123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103 |
- module ineq; % Inequalities and linear optimization.
- % Author: Herbert Melenk <melenk@zib.de>
- % Driver for solving inequalities and inequality systems.
- % Implemented methods:
- %
- % - linear multivariate system
- % - polynomial/rational univariate inequality and system
- % version 2: Jul 2003 Adaptation of the actual REDUCE language stand.
- % Return an isolated equation if only one inequality is
- % entered.
- % Common algebraic interface:
- %
- % ineq_solve(<ineq/ineqlist> [,<variable/variablelist>])
- create!-package('(ineq linineq liqsimp1 liqsimp2 polineq),'(solve));
- load!-package'solve; % Some routines from solve are needed.
- fluid'(solvemethods!*);
- if not memq('ineqseval,solvemethods!*) then
- solvemethods!*:='ineqseval!*!*.SOlvemethods!*;
- if not get('geq,'simpfn) then
- <<mkop'leq; mkop'geq; mkop'lessp; mkop'greaterp>>;
- if not get('!*interval!*,'simpfn) then
- <<mkop'!*interval!*;infix !*interval!*;
- put('!*interval!*,'prtch," .. ")>>;
-
- symbolic procedure ineqseval!*!* u;
- % Interface to solve.
- (if null w then nil
- else if w='(failed) then if smemql('(leq geq lessp greaterp),u)
- then w else nil else w)where w=ineqseval u;
- symbolic procedure ineqseval!* u;
- % Interface to ineq_solve.
- (if null w or w='(failed) then car u else w)where w=ineqseval u;
- put('ineq_solve,'psopfn,'ineqseval!*);
- symbolic procedure ineqseval u;
- begin scalar s,s1,v,v1,l,w1,w2,err,ineqp,str;
- integer n;
- s:=reval car u;
- s:=if eqcar(s,'list) then cdr s else {s};
- if cdr u then
- <<v:=reval cadr u;v:=if eqcar(v,'list) then cdr v else {v}>>else
- u:=append(u,{ggvars s});
- % test for linearity, collect variables.
- l:=t;
- s1:=for each q in s join if not err then
- <<if atom q or not memq(car q,'(leq geq lessp greaterp equal))
- then err:=t else
- <<if not(car q eq'equal) then ineqp:=t;
- n:=n#+1;
- str:=str or memq(car q,'(lessp greaterp));
- w1:=simp cadr q; w2:=simp caddr q;
- v1:=union(v1,solvevars{w1,w2});
- if not domainp denr w1 or not domainp denr w2 then l:=nil;
- {numr w1,denr w1,numr w2,denr w2}>>>>;
- if err or not ineqp then return nil;
- if null v then v:=v1;
- l:=l and not nonlnrsys(s1,v);
- if length v1 > length v or not subsetp(v,v1) or not l and cdr v1 then
- return'(failed); % Too many indeterminates in inequality system;
- if l and str then
- return'(failed); % No strict linear system.
- u:=if l then linineqseval u else polineqeval u;
- if null cdr u then u:={'list} else if null cddr u then u:=cadr u;
- return u end;
- symbolic procedure ggvars s;
- begin scalar v;
- for each u in s do v:=ggvars1(u,v);
- if v then(v:=if null cdr v then car v else 'list.v);
- return v end;
- symbolic procedure ggvars1(u,v);
- if not atom u and car u member '(leq geq lessp greaterp equal)
- then ggvars2(cadr u,ggvars2(caddr u,v))
- else nil;
- symbolic procedure ggvars2(u,v);
- if null u or numberp u or(u eq'i and !*complex)then v
- else if atom u then if u member v then v else u.v
- else if car u memq'(plus times expt difference minus quotient)
- then ggvars3(cdr u,v)
- else if u member v then v else u.v;
- symbolic procedure ggvars3(u,v);
- if null u then v else ggvars3(cdr u,ggvars2(car u,v));
- endmodule;
- end;
|