);
  936. }
  937. SYSCTL_PROC(_debug, OID_AUTO, uma_reclaim_domain,
  938. CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, 0,
  939. debug_uma_reclaim_domain, "I",
  940. "");