123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117 |
- % Miscellaneous ODESolve 1+ tests
- % Check for a problem in 1.03, spotted by David Hartley
- % <DHartley@physics.adelaide.edu.au>, caused by the reval in
- % `get_k_list' with caching enabled. The following should all give
- % the same result:
- odesolve(df(u,x,x)=df(u,x));
- odesolve(df(u,x,2)=df(u,x));
- odesolve(df(u,x,x)=df(u,x), u, x);
- % Linear first-order ODE:
- odesolve(df(y,t) = -w*y*tan(w*t - d));
- % The solution, by inspection, is y = A cos(w t - d)
- % Variation of parameters:
- depend y, x;
- ode := df(y,x,2) + y - csc(x)$
- odesolve(ode, y, x);
- sub(ws, ode);
- trigsimp ws;
- ode := 2*df(y,x,2) + y - csc(x)$
- odesolve(ode, y, x);
- sub(ws, ode);
- trigsimp ws;
- % Bernoulli:
- ode := df(y,x)*y*x^2 - y^2*x - x^3 + 1;
- odesolve(ode, y, x, explicit);
- sub(ws, ode);
- % Implicit dependence:
- % (NB: Wierd constants need to be mopped up by the arbconst
- % simplification code!)
- % These should all behave equivalently:
- operator f, g;
- depend {y, ff}, x, {gg}, y;
- odesolve(df(y,x) = f(x), y, x);
- odesolve(df(y,x) = ff, y, x);
- odesolve(df(y,x) = g(y), y, x);
- odesolve(df(y,x) = gg, y, x);
- odesolve(df(y,x) = f(x)*g(y), y, x);
- odesolve(df(y,x) = ff*gg, y, x);
- odesolve(df(y,x) = 1/f(x)*g(y), y, x);
- odesolve(df(y,x) = 1/ff*gg, y, x);
- odesolve(df(y,x) = f(x)/g(y), y, x);
- odesolve(df(y,x) = ff/gg, y, x);
- % These should all fail (they are too implicit):
- depend {ff}, y, {gg}, x;
- odesolve(df(y,x) = ff, y, x);
- odesolve(df(y,x) = gg, y, x);
- odesolve(df(y,x) = ff*gg, y, x);
- odesolve(df(y,x) = 1/ff*gg, y, x);
- odesolve(df(y,x) = ff/gg, y, x);
- % NONlinear ODEs:
- odesolve(df(y,x) + y**(5/3)*arbconst(-1)=0);
- % Do not re-evaluate the solution without turning the algint switch on!
- odesolve(df(y,x,2) + c/(y^2 + k^2)^(3/2) = 0, y, x, algint);
- % Good test of ODESolve!-Alg!-Solve. Takes forever with fullroots on,
- % but with fullroots off ODESolve solves it. (Slightly tidier with
- % algint, but not necessary. However, the explicit option misses the
- % non-trivial solution that can fairly easily be found by hand!)
- odesolve(df(y,x,3) = 6*df(y,x)*df(y,x,2)/y - 6*df(y,x)^3/(y^2), y, x, algint);
- % Hangs with algint option!
- % off odesolve_plus_or_minus;
- odesolve(a*tan(asin((df(y,x) - y)/(2*y))/2)^2 + a -
- 2*sqrt(3)*tan(asin((df(y,x) - y)/(2*y))/2)*y + 4*sqrt(3)*y +
- tan(asin((df(y,x) - y)/(2*y))/2)^2*y -
- 4*tan(asin((df(y,x) - y)/(2*y))/2)*y + 7*y, y, x);
- % on odesolve_plus_or_minus;
- % From: K Sudhakar <ks@maths.qmw.ac.uk>
- odesolve(2*df(f,x,3)*df(f,x)*f^2*x^2 - 3*df(f,x,2)^2*x^2*f^2 +
- df(f,x)^4*x^2 - df(f,x)^2*f^2, f, x);
- % Related intermediate problem:
- odesolve(2*df(y,x)*x*y + x^2 - 2*x*y - y^2, y, x, explicit);
- % Anharmonic oscillator problem (which apparently Maple V R5.1 solves
- % in terms of a root of an expression involving unevaluated integrals
- % but Maple 6 cannot!).
- % General solution:
- odesolve(M*L*df(phi(tt),tt,2) = -M*g*sin(phi(tt)));
- % Use of `t' as independent variable:
- odesolve(M*L*df(phi(t),t,2) = -M*g*sin(phi(t)));
- % Conditional (eigenvalue) solution:
- %% odesolve(M*L*df(phi(t),t,2) = -M*g*sin(phi(t)),
- %% {t=0, phi(t)=0, df(phi(t),t)=Pi});
- %%
- %% Conditional solutions need more work! This fails with
- %% ***** 0 invalid as kernel
- % Try setting
- %% L:=1; g:=10; ws;
- end;
|