123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516 |
- Tue Feb 10 12:28:23 2004 run on Linux
- *** ~ already defined as operator
- % Tests of PM.
- % TESTS OF BASIC CONSTRUCTS.
- operator f, h$
- % A "literal" template.
- m(f(a),f(a));
- t
- % Not literally equal.
- m(f(a),f(b));
- %Nested operators.
- m(f(a,h(b)),f(a,h(b)));
- t
- % A "generic" template.
- m(f(a,b),f(a,?a));
- {?a->b}
- m(f(a,b),f(?a,?b));
- {?a->a,?b->b}
- % ??a takes "rest" of arguments.
- m(f(a,b),f(??a));
- {??a->[a,b]}
- % But ?a does not.
- m(f(a,b),f(?a));
- % Conditional matches.
- m(f(a,b),f(?a,?b _=(?a=?b)));
- m(f(a,a),f(?a,?b _=(?a=?b)));
- {?a->a,?b->a}
- % "plus" is symmetric.
- m(a+b+c,c+?a+?b);
- {?a->a,?b->b}
- %It is also associative.
- m(a+b+c,c+?a);
- {?a->a + b}
- % Note the effect of using multi-generic symbol is different.
- m(a+b+c,c+??c);
- {??c->[a,b]}
- %Flag h as associative.
- flag('(h),'assoc);
- m(h(a,b,d,e),h(?a,d,?b));
- {?a->h(a,b),?b->e}
- % Substitution tests.
- s(f(a,b),f(a,?b)->?b^2);
- 2
- b
- s(a+b,a+b->a*b);
- a*b
- % "associativity" is used to group a+b+c in to (a+b) + c.
- s(a+b+c,a+b->a*b);
- a*b + c
- % Only substitute top at top level.
- s(a+b+f(a+b),a+b->a*b,inf,0);
- f(a + b) + a*b
- % SIMPLE OPERATOR DEFINITIONS.
- % Numerical factorial.
- operator nfac$
- s(nfac(3),{nfac(0)->1,nfac(?x)->?x*nfac(?x-1)},1);
- 3*nfac(2)
- s(nfac(3),{nfac(0)->1,nfac(?x)->?x*nfac(?x-1)},2);
- 6*nfac(1)
- si(nfac(3),{nfac(0)->1,nfac(?x)->?x*nfac(?x-1)});
- 6
- % General factorial.
- operator gamma,fac;
- fac(?x _=Natp(?x)) ::- ?x*fac(?x-1);
- hold(?x*fac(?x - 1))
- fac(0) :- 1;
- 1
- fac(?x) :- Gamma(?x+1);
- gamma(?x + 1)
- fac(3);
- 6
- fac(3/2);
- 5
- gamma(---)
- 2
- % Legendre polynomials in ?x of order ?n, ?n a natural number.
- operator legp;
- legp(?x,0) :- 1;
- 1
- legp(?x,1) :- ?x;
- ?x
- legp(?x,?n _=natp(?n))
- ::- ((2*?n-1)*?x*legp(?x,?n-1)-(?n-1)*legp(?x,?n-2))/?n;
- (2*?n - 1)*?x*legp(?x,?n - 1) - (?n - 1)*legp(?x,?n - 2)
- hold(----------------------------------------------------------)
- ?n
- legp(z,5);
- 4 2
- z*(63*z - 70*z + 15)
- ------------------------
- 8
- legp(a+b,3);
- 3 2 2 3
- 5*a + 15*a *b + 15*a*b - 3*a + 5*b - 3*b
- ---------------------------------------------
- 2
- legp(x,y);
- legp(x,y)
- % TESTS OF EXTENSIONS TO BASIC PATTERN MATCHER.
- comment *: MSet[?exprn,?val] or ?exprn ::: ?val
- assigns the value ?val to the projection ?exprn in such a way
- as to store explicitly each form of ?exprn requested. *;
-
- Nosimp('mset,(t t));
- Newtok '((!: !: !: !-) Mset);
- infix :::-;
- precedence Mset,RSetd;
- ?exprn :::- ?val ::- (?exprn ::- (?exprn :- ?val ));
- hold(?exprn::-(?exprn:-?val))
- scs := sin(?x)^2 + Cos(?x)^2 -> 1;
- 2 2
- scs := cos(?x) + sin(?x) ->1
- % The following pattern substitutes the rule sin^2 + cos^2 into a sum of
- % such terms. For 2n terms (ie n sin and n cos) the pattern has a worst
- % case complexity of O(n^3).
- operator trig,u;
- trig(?i) :::- Ap(+, Ar(?i,sin(u(?1))^2+Cos(u(?1))^2));
- 2 2
- hold(trig(?i):-ap(plus,ar(?i,sin(u(?1)) + cos(u(?1)) )))
- if si(trig 1,scs) = 1 then write("Pm ok") else Write("PM failed");
- Pm ok
- if si(trig 10,scs) = 10 then write("Pm ok") else Write("PM failed");
- Pm ok
- % The next one takes about 70 seconds on an HP 9000/350, calling UNIFY
- % 1927 times.
- % if si(trig 50,scs) = 50 then write("Pm ok") else Write("PM failed");
- % Hypergeometric Function simplification.
- newtok '((!#) !#);
- *** # redefined
- flag('(#), 'symmetric);
- operator #,@,ghg;
- xx := ghg(4,3,@(a,b,c,d),@(d,1+a-b,1+a-c),1);
- xx := ghg(4,3,@(a,b,c,d),@(d,a - b + 1,a - c + 1),1)
- S(xx,sghg(3));
- *** sghg declared operator
- ghg(4,3,@(a,b,c,d),@(d,a - b + 1,a - c + 1),1)
- s(ws,sghg(2));
- ghg(4,3,@(a,b,c,d),@(d,a - b + 1,a - c + 1),1)
- yy := ghg(3,2,@(a-1,b,c/2),@((a+b)/2,c),1);
- c a + b
- yy := ghg(3,2,@(a - 1,b,---),@(-------,c),1)
- 2 2
- S(yy,sghg(1));
- c a + b
- ghg(3,2,@(a - 1,b,---),@(-------,c),1)
- 2 2
- yy := ghg(3,2,@(a-1,b,c/2),@(a/2+b/2,c),1);
- c a + b
- yy := ghg(3,2,@(a - 1,b,---),@(-------,c),1)
- 2 2
- S(yy,sghg(1));
- c a + b
- ghg(3,2,@(a - 1,b,---),@(-------,c),1)
- 2 2
- % Some Ghg theorems.
- flag('(@), 'symmetric);
- % Watson's Theorem.
- SGhg(1) := Ghg(3,2,@(?a,?b,?c),@(?d _=?d=(1+?a+?b)/2,?e _=?e=2*?c),1) ->
- Gamma(1/2)*Gamma(?c+1/2)*Gamma((1+?a+?b)/2)*Gamma((1-?a-?b)/2+?c)/
- (Gamma((1+?a)/2)*Gamma((1+?b)/2)*Gamma((1-?a)/2+?c)
- *Gamma((1-?b)/2+?c));
- 1 + ?a + ?b
- sghg(1) := ghg(3,2,@(?a,?b,?c),@(?d _= ?d=-------------,?e _= ?e=2*?c),1)->(
- 2
- - ?a - ?b + 2*?c + 1 2*?c + 1
- gamma(-----------------------)*gamma(----------)
- 2 2
- ?a + ?b + 1 1 - ?a + 2*?c + 1
- *gamma(-------------)*gamma(---))/(gamma(------------------)
- 2 2 2
- - ?b + 2*?c + 1 ?a + 1 ?b + 1
- *gamma(------------------)*gamma(--------)*gamma(--------))
- 2 2 2
- % Dixon's theorem.
- SGhg(2) := Ghg(3,2,@(?a,?b,?c),@(?d _=?d=1+?a-?b,?e _=?e=1+?a-?c),1) ->
- Gamma(1+?a/2)*Gamma(1+?a-?b)*Gamma(1+?a-?c)*Gamma(1+?a/2-?b-?c)/
- (Gamma(1+?a)*Gamma(1+?a/2-?b)*Gamma(1+?a/2-?c)*Gamma(1+?a-?b-?c));
- sghg(2) := ghg(3,2,@(?a,?b,?c),@(?d _= ?d=1 + ?a - ?b,?e _= ?e=1 + ?a - ?c),1)->
- ?a - 2*?b - 2*?c + 2
- (gamma(?a - ?b + 1)*gamma(?a - ?c + 1)*gamma(----------------------)
- 2
- ?a + 2
- *gamma(--------))/(gamma(?a - ?b - ?c + 1)*gamma(?a + 1)
- 2
- ?a - 2*?b + 2 ?a - 2*?c + 2
- *gamma(---------------)*gamma(---------------))
- 2 2
- SGhg(3) := Ghg(?p,?q,@(?a,??b),@(?a,??c),?z)
- -> Ghg(?p-1,?q-1,@(??b),@(??c),?z);
- sghg(3) :=
- ghg(?p,?q,@(??b,?a),@(??c,?a),?z)->ghg(?p - 1,?q - 1,@(??b),@(??c),?z)
- SGhg(9) := Ghg(1,0,@(?a),?b,?z ) -> (1-?z)^(-?a);
- 1
- sghg(9) := ghg(1,0,@(?a),?b,?z)->---------------
- ?a
- ( - ?z + 1)
- SGhg(10) := Ghg(0,0,?a,?b,?z) -> E^?z;
- ?z
- sghg(10) := ghg(0,0,?a,?b,?z)->e
- SGhg(11) := Ghg(?p,?q,@(??t),@(??b),0) -> 1;
- sghg(11) := ghg(?p,?q,@(??t),@(??b),0)->1
- % If one of the bottom parameters is zero or a negative integer the
- % hypergeometric functions may be singular, so the presence of a
- % functions of this type causes a warning message to be printed.
- % Note it seems to have an off by one level spec., so this may need
- % changing in future.
- %
- % Reference: AS 15.1; Slater, Generalized Hypergeometric Functions,
- % Cambridge University Press,1966.
- s(Ghg(3,2,@(a,b,c),@(b,c),z),SGhg(3));
- ghg(2,1,@(a,b),@(b),z)
- si(Ghg(3,2,@(a,b,c),@(b,c),z),{SGhg(3),Sghg(9)});
- 1
- -------------
- a
- ( - z + 1)
- S(Ghg(3,2,@(a-1,b,c),@(a-b,a-c),1),sghg 2);
- a - 2*b - 2*c + 1 a + 1
- gamma(a - b)*gamma(a - c)*gamma(-------------------)*gamma(-------)
- 2 2
- ---------------------------------------------------------------------
- a - 2*b + 1 a - 2*c + 1
- gamma(a - b - c)*gamma(-------------)*gamma(-------------)*gamma(a)
- 2 2
- end;
- Time for test: 30 ms
|