123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274 |
- % -*- REDUCE -*-
- % The Postel/Zimmermann (11/4/96) ODE test examples.
- % Equation names from Postel/Zimmermann.
- % This version uses Maple-style functional notation wherever possible.
- % It outputs general solutions of linear ODEs in basis format.
- % It also checks all solutions.
- on odesolve_basis, odesolve_check;
- on div, intstr; off allfac; % to look prettier
- % 1 Single equations without initial conditions
- % ==============================================
- % 1.1 Linear equations
- % ====================
- operator y;
- % (1) Linear Bernoulli 1
- odesolve((x^4-x^3)*df(y(x),x) + 2*x^4*y(x) = x^3/3 + C, y(x), x);
- % (2) Linear Bernoulli 2
- odesolve(-1/2*df(y(x),x) + y(x) = sin x, y(x), x);
- % (3) Linear change of variables (FJW: shifted Euler equation)
- odesolve(df(y(x),x,2)*(a*x+b)^2 + 4df(y(x),x)*(a*x+b)*a + 2y(x)*a^2 = 0,
- y(x), x);
- % (4) Adjoint
- odesolve((x^2-x)*df(y(x),x,2) + (2x^2+4x-3)*df(y(x),x) + 8x*y(x) = 1,
- y(x), x);
- % (5) Polynomial solutions
- % (FJW: Currently very slow, and fails anyway!)
- % odesolve((x^2-x)*df(y(x),x,2) + (1-2x^2)*df(y(x),x) + (4x-2)*y(x) = 0,
- % y(x), x);
- % (6) Dependent variable missing
- odesolve(df(y(x),x,2) + 2x*df(y(x),x) = 2x, y(x), x);
- % (7) Liouvillian solutions
- % (FJW: INTEGRATION IMPOSSIBLY SLOW WITHOUT EITHER ALGINT OR NOINT OPTION)
- begin scalar !*allfac; !*allfac := t; return
- odesolve((x^3/2-x^2)*df(y(x),x,2) + (2x^2-3x+1)*df(y(x),x) + (x-1)*y(x) = 0,
- y(x), x, algint);
- end;
- % NB: DO NOT RE-EVALUATE RESULT WITHOUT TURNING ON ALGINT OR NOINT SWITCH
- % (8) Reduction of order
- % (FJW: Attempting to make explicit currently too slow.)
- odesolve(df(y(x),x,2) - 2x*df(y(x),x) + 2y(x) = 3, y(x), x);
- % (9) Integrating factors
- % (FJW: Currently very slow, and fails anyway!)
- % odesolve(sqrt(x)*df(y(x),x,2) + 2x*df(y(x),x) + 3y(x) = 0, y(x), x);
- % (10) Radical solution (FJW: omitted for now)
- % (11) Undetermined coefficients
- odesolve(df(y(x),x,2) - 2/x^2*y(x) = 7x^4 + 3*x^3, y(x), x);
- % (12) Variation of parameters
- odesolve(df(y(x),x,2) + y(x) = csc(x), y(x), x);
- % (13) Linear constant coefficients
- << factor exp(x); write
- odesolve(df(y(x),x,7) - 14df(y(x),x,6) + 80df(y(x),x,5) - 242df(y(x),x,4)
- + 419df(y(x),x,3) - 416df(y(x),x,2) + 220df(y(x),x) - 48y(x) = 0, y(x), x);
- remfac exp(x) >>;
- % (14) Euler
- odesolve(df(y(x),x,4) - 4/x^2*df(y(x),x,2) + 8/x^3*df(y(x),x) - 8/x^4*y(x) = 0,
- y(x), x);
- % (15) Exact n-th order
- odesolve((1+x+x^2)*df(y(x),x,3) + (3+6x)*df(y(x),x,2) + 6df(y(x),x) = 6x,
- y(x), x);
- % 1.2 Nonlinear equations
- % =======================
- % (16) Integrating factors 1
- odesolve(df(y(x),x) = y(x)/(y(x)*log y(x) + x), y(x), x);
- % (17) Integrating factors 2
- odesolve(2y(x)*df(y(x),x)^2 - 2x*df(y(x),x) - y(x) = 0, y(x), x);
- % This parametric solution is correct, cf. Zwillinger (1989) p.168 (41.10)
- % (except that first edition is missing the constant C)!
- % (18) Bernoulli 1
- odesolve(df(y(x),x) + y(x) = y(x)^3*sin x, y(x), x, explicit);
- expand_plus_or_minus ws;
- % (19) Bernoulli 2
- operator P, Q;
- begin scalar soln, !*exp, !*allfac; % for a neat solution
- on allfac;
- soln := odesolve(df(y(x),x) + P(x)*y(x) = Q(x)*y(x)^n, y(x), x);
- off allfac; return soln
- end;
- odesolve(df(y(x),x) + P(x)*y(x) = Q(x)*y(x)^(2/3), y(x), x);
- % (20) Clairaut 1
- odesolve((x^2-1)*df(y(x),x)^2 - 2x*y(x)*df(y(x),x) + y(x)^2 - 1 = 0,
- y(x), x, explicit);
- % (21) Clairaut 2
- operator f, g;
- odesolve(f(x*df(y(x),x)-y(x)) = g(df(y(x),x)), y(x), x);
- % (22) Equations of the form y' = f(x,y)
- odesolve(df(y(x),x) = (3x^2-y(x)^2-7)/(exp(y(x))+2x*y(x)+1), y(x), x);
- % (23) Homogeneous
- odesolve(df(y(x),x) = (2x^3*y(x)-y(x)^4)/(x^4-2x*y(x)^3), y(x), x);
- % (24) Factoring the equation
- odesolve(df(y(x),x)*(df(y(x),x)+y(x)) = x*(x+y(x)), y(x), x);
- % (25) Interchange variables
- % (NB: Soln in Zwillinger (1989) wrong, as is last eqn in Table 68!)
- odesolve(df(y(x),x) = x/(x^2*y(x)^2+y(x)^5), y(x), x);
- % (26) Lagrange 1
- odesolve(y(x) = 2x*df(y(x),x) - a*df(y(x),x)^3, y(x), x);
- odesolve(y(x) = 2x*df(y(x),x) - a*df(y(x),x)^3, y(x), x, implicit);
- % root_of quartic is VERY slow if explicit option used!
- % (27) Lagrange 2
- odesolve(y(x) = 2x*df(y(x),x) - df(y(x),x)^2, y(x), x);
- odesolve(y(x) = 2x*df(y(x),x) - df(y(x),x)^2, y(x), x, implicit);
- % (28) Riccati 1
- odesolve(df(y(x),x) = exp(x)*y(x)^2 - y(x) + exp(-x), y(x), x);
- % (29) Riccati 2
- << factor x; write
- odesolve(df(y(x),x) = y(x)^2 - x*y(x) + 1, y(x), x);
- remfac x >>;
- % (30) Separable
- odesolve(df(y(x),x) = (9x^8+1)/(y(x)^2+1), y(x), x);
- % (31) Solvable for x
- odesolve(y(x) = 2x*df(y(x),x) + y(x)*df(y(x),x)^2, y(x), x);
- odesolve(y(x) = 2x*df(y(x),x) + y(x)*df(y(x),x)^2, y(x), x, implicit);
- % (32) Solvable for y
- begin scalar !*allfac; !*allfac := t; return
- odesolve(x = y(x)*df(y(x),x) - x*df(y(x),x)^2, y(x), x)
- end;
- % (33) Autonomous 1
- odesolve(df(y(x),x,2)-df(y(x),x) = 2y(x)*df(y(x),x), y(x), x, explicit);
- % (34) Autonomous 2 (FJW: Slow without either algint or noint option.)
- odesolve(df(y(x),x,2)/y(x) - df(y(x),x)^2/y(x)^2 - 1 + 1/y(x)^3 = 0,
- y(x), x, algint);
- % (35) Differentiation method
- odesolve(2y(x)*df(y(x),x,2) - df(y(x),x)^2 =
- 1/3(df(y(x),x) - x*df(y(x),x,2))^2, y(x), x, explicit);
- % (36) Equidimensional in x
- odesolve(x*df(y(x),x,2) = 2y(x)*df(y(x),x), y(x), x, explicit);
- % (37) Equidimensional in y
- odesolve((1-x)*(y(x)*df(y(x),x,2)-df(y(x),x)^2) + x^2*y(x)^2 = 0, y(x), x);
- % (38) Exact second order
- odesolve(x*y(x)*df(y(x),x,2) + x*df(y(x),x)^2 + y(x)*df(y(x),x) = 0,
- y(x), x, explicit);
- % (39) Factoring differential operator
- odesolve(df(y(x),x,2)^2 - 2df(y(x),x)*df(y(x),x,2) + 2y(x)*df(y(x),x) -
- y(x)^2 = 0, y(x), x);
- % (40) Scale invariant (fails with algint option)
- odesolve(x^2*df(y(x),x,2) + 3x*df(y(x),x) = 1/(y(x)^3*x^4), y(x), x);
- % Revised scale-invariant example (hangs with algint option):
- ode := x^2*df(y(x),x,2) + 3x*df(y(x),x) + 2*y(x) = 1/(y(x)^3*x^4);
- % Choose full (explicit and expanded) solution:
- odesolve(ode, y(x), x, full); % or "explicit, expand"
- % Check it -- each solution should simplify to 0:
- foreach soln in ws collect
- trigsimp sub(soln, num(lhs ode - rhs ode));
- % (41) Autonomous, 3rd order
- odesolve((df(y(x),x)^2+1)*df(y(x),x,3) - 3df(y(x),x)*df(y(x),x,2)^2 = 0,
- y(x), x);
- % odesolve((df(y(x),x)^2+1)*df(y(x),x,3) - 3df(y(x),x)*df(y(x),x,2)^2 = 0,
- % y(x), x, implicit);
- % Implicit form is currently too messy!
- % (42) Autonomous, 4th order
- odesolve(3*df(y(x),x,2)*df(y(x),x,4) - 5df(y(x),x,3)^2 = 0, y(x), x);
- % 1.3 Special equations
- % =====================
- % (43) Delay
- odesolve(df(y(x),x) + a*y(x-1) = 0, y(x), x);
- % (44) Functions with several parameters
- odesolve(df(y(x,a),x) = a*y(x,a), y(x,a), x);
- % 2 Single equations with initial conditions
- % ===========================================
- % (45) Exact 4th order
- odesolve(df(y(x),x,4) = sin x, y(x), x,
- {x=0, y(x)=0, df(y(x),x)=0, df(y(x),x,2)=0, df(y(x),x,3)=0});
- % (46) Linear polynomial coefficients -- Bessel J0
- odesolve(x*df(y(x),x,2) + df(y(x),x) + 2x*y(x) = 0, y(x), x,
- {x=0, y(x)=1, df(y(x),x)=0});
- % (47) Second-degree separable
- soln :=
- odesolve(x*df(y(x),x)^2 - y(x)^2 + 1 = 0, y(x)=1, x=0, explicit);
- % Alternatively ...
- soln where e^~x => cosh x + sinh x;
- % but this works ONLY with `on div, intstr; off allfac;'
- % A better alternative is ...
- trigsimp(soln, hyp, combine);
- expand_plus_or_minus ws;
- % (48) Autonomous
- odesolve(df(y(x),x,2) + y(x)*df(y(x),x)^3 = 0, y(x), x,
- {x=0, y(x)=0, df(y(x),x)=2});
- %% Only one explicit solution satisfies the conditions:
- begin scalar !*trode, !*fullroots; !*fullroots := t; return
- odesolve(df(y(x),x,2) + y(x)*df(y(x),x)^3 = 0, y(x), x,
- {x=0, y(x)=0, df(y(x),x)=2}, explicit);
- end;
- % 3 Systems of equations
- % =======================
- % (49) Integrable combinations
- operator x, z;
- odesolve({df(x(t),t) = -3y(t)*z(t), df(y(t),t) = 3x(t)*z(t),
- df(z(t),t) = -x(t)*y(t)}, {x(t),y(t),z(t)}, t);
- % (50) Matrix Riccati
- operator a, b;
- odesolve({df(x(t),t) = a(t)*(y(t)^2-x(t)^2) + 2b(t)*x(t)*y(t) + 2c*x(t),
- df(y(t),t) = b(t)*(y(t)^2-x(t)^2) - 2a(t)*x(t)*y(t) + 2c*y(t)},
- {x(t),y(t)}, t);
- % (51) Triangular
- odesolve({df(x(t),t) = x(t)*(1 + cos(t)/(2+sin(t))),
- df(y(t),t) = x(t) - y(t)}, {x(t),y(t)}, t);
- % (52) Vector
- odesolve({df(x(t),t) = 9x(t) + 2y(t), df(y(t),t) = x(t) + 8y(t)},
- {x(t),y(t)}, t);
- % (53) Higher order
- odesolve({df(x(t),t) - x(t) + 2y(t) = 0,
- df(x(t),t,2) - 2df(y(t),t) = 2t - cos(2t)}, {x(t),y(t)}, t);
- % (54) Inhomogeneous system
- equ := {df(x(t),t) = -1/(t*(t^2+1))*x(t) + 1/(t^2*(t^2+1))*y(t) + 1/t,
- df(y(t),t) = -t^2/(t^2+1)*x(t) + (2t^2+1)/(t*(t^2+1))*y(t) + 1};
- odesolve(equ, {x(t),y(t)}, t);
- end;
|