123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029 |
- module patches; % Patches to correct problems in REDUCE 3.8.
- % Author: Anthony C. Hearn.
- % Copyright (c) 2004, 2005, 2006, 2007 Anthony C. Hearn. All Rights Reserved.
- global '(patch!-date!* patch!-url!-list!*);
- patch!-date!* := "11-Jan-2007";
- patch!-url!-list!* :=
- '("http://reduce-algebra.com/support/patches/patches.fsl");
- % Bugs fixed by these patches.
- % 26 Jun 04. With rounded arithmetic, solving some linear equation
- % problems could lead to a catastrophic error.
- % 8 Jul 04. Some non-zero integrals (e.g., int(e^(a^(1/3)*x)*sin x,x))
- % returned zero.
- % 5 Aug 04. Using RLFI with latex on could lead to invalid operator errors.
- % 2 Sep 04. In rare circumstances, floating point conversion could give
- % an extraneous error.
- % 6 Sep 04. With rational on, some non-zero factorizations could produce
- % a zero coefficient (e.g., on rational;
- % factorize(r^((1/4*n^2 - 1/4*n + 1)/(n - 1)));).
- % 28 Sep 04. Some integrals would not return a closed form solution
- % with algint on that would with algint off
- % (e.g., int(sqrt(x-1)/(sqrt x*(x-1)),x)).
- % 10 Dec 04. With dfprin on, some products and sums printed incorrectly.
- % 31 Jan 05. Some integrals involving square roots could run forever.
- % 12 Feb 05. SOLVE could produce a spurious recursive loop (e.g.,
- % solve((4*e^(y^3/3)*cte+2x^2+y^3+3)/e^(y^3/3),y)).
- % 20 Apr 05. int(e^(-a^(1/4)*(-1)^(1/4)*x),x); terminated with an error.
- % 2 May 05. int(e^(-a^(1/4)*(-1)^(1/4)*i*x)*b+(1/4)*e^(-a^(1/4)
- % *(-1)^(1/4)*i*x)*x,x); terminated with an error.
- % 22 May 05. Some integrals, e.g., int(e^((3sqrt 5+1)*x)*(sqrt 5+1)
- % +e^((3sqrt 5-1)*x)*(sqrt 5+1),x), never completed.
- % 30 May 05. SOLVE could produce a spurious "Zero divisor" error
- % (e.g., solve({log tan(y/2),y+1/x},{x,y})).
- % 4 Oct 05. DEG did not work with rational coefficients (e.g.,
- % deg(x**3/a-x/5+1/4,x)).
- % 5 Oct 05. Some SOLVE calculations could give a spurious "Zero Divisor"
- % error (e.g., ex0:= sqrt(a^2-y^2); solve((-log(( - x + a + y)
- % /ex0) + log((x + a + y)/ex0) + x - (a^2 - y^2)/ex0),y);
- % 16 Nov 05. System errors could occur with rounded and combineexpt on.
- % (E.g., on rounded,combineexpt; 0.183*e^x*t^4.39;).
- % 22 Nov 05. Some definite integrals with variables other than x could
- % give a wrong answer, e.g., int(e^(-y),y,0,x).
- % 9 Dec 05. With combineexpt on, expressions could be dropped (e.g.,
- % on combineexpt; 4*e^(-3*h/2) - 3*h*e^(-h) + 2*e^(-h)).
- % 4 Feb 06. Setcrackflags() was not set in crack, but needed to be.
- % 20 Feb 06. The rule for df(Jacobidn(~u,~m),~u) was wrong.
- % 21 Feb 06. Evaluating some integrals could suppress the printing of
- % the results.
- % 22 Feb 06. Some sub evaluations could include superfluous terms like
- % x = (x^(1/7))^7.
- % 23 May 06. Derivatives and integrals of matrices were not computed.
- % 18 Aug 06. After nospur, some traces were still evaluated.
- % 29 Sep 06. With dfprint on, derivatives of integrals would print in a
- % truncated form.
- % 11 Jan 07. With rounded arithmetic and factor on, a non-numeric
- % argument error could occur.
- % Alg declarations.
- fluid '(sublist!*);
- patch alg;
- % 16 Nov 05, 9 Dec 05.
- symbolic procedure exptunwind(u,v);
- begin scalar x,x1,x2,y,z,z2;
- a: if null v then return u;
- x := caar v;
- x1 := cadr x;
- x2 := caddr x;
- y := cdar v;
- v := cdr v;
- if !*combineexpt and null domainp u and null red u
- and (z2 := kernels u) and null cdr z2
- then u := {(({'expt,car z2,ldeg u} . 1) . lc u)};
- while (z := assocp1(x1,v)) and
- (z2 := simp {'plus,{'times,x2,y},{'times,caddar z,cdr z}})
- and (!*combineexpt or (fixp numr z2 and fixp denr z2))
- do <<if fixp numr z2 and fixp denr z2
- then <<x2 := divide(numr z2,denr z2);
- if car x2>0
- then <<if fixp x1 then u := multf(x1**car x2,u)
- else u := multpf(mksp(x1,car x2),u);
- z2 := cdr x2 ./ denr z2>>;
- y := numr z2>>
- else if domainp numr z2 then y := 1
- else <<y := lcoeffgcd cdr comfac numr z2;
- if not fixp y then y := 1>>;
- x2 := prepsq(quotf(numr z2,y) ./ denr z2);
- v := delete(z,v)>>;
- if !*combineexpt and y=1 and fixp x1 then
- <<while (z := assocp2(x2,v)) and cdr z=1 and fixp cadar z do
- <<x1 := cadar z * x1; v := delete(z,v)>>;
- if eqcar(x2,'quotient) and fixp cadr x2 and fixp caddr x2
- and cadr x2<caddr x2
- then <<z := nrootn(x1**cadr x2,caddr x2);
- if cdr z = 1 then u := multd(car z,u)
- else if car z = 1
- then u := multf(formsf(x1,x2,1),u)
- else <<u := multd(car z,u);
- v := (list('expt,cdr z,x2) . 1) . v>>>>
- else u := multf(formsf(x1,x2,y),u)>>
- else u := multf(formsf(x1,x2,y),u);
- go to a
- end;
- % 22 Feb 06.
- symbolic procedure subeval0 u;
- begin scalar x,y,z,ns;
- while cdr u do <<if not eqcar(car u,'equal) then x := car u . x
- else if not(cadar u = (y := reval caddar u))
- then x := {caar u,cadar u,y} . x;
- u := cdr u>>;
- if null x then return car u else u := nconc(reversip x,u);
- if u member sublist!* then return mk!*sq !*p2q mksp('sub . u,1)
- else sublist!* := u . sublist!*;
- if null(u and cdr u)
- then rederr "SUB requires at least 2 arguments";
- (while cdr u do
- <<x := reval car u;
- if getrtype x eq 'list then u := append(cdr x,cdr u)
- else <<if not eqexpr x then errpri2(car u,t);
- y := cadr x;
- if null getrtype y then y := !*a2kwoweight y;
- if getrtype caddr x then ns := (y . caddr x) . ns
- else z := (y . caddr x) . z;
- u := cdr u>>>>) where !*evallhseqp=nil;
- x := aeval car u;
- return subeval1(append(ns,z),x)
- end;
- symbolic procedure subsubf(l,expn);
- begin scalar x,y;
- for each j in l do if car j neq (y := prepsq!* simp!* cdr j)
- then x := (car j . y) . x;
- l := reversip x;
- if null l then return expn;
- y := nil;
- for each j in cddr expn do
- if (x := assoc(j,l)) then <<y := x . y; l := delete(x,l)>>;
- expn := sublis(l,car expn)
- . for each j in cdr expn collect subsublis(l,j);
- if null y then return expn;
- expn := aconc!*(for each j in reversip!* y
- collect list('equal,car j,aeval cdr j),expn);
- return if l then subeval expn
- else mk!*sq !*p2q mksp('sub . expn,1)
- end;
- % 23 May 06.
- symbolic procedure reval1(u,v);
- (begin scalar x,y;
- if null u then return nil
- else if stringp u then return u
- else if fixp u
- then return if flagp(dmode!*,'convert) then reval2(u,v) else u
- else if atom u
- then if null subfg!* then return u
- else if idp u and (x := get(u,'avalue))
- then if u memq varstack!* then recursiveerror u
- else <<varstack!* := u . varstack!*;
- return if y := get(car x,'evfn)
- then apply2(y,u,v)
- else reval1(cadr x,v)>>
- else nil
- else if not idp car u
- then errpri2(u,t)
- else if car u eq '!*sq
- then return if caddr u and null !*resimp
- then if null v then u else prepsqxx cadr u
- else reval2(u,v)
- else if flagp(car u,'remember) then return rmmbreval(u,v)
- else if flagp(car u,'opfn) then return reval1(opfneval u,v)
- else if x := get(car u,'psopfn)
- then <<u := apply1(x,cdr u);
- if x := get(x,'cleanupfn) then u := apply2(x,u,v);
- return u>>
- else if arrayp car u then return reval1(getelv u,v);
- return if x := getrtype u then
- if y := get(x,'evfn) then apply2(y,u,v)
- else rerror(alg,101,
- list("Missing evaluation for type",x))
- else if not atom u
- and not atom cdr u
- and (y := getrtype cadr u)
- and null(y eq 'list and cddr u)
- and (x := get(y,'aggregatefn))
- and (not(x eq 'matrixmap) or flagp(car u,'matmapfn))
- and not flagp(car u,'boolean)
- and not !*listargs and not flagp(car u,'listargp)
- then apply2(x,u,v)
- else reval2(u,v)
- end) where varstack!* := varstack!*;
- symbolic procedure getrtype2 u;
- begin scalar x;
- return if (x := get(car u,'rtype)) and (x := get(x,'rtypefn))
- then apply1(x,cdr u)
- else if x := get(car u,'rtypefn) then apply1(x,cdr u)
- else if flagp(car u,'matmapfn) and cdr u
- and getrtype cadr u eq 'matrix
- then 'matrix
- else nil
- end;
- endpatch;
- patch arith;
- % 2 Sep 04.
- symbolic procedure read!:num(n);
- if fixp n then make!:ibf(n, 0)
- else if not(numberp n or stringp n) then bflerrmsg 'read!:num
- else begin integer j,m,sign; scalar ch,u,v,l,appear!.,appear!/;
- j := m := 0;
- sign := 1;
- u := v := appear!. := appear!/ := nil;
- l := explode n;
- loop: ch := car l;
- if digit ch then << u := ch . u; j := j + 1 >>
- else if ch eq '!. then << appear!. := t; j := 0 >>
- else if ch eq '!/ then << appear!/ := t; v := u; u := nil >>
- else if ch eq '!- then sign := -1
- else if ch memq '(!E !D !B !e !d !b) then go to jump;
- if l := cdr l then goto loop else goto make;
- jump: while l := cdr l do
- <<if digit(ch := car l) or ch eq '!-
- then v := ch . v >>;
- l := reverse v;
- if car l eq '!- then m := - compress cdr l
- else m:= compress l;
- make: u := reverse u;
- v := reverse v;
- if appear!/ then
- return conv!:r2bf(make!:ratnum(sign*compress v,compress u),
- if !:bprec!: then !:bprec!: else 170);
- if appear!. then j := - j else j := 0;
- if sign = 1 then u := compress u else u := - compress u;
- return round!:mt (decimal2internal (u, j + m), !:bprec!:)
- where !:bprec!: := if !:bprec!: then !:bprec!:
- else msd!: abs u
- end;
- endpatch;
- patch crack;
- setcrackflags();
- endpatch;
- % Defint declarations.
- symbolic smacro procedure listsq(u);
- for each uu in u collect simp!* uu;
- patch defint;
- symbolic procedure new_meijer(u);
- begin scalar f,y,mellin,new_mellin,m,n,p,q,old_num,old_denom,temp,a1,
- b1,a2,b2,alpha,num,denom,n1,temp1,temp2,coeff,v,var,new_var,new_y,
- new_v,k;
- f := prepsq simp car u;
- y := caddr u;
- mellin := bastab(car f,cddr f);
- temp := car cddddr mellin;
- var := cadr f;
- if not idp VAR then RETURN error(99,'FAIL);
- temp := reval algebraic(sub(x=var,temp));
- mellin := {car mellin,cadr mellin,caddr mellin,cadddr mellin,temp};
- temp := reduce_var(cadr u,mellin,var);
- alpha := simp!* car temp;
- new_mellin := cdr temp;
- if car cddddr new_mellin neq car cddddr mellin then
- << k := car cddddr mellin;
- y := reval algebraic(sub(var=y,k));
- new_y := simp y>>
- else
- << new_var := car cddddr new_mellin;
- new_y := simp reval algebraic(sub(x=y,new_var))>>;
- n1 := addsq(alpha,'(1 . 1));
- temp1 := {'expt,y,prepsq n1};
- temp2 := cadddr new_mellin;
- coeff := simp!* reval algebraic(temp1*temp2);
- m := caar new_mellin;
- n := cadar new_mellin;
- p := caddar new_mellin;
- q := car cdddar new_mellin;
- old_num := cadr new_mellin;
- old_denom := caddr new_mellin;
- for i:=1 :n do
- << if old_num = nil then a1 := append(a1,{simp!* old_num })
- else << a1 := append(a1,{simp!* car old_num});
- old_num := cdr old_num>>;
- >>;
- for j:=1 :m do
- << if old_denom = nil then b1 := append(b1,{simp!* old_denom })
- else << b1 := append(b1,{simp!* car old_denom});
- old_denom := cdr old_denom>>;
- >>;
- a2 := listsq old_num;
- b2 := listsq old_denom;
- if a1 = nil and a2 = nil then
- num := list({negsq alpha})
- else if a2 = nil then num := list(append(a1,{negsq alpha}))
- else
- << num := append(a1,{negsq alpha}); num := append({num},a2)>>;
- if b1 = nil and b2 = nil then
- denom := list({subtrsq(negsq alpha,'(1 . 1))})
- else if b2 = nil then
- denom := list(b1,subtrsq(negsq alpha,'(1 . 1)))
- else
- << denom := list(b1,subtrsq(negsq alpha,'(1 . 1)));
- denom := append(denom,b2)>>;
- v := gfmsq(num,denom,new_y);
- if v = 'fail then return simp 'fail
- else v := prepsq subsq(v,list(prepsq new_y . y));
- if eqcar(v,'meijerg) then new_v := v else new_v := simp v;
- return multsq(new_v,coeff);
- end;
- endpatch;
- patch hephys;
- symbolic procedure nospur u; <<rmsubs(); !*nospurp := t; flag(u,'nospur)>>;
- endpatch;
- % Int declarations.
- fluid '(!*purerisch !*trdint gaussiani indexlist intvar sqrt!-places!-alist
- loglist !*intflag!* listofnewsqrts listofallsqrts sqrt!-intvar
- basic!-listofallsqrts basic!-listofnewsqrts !*precise dmode!*
- !*exp !*gcd !*keepsqrts !*limitedfactors !*mcd !*rationalize
- !*structure !*uncached kord!*);
- smacro procedure argof u; cadr u;
- patch int;
- % 8 Jul 04, 31 Jan 05, 20 Apr 05, 2 May 05.
- symbolic procedure df2q p;
- begin scalar n,d,w,x,y,z;
- if null p then return nil ./ 1;
- d:=denr lc p;
- w:=red p;
- while w do
- <<d := multf(d,quotf(denr lc w,gcdf(d,denr lc w)));
- w := red w>>;
- while p do begin
- w := sqrt2top lc p;
- x := multf(xl2f(lpow p,zlist,indexlist),multf(numr w,d));
- if null x then return (p := red p);
- y := denr w;
- z := quotf(x,y);
- if null z
- then <<z := rationalizesq(x ./ y);
- if denr z neq 1
- then <<d := multf(denr z,d); n := multf(denr z,n)>>;
- z := numr z>>;
- n := addf(n,z);
- p := red p
- end;
- return tidy!-powersq (n ./ d)
- end;
- % 8 Jul 04, 22 May 05.
- symbolic procedure tidy!-powersq x;
- begin scalar expts,!*precise,!*keepsqrts;
- !*keepsqrts := t;
- x := subs2q x;
- expts := find!-expts(numr x,find!-expts(denr x,nil));
- if null expts then return x;
- x := subsq(x,for each v in expts collect
- (car v . list('expt,cadr v,cddr v)));
- x := subsq(x,for each v in expts collect
- (cadr v
- . list('expt,car v,list('quotient,1,cddr v))));
- return x
- end;
- symbolic procedure find!-expts(ff,l);
- begin scalar w;
- if domainp ff then return l;
- l := find!-expts(lc ff,find!-expts(red ff, l));
- ff := mvar ff;
- if eqcar(ff,'sqrt)
- then ff := list('expt, cadr ff,'(quotient 1 2))
- else if eqcar(ff,'expt) and eqcar(caddr ff,'quotient)
- and numberp caddr caddr ff
- then <<w := assoc(cadr ff,l);
- if null w
- then <<w := cadr ff . gensym() . 1; l := w . l >>;
- rplacd(cdr w,lcm(cddr w,caddr caddr ff))>>;
- return l
- end;
- % 28 Sep 04.
- symbolic procedure look_for_quad(integrand, var, zz);
- begin
- if (car zz = 'sqrt and listp cadr zz and caadr zz = 'plus) or
- (car zz = 'expt and listp cadr zz and caadr zz = 'plus and
- listp caddr zz and car caddr zz = 'quotient
- and fixp caddr caddr zz)
- then <<
- zz := simp cadr zz;
- if (cdr zz = 1) then <<
- zz := cdr coeff1(prepsq zz, var, nil);
- if length zz = 2 then return begin
- scalar a, b;
- scalar nvar, res, ss;
- a := car zz; b := cadr zz;
- if (depends(a,var) or depends(b,var)) then return nil;
- nvar := gensym();
- if !*trint then <<
- prin2 "Linear shift suggested ";
- prin2 a; prin2 " "; prin2 b; terpri();
- >>;
- integrand := subsq(integrand,
- list(var . list('quotient,
- list('difference,
- list('expt,nvar,2),a),
- b)));
- integrand := multsq(integrand,
- simp list('quotient,list('times,nvar,2),
- b));
- if !*trint then <<
- prin2 "Integrand is transformed by substitution to ";
- printsq integrand;
- prin2 "using substitution "; prin2 var; prin2 " -> ";
- printsq simp list('quotient,
- list('difference,list('expt,nvar,2),a),
- b);
- >>;
- res := integratesq(integrand, nvar, nil, nil);
- ss := list(nvar . list('sqrt,list('plus,list('times,var,b),
- a)));
- res := subsq(car res, ss) .
- subsq(multsq(cdr res, simp list('quotient,b,
- list('times,nvar,2))), ss);
- return res;
- end
- else if length zz = 3 then return begin
- scalar a, b, c;
- a := car zz; b := cadr zz; c:= caddr zz;
- if (depends(a,var) or depends(b,var) or depends(c,var)) then
- return nil;
- a := simp list('difference, a,
- list('times,b,b,
- list('quotient,1,list('times,4,c))));
- if null numr a then return nil;
- b := simp list('quotient, b, list('times, 2, c));
- c := simp c;
- return
- if minusf numr c then <<
- if minusf numr a then begin
- scalar !*hyperbolic;
- !*hyperbolic := t;
- return
- look_for_invhyp(integrand,nil,var,a,b,c)
- end
- else look_for_asin(integrand,var,a,b,c)>>
- else <<
- if minusf numr a then look_for_invhyp(integrand,t,var,a,b,c)
- else look_for_invhyp(integrand,nil,var,a,b,c)
- >>
- end
- else if length zz = 5 then return begin
- scalar a, b, c, d, e, nn, dd, mm;
- a := car zz; b := cadr zz; c:= caddr zz;
- d := cadddr zz; e := car cddddr zz;
- if not(b = 0) or not(d = 0) then return nil;
- if (depends(a,var) or depends(c,var)) or depends(e,var) then
- return nil;
- nn := numr integrand; dd := denr integrand;
- if denr(mm :=quotsq(nn ./ 1, !*kk2q var)) = 1 and
- even_power(numr mm, var) and even_power(dd, var) then <<
- return sqrt_substitute(numr mm, dd, var);
- >>;
- if denr(mm :=quotsq(dd ./ 1, !*kk2q var)) = 1 and
- even_power(nn, var) and even_power(numr mm, var) then <<
- return sqrt_substitute(nn, multf(dd,!*kk2f var), var);
- >>;
- return nil;
- end;
- >>>>;
- return nil
- end;
- % 21 Feb 06.
- symbolic procedure simpint u;
- if atom u or null cdr u or cddr u and (null cdddr u or cddddr u)
- then rerror(int,1,"Improper number of arguments to INT")
- else if cddr u then simpdint u
- else begin scalar ans,dmod,expression,variable,loglist,oldvarstack,
- !*intflag!*,!*purerisch,cflag,intvar,listofnewsqrts,
- listofallsqrts,sqrtfn,sqrt!-intvar,sqrt!-places!-alist,
- basic!-listofallsqrts,basic!-listofnewsqrts,coefft,
- varchange,w,!*precise;
- !*intflag!* := t;
- variable := !*a2k cadr u;
- if not(idp variable or pairp variable and numlistp cdr variable)
- then <<varchange := variable . intern gensym();
- if !*trint
- then printc {"Integration kernel", variable,
- "replaced by simple variable", cdr varchange};
- variable := cdr varchange>>;
- intvar := variable;
- w := cddr u;
- if w then rerror(int,3,"Too many arguments to INT");
- listofnewsqrts:= list mvar gaussiani;
- listofallsqrts:= list (argof mvar gaussiani . gaussiani);
- sqrtfn := get('sqrt,'simpfn);
- put('sqrt,'simpfn,'proper!-simpsqrt);
- if dmode!* then
- <<
- if (cflag:=get(dmode!*, 'cmpxfn)) then onoff('complex, nil);
- if (dmod := get(dmode!*,'dname)) then
- onoff(dmod,nil)>> where !*msg := nil;
- begin scalar dmode!*,!*exp,!*gcd,!*keepsqrts,!*limitedfactors,!*mcd,
- !*rationalize,!*structure,!*uncached,kord!*,
- ans1,badbit,denexp,erfg,nexp,oneterm;
- !*keepsqrts := !*limitedfactors := t;
- !*exp := !*gcd := !*mcd := !*structure := !*uncached := t;
- dmode!* := nil;
- if !*algint
- then <<
- sqrt!-intvar:=!*q2f simpsqrti variable;
- if (red sqrt!-intvar) or (lc sqrt!-intvar neq 1)
- or (ldeg sqrt!-intvar neq 1)
- then interr "Sqrt(x) not properly formed"
- else sqrt!-intvar:=mvar sqrt!-intvar;
- basic!-listofallsqrts:=listofallsqrts;
- basic!-listofnewsqrts:=listofnewsqrts;
- sqrtsave(basic!-listofallsqrts,basic!-listofnewsqrts,
- list(variable . variable))>>;
- coefft := (1 ./ 1);
- expression := int!-simp car u;
- if varchange
- then <<depend1(car varchange,cdr varchange,t);
- expression := int!-subsq(expression,{varchange})>>;
- denexp := 1 ./ denr expression;
- nexp := numr expression;
- while not atom nexp and null cdr nexp and
- not depends(mvar nexp,variable) do
- <<coefft := multsq(coefft,(((caar nexp) . 1) . nil) ./ 1);
- nexp := lc nexp>>;
- ans1 := nil;
- while nexp do begin
- scalar x,zv,tmp;
- if atom nexp then <<x := !*f2q nexp; nexp := nil>>
- else <<x := !*t2q car nexp; nexp := cdr nexp>>;
- x := multsq(x,denexp);
- zv := zvars(getvariables x,zv,variable,t);
- tmp := ans1;
- while tmp do
- <<if zv=caar tmp
- then <<rplacd(car tmp,addsq(cdar tmp,x));
- tmp := nil; zv := nil>>
- else tmp := cdr tmp>>;
- if zv then ans1 := (zv . x) . ans1
- end;
- if length ans1 = 1 then oneterm := t;
- nexp := ans1;
- ans := nil ./ 1;
- badbit:=nil ./ 1;
- while nexp do
- <<u := cdar nexp;
- if !*trdint
- then <<princ "Integrate"; printsq u;
- princ "with Zvars "; print caar nexp>>;
- erfg := erfg!*;
- ans1 := errorset!*(list('integratesq,mkquote u,
- mkquote variable,mkquote loglist,
- mkquote caar nexp),
- !*backtrace);
- erfg!* := erfg;
- nexp := cdr nexp;
- if errorp ans1 then badbit := addsq(badbit,u)
- else <<ans := addsq(caar ans1, ans);
- badbit:=addsq(cdar ans1,badbit)>>>>;
- if !*trdint
- then <<prin2 "Partial answer="; printsq ans;
- prin2 "To do="; printsq badbit>>;
- if badbit neq '(nil . 1)
- then <<setkorder nil;
- badbit := reordsq badbit;
- ans := reordsq ans;
- coefft := reordsq coefft;
- if !*trdint then <<princ "Retrying..."; printsq badbit>>;
- if oneterm and ans = '(nil . 1) then ans1 := nil
- else ans1 := errorset!*(list('integratesq,mkquote badbit,
- mkquote variable,mkquote loglist,nil),
- !*backtrace);
- if null ans1 or errorp ans1
- then ans := addsq(ans,simpint1(badbit . variable . w))
- else <<ans := addsq(ans,caar ans1);
- if not smemq(variable, ans) then ans := nil ./ 1;
- if cdar ans1 neq '(nil . 1)
- then ans := addsq(ans,
- simpint1(cdar ans1 . variable . w))
- >>>>;
- end;
- ans := multsq(coefft,ans);
- if !*trdint then << printc "Resimp and all that"; printsq ans >>;
- put('int,'simpfn,'simpiden);
- put('sqrt,'simpfn,sqrtfn);
- << if dmod then onoff(dmod,t);
- if cflag then onoff('complex,t)>> where !*msg := nil;
- oldvarstack := varstack!*;
- varstack!* := nil;
- ans := errorset!*(list('int!-resub,mkquote ans,mkquote
- varchange),t);
- put('int,'simpfn,'simpint);
- varstack!* := oldvarstack;
- return if errorp ans then error1() else car ans
- end;
- endpatch;
- patch mathpr;
- % 10 Dec 04, 29 Sep 06.
- symbolic procedure dflayout u;
- (begin
- scalar op, args, w;
- w := car (u := cdr u);
- u := cdr u;
- if smemq('int,w) then !*noarg := nil;
- if !*noarg and (atom w or not get(car w, 'op)) then <<
- if atom w then <<
- op := w;
- args := assoc(op, depl!*);
- if args then args := cdr args >>
- else <<
- op := car w;
- args := cdr w >>;
- remember!-args(op, args);
- w := op >>;
- maprin w;
- if u then <<
- u := layout!-formula('!!dfsub!! . u, 0, nil);
- if null u then return 'failed;
- w := 1 + cddr u;
- putpline((update!-pline(0, -w, caar u) . cdar u) .
- ((cadr u - w) . (cddr u - w))) >>
- end) where !*noarg = !*noarg;
- endpatch;
- patch matrix;
- % 26 Jun 04.
- symbolic procedure sparse_backsub(exlis,varlis);
- begin scalar d,z,c;
- if null exlis then return nil;
- d := lc car exlis;
- foreach x in exlis do
- begin scalar s,p,v,r;
- p := lc x;
- v := mvar x;
- x := red x;
- while not domainp x and mvar x member varlis do
- <<if (c := atsoc(mvar x,z)) then
- s := addf(multf(lc x,cdr c),s)
- else r := addf(!*t2f lt x,r);
- x := red x>>;
- s := negf quotff(addf(multf(addf(r,x),d),s),p);
- z := (v . s) . z;
- end;
- for each p in z do cdr p := cancel(cdr p ./ d);
- return z
- end;
- symbolic procedure quotff(u,v);
- if null u then nil
- else (if x then x
- else (if denr y = 1 then numr y
- else rederr "Invalid division in backsub")
- where y=rationalizesq(u ./ v))
- where x=quotf(u,v);
- % 23 May 06.
- symbolic procedure matsm1 u;
- begin scalar x,y,z; integer n;
- a: if null u then return z
- else if eqcar(car u,'!*div) then go to d
- else if atom car u then go to er
- else if caar u eq 'mat then go to c1
- else if flagp(caar u,'matmapfn) and cdar u
- and getrtype cadar u eq 'matrix
- then x := matsm matrixmap(car u,nil)
- else <<x := lispapply(caar u,cdar u);
- if eqcar(x,'mat) then x := matsm x>>;
- b: z := if null z then x
- else if null cdr z and null cdar z then multsm(caar z,x)
- else multm(x,z);
- c: u := cdr u;
- go to a;
- c1: if not lchk cdar u then rerror(matrix,3,"Matrix mismatch");
- x := for each j in cdar u collect
- for each k in j collect xsimp k;
- go to b;
- d: y := matsm cadar u;
- if (n := length car y) neq length y
- then rerror(matrix,4,"Non square matrix")
- else if (z and n neq length z)
- then rerror(matrix,5,"Matrix mismatch")
- else if cddar u then go to h
- else if null cdr y and null cdar y then go to e;
- x := subfg!*;
- subfg!* := nil;
- if null z then z := apply1(get('mat,'inversefn),y)
- else if null(x := get('mat,'lnrsolvefn))
- then z := multm(apply1(get('mat,'inversefn),y),z)
- else z := apply2(get('mat,'lnrsolvefn),y,z);
- subfg!* := x;
- z := for each j in z collect for each k in j collect
- <<!*sub2 := t; subs2 k>>;
- go to c;
- e: if null caaar y then rerror(matrix,6,"Zero divisor");
- y := revpr caar y;
- z := if null z then list list y else multsm(y,z);
- go to c;
- h: if null z then z := generateident n;
- go to c;
- er: rerror(matrix,7,list("Matrix",car u,"not set"))
- end;
- symbolic procedure matrixmap(u,v);
- if flagp(car u,'matmapfn)
- then matsm!*1 for each j in matsm cadr u collect
- for each k in j collect simp!*(car u . mk!*sq k . cddr u)
- else if flagp(car u,'matfn) then reval2(u,v)
- else typerr(car u,"matrix operator");
- put('matrix,'aggregatefn,'matrixmap);
- flag('(int df taylor),'matmapfn);
- flag('(det trace),'matfn);
- endpatch;
- patch poly;
- % 6 Sep 04.
- symbolic procedure fctrf u;
- (begin scalar !*ezgcd,!*gcd,denom,x,y;
- if domainp u then return list u
- else if ncmp!* and not noncomfp u then ncmp!* := nil;
- !*gcd := t;
- if null !*limitedfactors and null dmode!* then !*ezgcd := t;
- if null !*mcd
- then rerror(poly,15,"Factorization invalid with MCD off")
- else if null !*exp
- then <<!*exp := t; u := !*q2f resimp !*f2q u>>;
- if dmode!* eq '!:rn!:
- then <<dmode!* := nil; alglist!* := nil . nil;
- x := simp prepf u;
- if atom denr x then <<denom := denr x; u := numr x>>
- else denom := 1>>;
- if null ncmp!*
- then <<x := sf2ss u;
- if homogp x
- then <<if !*trfac
- then prin2t
- "This polynomial is homogeneous - variables scaled";
- y := caaar x . listsum caaadr x;
- x := fctrf1 ss2sf(car(x)
- . (reverse subs0 cadr x . 1));
- x := rconst(y,x);
- return car x . sort!-factors cdr x>>>>;
- u := fctrf1 u;
- if denom
- then <<alglist!* := nil . nil;
- dmode!* := '!:rn!:; car u := quotf!*(car u,denom)>>;
- return car u . sort!-factors cdr u
- end) where !*exp = !*exp, ncmp!* = ncmp!*;
- % 4 Oct 05.
- symbolic procedure deg(u,kern);
- <<u := simp!* u; tstpolyarg2(u,kern); numrdeg(numr u,kern)>>
- where dmode!* = gdmode!*;
- symbolic procedure tstpolyarg2(u,kern);
- <<for each j in kernels numr u do
- if j=kern then nil
- else if depends(j,kern) then typerr(prepsq u,"polynomial");
- for each j in kernels denr u do
- if depends(j,kern) then typerr(prepsq u,"polynomial")>>;
- % 11 Jan 07.
- symbolic procedure rnfactor!: u;
- begin scalar x,y,dmode!*; integer m,n;
- x := subf(u,nil);
- if not domainp denr x then return {1,(u . 1)};
- y := factorf numr x;
- n := car y;
- dmode!* := '!:rn!:;
- y := for each j in cdr y collect
- <<n := n*(m := (lnc ckrn car j)**cdr j);
- quotfd(car j,m) . cdr j>>;
- return int!-equiv!-chk mkrn(n,denr x) . y
- end;
- endpatch;
- patch rlfi;
- put('tex,'simpfn,'simpcar);
- endpatch;
- % Solve declarations.
- fluid '(!*cramer bareiss!-step!-size!*);
- global '(assumptions);
- patch solve;
- % 26 Jun 04.
- symbolic procedure solvelnrsys(exlis,varlis);
- begin scalar w,x;
- if w := solvesparsecheck(exlis,varlis) then exlis := w
- else exlis := exlis . varlis;
- if null !*cramer
- and null errorp(x :=
- errorset2{'solvebareiss,mkquote car exlis, mkquote cdr exlis}
- where bareiss!-step!-size!* = if w then 4 else 2)
- then exlis := car x
- else exlis := solvecramer(car exlis,cdr exlis);
- return solvesyspost(exlis,varlis)
- end;
- % 12 Feb 05, 5 Oct 05.
- symbolic procedure solvesq (ex,var,mul);
- begin scalar r,x;
- r:= for each w in solvesq1(ex,var,mul) join
- if null cadr w
- or eqcar(x := prepsq caar w,'root_of)
- or numr subfx(denr ex,{caadr w . x}) then {w};
- if r and not domainp denr ex then
- assumptions:=append(assumptions,{prepf denr ex});
- return r
- end;
- % 5 Oct 05.
- symbolic procedure subfx(u,v);
- begin scalar x;
- x := errorset2 {'subf,mkquote u,mkquote v};
- return if errorp x then 1 ./ 1 else car x
- end;
- % 12 Feb 05
- symbolic procedure polypeval u;
- begin scalar bool,v;
- v := cadr u;
- u := simpcar u;
- if cdr u neq 1 then return nil else u := kernels car u;
- while u and null bool do
- <<if v neq car u and smember(v,car u) then bool := t;
- u := cdr u>>;
- return null bool
- end;
- put('polyp,'psopfn,'polypeval);
- (algebraic <<
- depend(!~p,!~x);
- clearrules
- {root_of(~p,~x,~tg)^~n =>
- sub(x=root_of(p,x,tg),
- -reduct(p,x)/coeffn(p,x,deg(p,x)))^(n-deg(p,x)+1)
- when fixp n and deg(p,x)>=1 and n>=deg(p,x)};
- let root_of(~p,~x,~tg)^~n =>
- sub(x=root_of(p,x,tg),
- -reduct(p,x)/coeffn(p,x,deg(p,x))) ^ (n-deg(p,x)+1)
- when polyp(p,x) and fixp n and deg(p,x)>=1 and n>=deg(p,x);
- nodepend(!~p,!~x);
- >>) where dmode!*=nil,!*modular=nil,!*rounded=nil,!*complex=nil;
- % 30 May 05.
- symbolic procedure solvenonlnrtansolve(u,x,w);
- begin scalar v,s,z,r,y;
- integer ar;
- ar:=!!arbint;
- v:=caar u;u:=prepf numr simp cdr u;
- s:=solveeval{u,'tg!-};
- !!arbint:=ar;
- for each q in cdr s do
- <<z:=reval caddr q;
- z:=reval sublis(solvenonlnrtansolve1 z,z);
- !!arbint:=ar;
- y:=solve0({'equal,{'tan,{'quotient,V,2}},z},x);
- r:=union(y,r)>>;
- y := errorset2 {'subf,mkquote w,mkquote{x . 'pi}};
- if null errorp y and null numr y
- then <<!!arbint:=ar; r:=union(solve0({'equal,{'cos,x},-1},x),r)>>;
- return t.r end;
- % 5 Oct 05.
- symbolic procedure check!-solns(z,ex,var);
- begin scalar x,y;
- if not errorp (x :=
- errorset2 {'check!-solns1,mkquote z,mkquote ex,mkquote var})
- then return car x
- else if ex = (y := (numr simp!* prepf ex where !*reduced=t))
- or errorp (x :=
- errorset2 {'check!-solns1,mkquote z,mkquote y,mkquote var})
- then return 'unsolved
- else return car x
- end;
- symbolic procedure check!-solns1(z,ex,var);
- begin scalar x,y,fv,sx,vs;
- fv := freevarl(ex,var);
- for each z1 in z do
- fv := union(fv,union(freevarl(numr caar z1,var),
- freevarl(denr caar z1,var)));
- fv := delete('i,fv);
- if fv then for each v in fv do
- if not flagp(v,'constant) then
- vs := (v . list('quotient,1+random 999,1000)) . vs;
- sx := if vs then numr subf(ex,vs) else ex;
- while z do
- if null cadar z
- or
- errorp(y := errorset2 {'check!-solns2,mkquote ex,mkquote z})
- then <<z := nil; x := 'unsolved>>
- else if null(y := car y)
- or fv and null(y := numr subf(sx,list(caadar z .
- mk!*sq subsq(caaar z,vs))))
- or null numvalue y
- then <<x := car z . x; z := cdr z>>
- else z := cdr z;
- return if null x then 'unsolved else x
- end;
- symbolic procedure check!-solns2(ex,z);
- if smemq('root_of,z) then rederr 'check!-solns
- else numr subf(ex,{caadar z . mk!*sq caaar z});
- endpatch;
- patch specfn;
- % 20 Feb 06.
- algebraic (for all u,m let df(Jacobidn(u,m),u)
- = -m^2 *Jacobisn(u,m)*Jacobicn(u,m));
- endpatch;
- patch rlisp;
- !#if (member 'psl lispsystem!*)
- symbolic procedure global idlist;
- fluid idlist;
- symbolic procedure global1 id1;
- if not get(id1,'vartype) then fluid1 id1;
- !#endif
- endpatch;
- endmodule;
- end;
|