123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464 |
- % Tests of the ZEILBERG package.
- % Authors: Gregor Stoelting, Wolfram Koepf (koepf@zib-berlin.de)
- load_package sum;
- % on time;
- % 1) Successful summations by the Gosper algorithm
- % R. W. Gosper, Jr.:
- % Decision procedure for indefinite hypergeometric summation,
- % Proc. Nat. Acad. Sci. USA 75 (1978), 40-42.
- gosper(k,k);
- gosper(k^2,k);
- gosper(k^3,k);
- gosper(k^4,k);
- gosper(k^5,k);
- % gosper(k^20,k);
- gosper((6*k+3)/(4*k^4+8*k^3+8*k^2+4*k+3),k);
- % gosper(2^k*(k^3-3*k^2-3*k-1)/(k^3*(k+1)^3),k);
- gosper(x*k,k);
- gosper(k*x^k,k);
- gosper(k*factorial(k),k);
- gosper(1/(k^2-1),k);
- gosper((1+2*k)/((1+k^2)*(k^2+2*k+2)),k);
- gosper((k^2+4*k+1)*factorial(k),k);
- gosper((4*k-3)*factorial(2*k-2)/factorial(k-1),k);
- gosper(gamma(k+n+2)*n/((k+n+1)*gamma(k+2)*gamma(n+1)),k);
- gosper((k+n)*factorial(k+n),k);
- gosper((3*(1+2*k))/((1+k^2)*(2+2*k+k^2)),k);
- % gosper((-25+15*k+18*k^2-2*k^3-k^4)/
- % (-23+479*k+613*k^2+137*k^3+53*k^4+5*k^5+k^6),k);
- % gosper(3^k*(2*k^4+4*k^3-7*k^2-k-4)/(k*(k+1)*(k^2+1)*((k+1)^2+1)),k);
- gosper(3^k*(4*k^2-2*k-3)/((2*k+3)*(2*k+1)*(k+1)*k),k);
- % gosper(2^k*(2*k^3+3*k^2-20*k-15)/
- % ((2*k+3)*(2*k+1)*(k+5)*(k+4)*(k+1)*k),k);
- % gosper(-2^k*((k+11)^2*(k+1)^2-2*(k+10)^2*k^2)/
- % ((k+11)^2*(k+10)^2*(k+1)^2*k^2),k);
- % gosper(-2^k*((k+6)^2*(k+1)^2-2*(k+5)^2*k^2)/
- % ((k+6)^2*(k+5)^2*(k+1)^2*k^2),k);
- % gosper(2^k*(k^4-14*k^2-24*k-9)/(k^2*(k+1)^2*(k+2)^2*(k+3)^2),k);
- % gosper(((k^2-k-n^2-n-2)*gamma(k+n+2)*gamma(n+1))/
- % (2*(-1)^k*2^k*(k+n+1)*gamma(-(k-n-1))*gamma(k+2)),k);
- % gosper(1/(k+1)*binomial(2*k,k)/(n-k+1)*binomial(2*n-2*k,n-k),k);
- gosper(3^k*(4*k^2+2*a*k-4*k-2-a)/((2*k+2+a)*(2*k+a)*(k+1)*k),k);
- gosper(2^k*(k^2-2*k-1)/(k^2*(k+1)^2),k);
- gosper((3*k^2+3*k+1)/(k^3*(k+1)^3),k);
- gosper((6*k+3)/(4*k^4+8*k^3+8*k^2+4*k+3),k);
- gosper(-(k^2+3*k+3)/(k^4+2*k^3-3*k^2-4*k+2),k);
- gosper(k^2*4^k/((k+1)*(k+2)),k);
- gosper((2*k-1)^3,k);
- gosper(3*k^2+3*k+1,k);
- gosper((k^2+4*k+2)*2^k,k);
- % gosper(2^k*(k^3-3*k^2-3*k-1)/(k^3*(k+1)^3),k);
- gosper(k*n^k,k);
- % gosper(3^k*(2*k^3+k^2+3*k+6)/((k^2+2)*(k^2+2*k+3)),k);
- % gosper(4*(1-k)*(k^2-2*k-1)/(k^2*(k+1)^2*(k-2)^2*(k-3)^2),k);
- % gosper(2^k*(k^4-14*k^2-24*k-9)/(k^2*(k+1)^2*(k+2)^2*(k+3)^2),k);
- gosper((1+k)/(1-k)+2/k,k);
- gosper(1/(k*(k+1)),k);
- gosper(1/(k*(k+2)),k);
- gosper(1/(k*(k+10)),k);
- % gosper(1/(k*(k+30)),k);
- gosper(1/(k*(k+1)*(k+2)),k);
- gosper(1/(k*(k+1)*(k+2)*(k+3)*(k+4)*(k+5)*(k+6)*(k+7)*(k+8)*(k+9)*
- (k+10)),k);
- gosper(pochhammer(k-n,n),k);
- gosper((a+k-1)*pochhammer(a,k),k);
- gosper((a-k-1)/pochhammer(a-k,k),k);
- gosper(binomial(k,n),k);
- gosper(k*binomial(k,n),k);
- % gosper(k^10*binomial(k,n),k);
- gosper(1/binomial(k,n),k);
- gosper(k/binomial(k,n),k);
- % gosper(k^10/binomial(k,n),k);
- gosper(binomial(k-n,k),k);
- gosper((-1)^k*binomial(n,k),k);
- gosper((-1)^k/binomial(n,k),k);
- gosper((-1)^(k+1)*(4*k+1)*factorial(2*k)/
- (factorial(k)*4^k*(2*k-1)*factorial(k+1)),k);
- % term:=3^k*(3*k^2+2*a*k-4*k-2-a)/((2*k+2+a)*(2*k+a)*(k+1)*k)$
- % term:=sub(k=k+3,term)-term$
- % gosper(term,k);
- % clear(term);
- % 2) Examples for the Wilf-Zeilberger method:
- % H. S. Wilf and D. Zeilberger:
- % Rational functions certify combinatorial identities.
- % J. Amer. Math. Soc. 3, 1990, 147-158.
- % Binomial theorem
- summand:=binomial(n,k)/2^n$
- gosper(sub(n=n+1,summand)-summand,k);
- % Vandermonde
- summand:=binomial(n,k)^2/binomial(2*n,n)$
- gosper(sub(n=n+1,summand)-summand,k);
- % Gauss
- % summand:=factorial(n+k)*factorial(b+k)*factorial(c-n-1)*factorial(c-b-1)
- % /(factorial(n-1)*factorial(c-n-b-1)*factorial(k+1)*factorial(c+k)*
- % factorial(b-1))$
- % gosper(sub(n=n+1,summand)-summand,k);
- % Kummer
- % summand:=(-1)^(n+k)*factorial(2*n+c-1)*factorial(n)*factorial(n+c-1)/(
- % factorial(2*n+c-1-k)*factorial(2*n-k)*factorial(c+k-1)*factorial(k))$
- % gosper(sub(n=n+1,summand)-summand,k);
- % Saalschuetz
- % summand:=factorial(a+k-1)*factorial(b+k-1)*factorial(n)*
- % factorial(n+c-a-b-k-1)*factorial(n+c-1)/(factorial(k)*factorial(n-k)*
- % factorial(k+c-1)*factorial(n+c-a-1)*factorial(n+c-b-1))$
- % gosper(sub(n=n+1,summand)-summand,k);
- % Dixon
- % summand:=(-1)^k*binomial(n+b,n+k)*binomial(n+c,c+k)*binomial(b+c,b+k)*
- % factorial(n)*factorial(b)*factorial(c)/factorial(n+b+c)$
- % gosper(sub(n=n+1,summand)-summand,k);
- % 3) Results from Gosper's original work
- % R. W. Gosper, Jr.:
- % Decision procedure for indefinite hypergeometric summation,
- % Proc. Nat. Acad. Sci. USA 75 (1978), 40-42.
- % ff(k)=product(a+b*j+c*j^2,j,1,k);
- % gg(k)=product(e+b*j+c*j^2,j,1,k);
- operator ff,gg;
- let {ff(~k+~m) => ff(k+m-1)*(c*(k+m)^2+b*(k+m)+a)
- when (fixp(m) and m>0),
- ff(~k+~m) => ff(k+m+1)/(c*(k+m+1)^2+b*(k+m+1)+a)
- when (fixp(m) and m<0)};
- let {gg(~k+~m) => gg(k+m-1)*(c*(k+m)^2+b*(k+m)+e)
- when (fixp(m) and m>0),
- gg(~k+~m) => gg(k+m+1)/(c*(k+m+1)^2+b*(k+m+1)+e)
- when (fixp(m) and m<0)};
- gosper(ff(k-1)/gg(k),k);
- % gosper(ff(k-1)/gg(k+1),k);
- % gosper(ff(k-1)/gg(k+2),k);
- % ff(k)=product(a+b*j+c*j^2+d*j^3,j,1,k);
- % gg(k)=product(e+b*j+c*j^2+d*j^3,j,1,k);
- let {
- ff(~k+~m) => ff(k+m-1)*(d*(k+m)^3+c*(k+m)^2+b*(k+m)+a)
- when (fixp(m) and m>0),
- ff(~k+~m) => ff(k+m+1)/(d*(k+m+1)^3+c*(k+m+1)^2+b*(k+m+1)+a)
- when (fixp(m) and m<0)};
- let {
- gg(~k+~m) => gg(k+m-1)*(d*(k+m)^3+c*(k+m)^2+b*(k+m)+e)
- when (fixp(m) and m>0),
- gg(~k+~m) => gg(k+m+1)/(d*(k+m+1)^3+c*(k+m+1)^2+b*(k+m+1)+e)
- when (fixp(m) and m<0)};
- gosper(ff(k-1)/gg(k),k);
- gosper(ff(k-1)/gg(k+1),k);
- % Decision: no closed form solution exists
- % ff(k)=product(a+b*j+c*j^2+d*j^3+e*j^4,j,1,k);
- % gg(k)=product(f+b*j+c*j^2+d*j^3+e*j^4,j,1,k);
- let {
- ff(~k+~m) => ff(k+m-1)*(e*(k+m)^4+d*(k+m)^3+c*(k+m)^2+b*(k+m)+a)
- when (fixp(m) and m>0),
- ff(~k+~m) => ff(k+m+1)/(e*(k+m+1)^4+d*(k+m+1)^3+c*(k+m+1)^2+b*(k+m+1)+a)
- when (fixp(m) and m<0)};
- let {
- gg(~k+~m) => gg(k+m-1)*(e*(k+m)^4+d*(k+m)^3+c*(k+m)^2+b*(k+m)+f)
- when (fixp(m) and m>0),
- gg(~k+~m) =>
- gg(k+m+1)/(e*(k+m+1)^4+d*(k+m+1)^3+c*(k+m+1)^2+b*(k+m+1)+f)
- when (fixp(m) and m<0)};
- gosper(ff(k-1)/gg(k),k);
- % ff=product(j^3+b*j^2+c*j+(2*c-4*b+8),j,1,k);
- % gg=product(j^3+b*j^2+c*j,j,1,k)
- let {
- ff(~k+~m) => ff(k+m-1)*((k+m)^3+c*(k+m)^2+b*(k+m)+(2*c-4*b+8))
- when (fixp(m) and m>0),
- ff(~k+~m) => ff(k+m+1)/((k+m+1)^2+c*(k+m+1)^2+b*(k+m+1)+(2*c-4*b+8))
- when (fixp(m) and m<0)};
- let {
- gg(~k+~m) => gg(k+m-1)*((k+m)^3+c*(k+m)^2+b*(k+m)+1)
- when (fixp(m) and m>0),
- gg(~k+~m) => gg(k+m+1)/((k+m+1)^2+c*(k+m+1)^2+b*(k+m+1)+1)
- when (fixp(m) and m<0)};
- gosper(ff(k-1)/gg(k),k);
- clear(ff,gg);
- % 4) Examples for which gosper decides that no hypergeometric term
- % antidifference exists
- gosper(factorial(k),k);
- gosper(factorial(2*k)/(factorial(k)*factorial(k+1)),k);
- % gosper(1/(factorial(k)*(k^4+k^2+1)),k);
- gosper(binomial(A,k),k);
- gosper(1/k,k);
- gosper((1+k)/(1-k),k);
- % gosper(3^k*(3*k^2+2*a*k-4*k-2-a)/((2*k+2+a)*(2*k+a)*(k+1)*k),k);
- gosper(factorial(k+n)*factorial(n)/
- ((-1)^k*factorial(n-k)*factorial(k)*2^k),k);
- gosper(1/(k*(k+1/2)),k);
- gosper(pochhammer(a,k),k);
- gosper(binomial(n,k),k);
- % 5) Finding recurrence equations for definite sums
- % D. Zeilberger,
- % A fast algorithm for proving terminating hypergeometric identities,
- % Discrete Math. 80 (1990), 207-211.
- sumrecursion(binomial(n,k),k,n);
- sumrecursion(k*binomial(n,k),k,n);
- % sumrecursion(
- % (-1)^k*binomial(2*n,k)*binomial(2*k,k)*binomial(4*n-2*k,2*n-k),k,n);
- sumrecursion(binomial(n,k)^2,k,n);
- sumrecursion(binomial(n,k)^2/binomial(2*n,n),k,n);
- % sumrecursion((-1)^k*binomial(n,k)^2,k,n);
- % Gauss
- sumrecursion(
- factorial(n+k)*factorial(b+k)*factorial(c-n-1)*factorial(c-b-1),k,n);
- sumrecursion(
- pochhammer(a,k)*pochhammer(b,k)/(factorial(k)*pochhammer(c,k)),k,a);
- % Kummer
- sumrecursion((-1)^(n+k)*factorial(2*n+c-1)*factorial(n)*factorial(n+c-1)
- /(factorial(2*n+c-1-k)*factorial(2*n-k)*factorial(c+k-1)*
- factorial(k)),k,n);
- sumrecursion((-1)^k/(
- factorial(2*n+c-1-k)*factorial(2*n-k)*factorial(c+k-1)*
- factorial(k)),k,n);
- % Saalschuetz
- % sumrecursion(factorial(a+k-1)*factorial(b+k-1)*factorial(n)*
- % factorial(n+c-a-b-k-1)*factorial(n+c-1)/
- % (factorial(k)*factorial(n-k)*factorial(k+c-1)*
- % factorial(n+c-a-1)*factorial(n+c-b-1)),k,n);
- sumrecursion(factorial(a+k-1)*factorial(b+k-1)*factorial(n+c-a-b-k-1)/(
- factorial(k)*factorial(n-k)*factorial(k+c-1)),k,n);
- % Dixon
- % sumrecursion((-1)^k*binomial(n+b,n+k)*binomial(n+c,c+k)*
- % binomial(b+c,b+k)*
- % factorial(n)*factorial(b)*factorial(c)/factorial(n+b+c),k,n);
- sumrecursion((-1)^k*binomial(n+b,n+k)*binomial(n+c,c+k)*
- binomial(b+c,b+k),k,n);
- sumrecursion((-1)^(k-n)*binomial(2*n,k)^3,k,n);
- sumrecursion(
- (-1)^(k-n)*binomial(2*n,k)^3/(binomial(3*n,n)*binomial(2*n,n)),k,n);
- % Clausen
- % summand:=factorial(a+k-1)*factorial(b+k-1)/
- % (factorial(k)*factorial(-1/2+a+b+k))*factorial(a+n-k-1)*
- % factorial(b+n-k-1)/(factorial(n-k)*factorial(-1/2+a+b+n-k))$
- % sumrecursion(summand,k,n);
- % Dougall
- % summand:=
- % pochhammer(d,k)*pochhammer(1+d/2,k)*pochhammer(d+b-a,k)*
- % pochhammer(d+c-a,k)*
- % pochhammer(1+a-b-c,k)*pochhammer(n+a,k)*pochhammer(-n,k)/
- % (factorial(k)*
- % pochhammer(d/2,k)*pochhammer(1+a-b,k)*pochhammer(1+a-c,k)*
- % pochhammer(b+c+d-a,k)*pochhammer(1+d-a-n,k)*pochhammer(1+d+n,k))$
- % sumrecursion(summand,k,n);
- % Apery
- sumrecursion(binomial(n,k)^2*binomial(n+k,k)^2,k,n);
- % sumrecursion(4*(-1)^k*binomial(m-1,k)*binomial(2*m-1,2*k)/
- % binomial(4*m-1,4*k)*(4*m^2+16*k^2-16*k*m+16*k-6*m+3)/
- % ((4*m-4*k-3)*(4*m-4*k-1)),k,m);
- sumrecursion((-1)^k*binomial(n,k)*binomial(k,n),k,n);
- sumrecursion((-1)^k*binomial(n,k)*binomial(2*k,n),k,n);
- sumrecursion((-1)^k*binomial(n,k)*binomial(k,j)^2,k,n);
- sumrecursion(binomial(n,k)*binomial(a,k),k,n);
- sumrecursion((3*k-2*n)*binomial(n,k)^2*binomial(2*k,k),k,n);
- sumrecursion(binomial(n-k,k),k,n);
- sumrecursion(binomial(n,k)*binomial(n+k,k),k,n);
- % sumrecursion(binomial(n+k,m+2*k)*binomial(2*k,k)*(-1)^k/(k+1),k,n);
- sumrecursion((-1)^k*binomial(n-k,k)*binomial(n-2*k,m-k),k,n);
- % sumrecursion((-1)^k*binomial(n-k,k)*binomial(n-2*k,m-k),k,m);
- sumrecursion(binomial(n+k,2*k)*2^(n-k),k,n);
- sumrecursion(binomial(n,k)*binomial(2*k,k)*(-1/4)^k,k,n);
- % sumrecursion(binomial(n,i)*binomial(2*n,n-i),i,n);
- sumrecursion((-1)^k*binomial(n,k)*binomial(2*k,k)*4^(n-k),k,n);
- sumrecursion((-1)^k*binomial(n,k)/binomial(k+a,k),k,n);
- % sumrecursion((-1)^k*binomial(n,k)/binomial(k+a,k),k,a);
- sumrecursion((-1)^(n-k)*binomial(2*n,k)^2,k,n);
- sumrecursion(factorial(a+k)*factorial(b+k)*factorial(n+c-a-b-k-1)/(
- factorial(k+1)*factorial(n-k)*factorial(k+c)),k,a);
- % sumrecursion(factorial(a+k)*factorial(b+k)*factorial(n+c-a-b-k-1)/(
- % factorial(k+1)*factorial(n-k)*factorial(k+c)),k,b);
- % sumrecursion(factorial(a+k)*factorial(b+k)*factorial(n+c-a-b-k-1)/(
- % factorial(k+1)*factorial(n-k)*factorial(k+c)),k,c);
- sumrecursion(binomial(2*n+1,2*p+2*k+1)*binomial(p+k,k),k,n);
- % sumrecursion(binomial(2*n+1,2*p+2*k+1)*binomial(p+k,k),k,p);
- sumrecursion(binomial(r,m)*binomial(s,t-m),m,r);
- % sumrecursion(binomial(r,m)*binomial(s,t-m),m,s);
- % sumrecursion(binomial(r,m)*binomial(s,t-m),m,t);
- sumrecursion(binomial(2*n+1,2*k)*binomial(m+k,2*n),k,n);
- % sumrecursion(binomial(2*n+1,2*k)*binomial(m+k,2*n),k,m);
- sumrecursion(binomial(n,k)*binomial(k,j)*x^j,k,n);
- % sumrecursion(binomial(n,k)*binomial(k,j)*x^j,k,j);
- % sumrecursion(binomial(n,k)*binomial(k,j)*x^k,k,n);
- sumrecursion(x*binomial(n+k,2*k)*((x^2-1)/4)^(n-k),k,n);
- sumrecursion(binomial(n+k-1,2*k-1)*(x-1)^(2*k)*x^(n-k)/k,k,n);
- sumrecursion(
- 1/(k+1)*binomial(2*k,k)/(n-k+1)*binomial(2*n-2*k,n-k),k,n);
- sumrecursion(binomial(m,r)*binomial(n-r,n-r-q)*(t-1)^r,r,m);
- % sumrecursion(binomial(m,r)*binomial(n-r,n-r-q)*(t-1)^r,r,n);
- % sumrecursion(binomial(m,r)*binomial(n-r,n-r-q)*(t-1)^r,r,q);
- % sumrecursion(binomial(m,r)*binomial(n-r,n-r-q)*(t-1)^r,r,r);
- sumrecursion(pochhammer(-n/2,k)*pochhammer(-n/2+1/2,k)/
- (factorial(k)*pochhammer(b+1/2,k)),k,n);
- % Watson
- % sumrecursion(pochhammer(a,k)*pochhammer(b,k)*pochhammer(c,k)/(
- % factorial(k)*pochhammer(1/2*(a+b+1),k)*pochhammer(2*c,k)),k,c);
- % sumrecursion(pochhammer(-m,j)*pochhammer(m+2*k+2,j)*pochhammer(k+1/2,j)/
- % (factorial(j)*pochhammer(k+3/2,j)*pochhammer(2*k+1,j)),j,k);
- sumrecursion((-1)^k*binomial(n,k)^3,k,n);
- % sumrecursion(pochhammer(-n,k)*pochhammer(n+2*a,k)*pochhammer(a,k)/(
- % factorial(k)*pochhammer(2*a/2,k)*pochhammer((2*a+1)/2,k))*(2/4)^k,k,n);
- % sumrecursion(pochhammer(-n,k)*pochhammer(n+4*a,k)*pochhammer(a,k)/(
- % factorial(k)*pochhammer(4*a/2,k)*pochhammer((4*a+1)/2,k))*(4/4)^k,k,n);
- % sumrecursion(binomial(n+k+1,n-k)*pochhammer(-n+k,j)*pochhammer(k+1/2,j)*
- % pochhammer(n+k+2,j)/(factorial(j)*pochhammer(k+3/2,j)*
- % pochhammer(2*k+1,j)),j,n);
- % sumrecursion(pochhammer(-m,j)*pochhammer(m+2*k+2,j)*
- % pochhammer(k+1/2,j)/(
- % factorial(j)*pochhammer(k+3/2,j)*pochhammer(2*k+1,j)),j,m);
- % sumrecursion(binomial(n+k+1,n-k)*pochhammer(-n+k,j)*
- % pochhammer(k+1/2,j)*
- % pochhammer(n+k+2,j)/(factorial(j)*pochhammer(k+3/2,j)*
- % pochhammer(2*k+1,j)),
- % j,k);
- % sumrecursion(pochhammer(a+b+c-n,j+l)*pochhammer(a+b-n/2,j+l)/
- % (factorial(j)*factorial(l)*pochhammer(a-n/2+1,j)*
- % pochhammer(b-n/2+1,l)),j,a);
- % sumrecursion(pochhammer(a+b+c-n,j+l)*pochhammer(a+b-n/2,j+l)/
- % (factorial(j)*factorial(l)*pochhammer(a-n/2+1,j)*
- % pochhammer(b-n/2+1,l)),j,b);
- sumrecursion(pochhammer(a+b+c-n,j+l)*pochhammer(a+b-n/2,j+l)/
- (factorial(j)*factorial(l)*pochhammer(a-n/2+1,j)*
- pochhammer(b-n/2+1,l)),j,c);
- % sumrecursion(
- % (-1)^(a+b+c)*gamma(a+b+c-d/2)*gamma(d/2-c)*gamma(a+c-d/2)*
- % gamma(b+c-d/2)/
- % (gamma(a)*gamma(b)*gamma(d/2)*gamma(a+b+2*c-d)*(m^2)^(a+b+c-d))*
- % pochhammer(a+b+c-d,k)*pochhammer(a+c-d/2,k)/
- % (pochhammer(a+b+2*c-d,k)*factorial(k)),k,a);
- % sumrecursion(
- % (-1)^(a+b+c)*gamma(a+b+c-d/2)*gamma(d/2-c)*gamma(a+c-d/2)*
- % gamma(b+c-d/2)/
- % (gamma(a)*gamma(b)*gamma(d/2)*gamma(a+b+2*c-d)*(m^2)^(a+b+c-d))*
- % pochhammer(a+b+c-d,k)*pochhammer(a+c-d/2,k)/
- % (pochhammer(a+b+2*c-d,k)*factorial(k)),k,b);
- % sumrecursion(
- % (-1)^(a+b+c)*gamma(a+b+c-d/2)*gamma(d/2-c)*gamma(a+c-d/2)*
- % gamma(b+c-d/2)/
- % (gamma(a)*gamma(b)*gamma(d/2)*gamma(a+b+2*c-d)*(m^2)^(a+b+c-d))*
- % pochhammer(a+b+c-d,k)*pochhammer(a+c-d/2,k)/
- % (pochhammer(a+b+2*c-d,k)*factorial(k)),k,c);
- % sumrecursion(pochhammer(-n,k)*pochhammer(n+3*a,k)*pochhammer(a,k)/(
- % factorial(k)*pochhammer(3*a/2,k)*
- % pochhammer((3*a+1)/2,k))*(3/4)^k,k,n);
- % summand:=k*(-1)^j*pochhammer(2*k+j+1,j)*pochhammer(2*k+2*j+2,n-k-j)/(
- % factorial(k+j)*factorial(j)*factorial(n-k-j))*exp(-(j+k)*t)$
- % summand:=k*(-1)^j*pochhammer(2*k+j+1,j)*pochhammer(2*k+2*j+2,n-k-j)/(
- % (k+j)*factorial(j)*factorial(n-k-j))*exp(-(j+k)*t)$
- % sumrecursion(summand,j,n);
- clear(summand);
- % 6) Finding recurrence equations for hypergeometric functions
- % Koornwinder, T. H.:
- % On Zeilberger's algorithm and
- % its q-analogue: a rigorous description.
- % J. of Comput. and Appl. Math. 48, 1993, 91-111.
- % Gauss
- hyperrecursion({a,b},{c},1,a);
- % Dougall
- % hyperrecursion({d,1+d/2,d+b-a,d+c-a,1+a-b-c,n+a,-n},
- % {d/2,1+a-b,1+a-c,b+c+d-a,1+d-a-n,1+d+n},1,n);
- % Baxter
- % hyperrecursion({-n,-n-1,-n-2},{2,3},-1,n);
- % Krawtchouk polynomials
- % krawtchoukterm :=
- % (-1)^n*p^n*binomial(NN,n)*hyperterm({-n,-x},{-NN},1/p,k)$
- % sumrecursion(krawtchoukterm,k,n);
- % sumrecursion(krawtchoukterm,k,x);
- % sumrecursion(krawtchoukterm,k,NN);
- % clear(krawtchoukterm);
- % hyperrecursion({-n,b,c+4},{b+1,c},1,n);
- hyperrecursion({-n,b,c+1,d+1},{b+1,c,d},1,n);
- % 7) Extended versions of Gosper's and Zeilberger's algorithms
- % Koepf, W.:
- % Algorithms for the indefinite and definite summation.
- % Konrad-Zuse-Zentrum Berlin (ZIB), Preprint SC 94-33, 1994.
- % extended Gosper algorithm
- extended_gosper(k*factorial(k/7),k,7);
- extended_gosper(k*factorial(k/2),k,2);
- extended_gosper(k*factorial(k/2),k);
- extended_gosper(binomial(k/2,n),k);
- extended_gosper(binomial(n,k/2)-binomial(n,k/2-1),k);
- % extended Zeilberger algorithm
- % extended_sumrecursion(binomial(n,k)*binomial(k/2,n),k,n,1,2);
- sumrecursion(binomial(n,k)*binomial(k/2,n),k,n);
- extended_sumrecursion(binomial(n/2,k),k,n,2,1);
- sumrecursion(binomial(n/2,k),k,n);
- % sumrecursion(hyperterm({a,b,a+1/2-b,1+2*a/3,-n},
- % {2*a+1-2*b,2*b,2/3*a,1+a+n/2},4,k)/
- % (factorial(n)*2^(-n)/factorial(n/2))/
- % hyperterm({a+1,1},{a-b+1,b+1/2},1,n/2),k,n);
- % Watson
- % sumrecursion(pochhammer(a,k)*pochhammer(b,k)*pochhammer(c,k)/(
- % factorial(k)*pochhammer(1/2*(a+b+1),k)*pochhammer(2*c,k))/
- % (GAMMA(1/2)*GAMMA(1/2+c)*GAMMA(1/2+a/2+b/2)*GAMMA(1/2-a/2-b/2+c))*
- % GAMMA(1/2+a/2)*GAMMA(1/2+b/2)*GAMMA(1/2-a/2+c)*GAMMA(1/2-b/2+c),k,a);
- % hyperrecursion({a,b,c},{1/2*(a+b+1),2*c},1,a);
- % hyperrecursion({a,b,c},{1/2*(a+b+1),2*c},1,b);
- % 8) Closed form representations of hypergeometric sums
- % Vandermonde
- hypersum({-n,b},{c},1,n);
- % Saalschuetz
- hypersum({a,b,-n},{c,1+a+b-c-n},1,n);
- % Kummer
- hypersum({a,-n},{1+a+n},-1,n);
- % Dixon
- hypersum({a,b,-n},{1+a-b,1+a+n},1,n);
- % Dougall
- % hypersum({a,1+a/2,b,c,d,1+2*a-b-c-d+n,-n},
- % {a/2,1+a-b,1+a-c,1+a-d,1+a-(1+2*a-b-c-d+n),1+a+n},1,n);
- % Clausen
- % hypersum({a,b,1/2-a-b-n,-n},{1/2+a+b,1-a-n,1-b-n},1,n);
- hypersum({a,1+a/2,c,d,-n},{a/2,1+a-c,1+a-d,1+a+n},1,n);
- hypersum({a,1+a/2,d,-n},{a/2,1+a-d,1+a+n},-1,n);
- % m-fold case:
- hypersum({-n,-n,-n},{1,1},1,n);
- % hypersum({-n,n+3*a,a},{3*a/2,(3*a+1)/2},3/4,n);
- % 9) Hypergeometric representations
- sumtohyper(binomial(n,k)^3,k);
- sumtohyper(binomial(n,k)/2^n-sub(n=n-1,binomial(n,k)/2^n),k);
- sumtohyper(binomial(k+j-1,k-j)*2*(-1)^(j+1)*factorial(2*j-1)/
- factorial(j-1)/factorial(j+1)*x^j,j);
- % term:=1/(n-1+k)*(1/2-1/2*x)^k/n*binomial(k-n-1,-n-1)*k*
- % binomial(n-1+k,n-1);
- % sumtohyper(sub(n=n+1,term)-term,k);
- end;
|