ineq.tst 1.3 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849
  1. % polynomial Inequality (Example where another system returned {1 <= x})
  2. ineq_solve( (2*x^2+x-1)/(x-1) >= (x+1/2)^2 ,x);
  3. ineq_solve({(2*x^2+x-1)/(x-1) >= (x+1/2)^2, x>0});
  4. ineq_solve({(2*x^2+x-1)/(x-1) >= (x+1/2)^2, x<-1});
  5. % Systems for determining indices of Jacobi polynomials (Winfried Neun).
  6. reg :=
  7. {2*a - 3>=0, 3>=0, 3>=0, 1>=0, 1>=0, 5>=0, 4>=0, 2*a - 4>=0, 2>=0,
  8. 2>=0, 0>=0, 2*a - 2>=0, k + 1>=0, - 2*a + k - 3>=0, - 2*a + k - 2>=0,
  9. - 2*a + k>=0, k - 7>=0, 2*a - k + 4>=0, 2*a - k + 5>=0, 2*a - k + 3>=0}$
  10. ineq_solve(reg,{k,a});
  11. reg:=
  12. {a + b - c>=0, a - b + c>=0, - a + b + c>=0, 0>=0, 2>=0,
  13. 2*c - 2>=0, a - b + c>=0, a + b - c>=0, - a + b + c - 2>=0,
  14. 2>=0, 0>=0, 2*b - 2>=0, k + 1>=0, - a - b - c + k>=0,
  15. - a - b - c + k + 2>=0, - 2*b + k>=0, - 2*c + k>=0, a + b + c - k>=0,
  16. 2*b + 2*c - k - 2>=0, a + b + c - k>=0}$
  17. ineq_solve (reg,{k,a,b,c});
  18. clear reg;
  19. % Example from Richard Liska.
  20. lvars:={a,b,d}$
  21. lfcond := {d>=0,
  22. b + d>=0,
  23. 2 a - b + d + 2>=0,
  24. - a + 2 d + 1>=0,
  25. b>=0,
  26. 2 a - b>=0,
  27. - a + 2 d>=0,
  28. b - d>=0,
  29. 2 a - b - d - 2>=0,
  30. - a + 2 d - 1>=0}$
  31. ineq_solve(lfcond,lvars);
  32. clear lfcond,lvars;
  33. end;