1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980 |
- %Appendix (Testfile).
- %This appendix is a test file. The symmetry groups for various
- %equations or systems of equations are determined. The variable
- %PCLASS has the default value 0 and may be changed by the user
- %before running it. The output may be compared with the results
- %which are given in the references.
- %The Burgers equations
- deq 1:=u(1,1)+u 1*u(1,2)+u(1,2,2)$
- cresys deq 1$ simpsys()$ result()$
- %The Kadomtsev-Petviashvili equation
- deq 1:=3*u(1,3,3)+u(1,2,2,2,2)+6*u(1,2,2)*u 1
- +6*u(1,2)**2+4*u(1,1,2)$
- cresys deq 1$ simpsys()$ result()$
- %The modified Kadomtsev-Petviashvili equation
- deq 1:=u(1,1,2)-u(1,2,2,2,2)-3*u(1,3,3)
- +6*u(1,2)**2*u(1,2,2)+6*u(1,3)*u(1,2,2)$
- cresys deq 1$ simpsys()$ result()$
- %The real- and the imaginary part of the nonlinear Schroedinger
- %equation
- deq 1:= u(1,1)+u(2,2,2)+2*u 1**2*u 2+2*u 2**3$
- deq 2:=-u(2,1)+u(1,2,2)+2*u 1*u 2**2+2*u 1**3$
- %Because this is not a single equation the two assignments
- sder 1:=u(2,2,2)$ sder 2:=u(1,2,2)$
- %are necessary.
- cresys()$ simpsys()$ result()$
- %The symmetries of the system comprising the four equations
- deq 1:=u(1,1)+u 1*u(1,2)+u(1,2,2)$
- deq 2:=u(2,1)+u(2,2,2)$
- deq 3:=u 1*u 2-2*u(2,2)$
- deq 4:=4*u(2,1)+u 2*(u 1**2+2*u(1,2))$
- sder 1:=u(1,2,2)$ sder 2:=u(2,2,2)$ sder 3:=u(2,2)$ sder 4:=u(2,1)$
- %is obtained by calling
- cresys()$ simpsys()$
- df(c 5,x 1):=-df(c 5,x 2,2)$
- df(c 5,x 2,x 1):=-df(c 5,x 2,3)$
- simpsys()$ result()$
- %The symmetries of the subsystem comprising equation 1 and 3 are
- %obtained by
- cresys(deq 1,deq 3)$ simpsys()$ result()$
- %The result for all possible subsystems is discussed in detail in
- %''Symmetries and Involution Systems: Some Experiments in Computer
- %Algebra'', contribution to the Proceedings of the Oberwolfach
- %Meeting on Nonlinear Evolution Equations, Summer 1986, to appear.
- end;
|