123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131 |
- % ----------------------------------------------------------------------
- % $Id: acfsfbnf.red,v 1.4 1999/04/12 09:25:58 sturm Exp $
- % ----------------------------------------------------------------------
- % Copyright (c) 1995-1999 Andreas Dolzmann and Thomas Sturm
- % ----------------------------------------------------------------------
- % $Log: acfsfbnf.red,v $
- % Revision 1.4 1999/04/12 09:25:58 sturm
- % Updated comments for exported procedures.
- %
- % Revision 1.3 1999/03/23 08:11:41 dolzmann
- % Changed copyright information.
- % Added fluids for the rcsid of the file and for the copyright information.
- %
- % Revision 1.2 1999/03/21 13:33:16 dolzmann
- % Removed procedure acfsf_bnfsimpl which was identical to cl_bnfsimpl.
- %
- % Revision 1.1 1997/08/22 17:30:38 sturm
- % Created an acfsf context based on ofsf.
- %
- % ----------------------------------------------------------------------
- lisp <<
- fluid '(acfsf_bnf_rcsid!* acfsf_bnf_copyright!*);
- acfsf_bnf_rcsid!* :=
- "$Id: acfsfbnf.red,v 1.4 1999/04/12 09:25:58 sturm Exp $";
- acfsf_bnf_copyright!* := "Copyright (c) 1995-1999 A. Dolzmann and T. Sturm"
- >>;
- module acfsfbnf;
- % Algebraically closed field standard form Boolean normal forms.
- % Submodule of [acfsf].
- procedure acfsf_dnf(f);
- % Algebraically closed field disjunctive normal form. [f] is a
- % formula. Returns a DNF of [f]. Depends on switch [rlbnfsac].
- if !*rlbnfsac then
- (cl_dnf f) where !*rlsiso=T
- else
- cl_dnf f;
- procedure acfsf_cnf(f);
- % Algebraically closed field conjunctive normal form. [f] is a
- % formula. Returns a CNF of [f]. Depends on switch [rlbnfsac].
- if !*rlbnfsac then
- (cl_cnf f) where !*rlsiso=T
- else
- cl_cnf f;
- procedure acfsf_subsumption(l1,l2,gor);
- % Algebraically closed subsumption. [l1] and [l2] are lists of
- % atomic formulas; [gor] is one of [and], [or]. Returns one of
- % [keep1], [keep2], [nil].
- if gor eq 'or then (
- if acfsf_subsumep!-and(l1,l2) then
- 'keep2
- else if acfsf_subsumep!-and(l2,l1) then
- 'keep1
- ) else % [gor eq 'and]
- if acfsf_subsumep!-or(l1,l2) then
- 'keep1
- else if acfsf_subsumep!-or(l2,l1) then
- 'keep2;
- procedure acfsf_subsumep!-and(l1,l2);
- % Algebraically closed field standard form subsume [and] case. [l1]
- % and [l2] are lists of atomic formulas.
- begin scalar a;
- while l2 do <<
- a := car l2;
- l2 := cdr l2;
- if cl_simpl(a,l1,-1) neq 'true then a := l2 := nil
- >>;
- return a
- end;
- procedure acfsf_subsumep!-or(l1,l2);
- % Algebraically closed field standard form subsume [or] case. [l1]
- % and [l2] are lists of atomic formulas.
- begin scalar a;
- while l1 do <<
- a := car l1;
- l1 := cdr l1;
- if cl_simpl(rl_smkn('or,l2),{a},-1) neq 'true then a := l1 := nil
- >>;
- return a
- end;
- procedure acfsf_sacatlp(a,l);
- % Algebraically closed field subsume and cut atomic formula list
- % predicate. [a] is an atomic formula; [l] is a list of atomic
- % formulas. Returns [T] iff a subsumption or a cut can be applied
- % between [a] and an element of [l].
- not ((acfsf_arg2l a neq acfsf_arg2l w) and ordp(acfsf_arg2l a,acfsf_arg2l w))
- where w=car l;
- procedure acfsf_sacat(a1,a2,gor);
- % Algebraically closed field subsume and cut atomic formula. [a1]
- % and [a2] are atomic formulas; [gor] is one of [and], [or].
- % Returns [nil], [keep], [keep1], [keep2], [drop], or an atomic
- % formula. If [nil] is returned, then neither a cut nor a
- % subsumption can be applied. If [keep] is returned, then the
- % atomic formulas are identical. In the case of [keep1] or [keep2],
- % the corresponding atomic formula must be kept, but the other one
- % can be dropped. If an atomic formula, is returned then this
- % atomic formula is the result of the cut beween [a1] and [a2]. If
- % ['drop] is returned, then a cut with result [true] or [false] can
- % be performed.
- begin scalar w;
- if acfsf_arg2l a1 neq acfsf_arg2l a2 then return nil;
- w := acfsf_sacrel(acfsf_op a1, acfsf_op a2,gor);
- if w memq '(drop keep keep1 keep2) then return w;
- return acfsf_0mk2(w,acfsf_arg2l a1)
- end;
- procedure acfsf_sacrel(r1,r2,gor);
- % Algebraically closed field standard form subsume and cut
- % relation. [r1] and [r2] are relations; [gor] is one of [or],
- % [and]. Returns ['keep], ['keep2], ['keep1], ['drop], or a
- % relation. [r1] and [r2] are considered as relations of atomic
- % formulas $[r1](t,0)$ and $[r2](t,0)$. If [keep] is returned then
- % the atomic formulas are identical, in the case of [keep1] or
- % [keep2] the respective atomic formula must be kept but the other
- % can be dropped, if a relation $\rho$ is returned a cut with
- % result $t\rho 0$ can be performed, where $t$ is the left hand
- % side of [a1] and [a2], if ['drop] is returned, a cut with result
- % ['true] or ['false] can be performed.
- if r1 eq r2 then 'keep else 'drop;
- endmodule; % [acfsfbnf]
- end; % of file
|