12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182 |
- % Tests and demonstrations for the ODESolve 1+ package --
- % an updated version of the original odesolve test file.
- % Original Author: M. A. H. MacCallum
- % Maintainer: F.J.Wright@Maths.QMW.ac.uk
- ODESolve_version;
- on trode, combinelogs;
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- % First-order differential equations
- % (using automatic variable and dependence declaration).
- % First-order quadrature case:
- odesolve(df(y,x) - x^2 - e^x);
- % First-order linear equation, with initial condition y = 1 at x = 0:
- odesolve(df(y,x) + y * tan x - sec x, y, x, {x=0, y=1});
- odesolve(cos x * df(y,x) + y * sin x - 1, y, x, {x=0, y=1});
- % A simple separable case:
- odesolve(df(y,x) - y^2, y, x, explicit);
- % A separable case, in different variables, with the initial condition
- % z = 2 at w = 1/2:
- odesolve((1-z^2)*w*df(z,w)+(1+w^2)*z, z, w, {w=1/2, z=2});
- % Now a homogeneous one:
- odesolve(df(y,x) - (x-y)/(x+y), y, x);
- % Reducible to homogeneous:
- % (Note this is the previous example with origin shifted.)
- odesolve(df(y,x) - (x-y-3)/(x+y-1), y, x);
- % and the special case of reducible to homogeneous:
- odesolve(df(y,x) - (2x+3y+1)/(4x+6y+1), y, x);
- % A Bernoulli equation:
- odesolve(x*(1-x^2)*df(y,x) + (2x^2 -1)*y - x^3*y^3, y, x);
- % and finally, in this set, an exact case:
- odesolve((2x^3 - 6x*y + 6x*y^2) + (-3x^2 + 6x^2*y - y^3)*df(y,x), y, x);
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- % Now for higher-order linear equations with constant coefficients
- % First, examples without driving terms
- % A simple one to start:
- odesolve(6df(y,x,2) + df(y,x) - 2y, y, x);
- % An example with repeated and complex roots:
- odesolve(ode := df(y,x,4) + 2df(y,x,2) + y, y, x);
- % A simple right-hand-side using the above example:
- odesolve(ode = exp(x), y, x);
- ode := df(y,x,2) + 4df(y,x) + 4y - x*exp(x);
- % At x=1 let y=0 and df(y,x)=1:
- odesolve(ode, y, x, {x=1, y=0, df(y,x)=1});
- % For simultaneous equations you can use the machine, e.g. as follows:
- depend z,x;
- ode1 := df(y,x,2) + 5y - 4z + 36cos(7x);
- ode2 := y + df(z,x,2) - 99cos(7x);
- ode := df(ode1,x,2) + 4ode2;
- y := rhs first odesolve(ode, y, x);
- z := rhs first solve(ode1,z);
- clear ode1, ode2, ode, y, z;
- nodepend z,x;
- % A "homogeneous" n-th order (Euler) equation:
- odesolve(x*df(y,x,2) + df(y, x) + y/x + (log x)^3, y, x);
- % The solution here remains symbolic (because neither REDUCE nor Maple
- % can evaluate the resulting integral):
- odesolve(6df(y,x,2) + df(y,x) - 2y + tan x, y, x);
- end;
|