123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402 |
- REDUCE Development Version, Wed Sep 13 20:40:41 2000 ...
- ODESolve 1.065
- % Miscellaneous ODESolve 1+ tests
- % Check for a problem in 1.03, spotted by David Hartley
- % <DHartley@physics.adelaide.edu.au>, caused by the reval in
- % `get_k_list' with caching enabled. The following should all give
- % the same result:
- odesolve(df(u,x,x)=df(u,x));
- *** Dependent var(s) assumed to be u
- *** Independent var assumed to be x
- *** depend u , x
- x
- {u=e *arbconst(2) + arbconst(1)}
- odesolve(df(u,x,2)=df(u,x));
- *** Dependent var(s) assumed to be u
- *** Independent var assumed to be x
- x
- {u=e *arbconst(4) + arbconst(3)}
- odesolve(df(u,x,x)=df(u,x), u, x);
- x
- {u=e *arbconst(6) + arbconst(5)}
- % Linear first-order ODE:
- odesolve(df(y,t) = -w*y*tan(w*t - d));
- *** Dependent var(s) assumed to be y
- *** Independent var assumed to be t
- *** depend y , t
- {y=arbconst(7)*cos(d - t*w)}
- % The solution, by inspection, is y = A cos(w t - d)
- % Variation of parameters:
- depend y, x;
- ode := df(y,x,2) + y - csc(x)$
- odesolve(ode, y, x);
- {y=arbconst(9)*sin(x) + arbconst(8)*cos(x) - cos(x)*x + log(sin(x))*sin(x)}
- sub(ws, ode);
- 2 2
- cos(x) - csc(x)*sin(x) + sin(x)
- -----------------------------------
- sin(x)
- trigsimp ws;
- 0
- ode := 2*df(y,x,2) + y - csc(x)$
- odesolve(ode, y, x);
- x x
- {y=(2*arbconst(11)*sin(---------) + 2*arbconst(10)*cos(---------)
- sqrt(2) sqrt(2)
- x
- sin(---------)
- x sqrt(2)
- - sqrt(2)*cos(---------)*int(----------------,x)
- sqrt(2) sin(x)
- x
- cos(---------)
- sqrt(2) x
- + sqrt(2)*int(----------------,x)*sin(---------))/2}
- sin(x) sqrt(2)
- sub(ws, ode);
- x 2 x 2
- cos(---------) - csc(x)*sin(x) + sin(---------)
- sqrt(2) sqrt(2)
- ---------------------------------------------------
- sin(x)
- trigsimp ws;
- 0
- % Bernoulli:
- ode := df(y,x)*y*x^2 - y^2*x - x^3 + 1;
- 2 3 2
- ode := df(y,x)*x *y - x - x*y + 1
- odesolve(ode, y, x, explicit);
- 3 3
- sqrt(3*arbconst(13)*x + 6*log(x)*x + 2)*plus_or_minus(tag_1)
- {y=----------------------------------------------------------------}
- sqrt(x)*sqrt(3)
- sub(ws, ode);
- 0
- % Implicit dependence:
- % (NB: Wierd constants need to be mopped up by the arbconst
- % simplification code!)
- % These should all behave equivalently:
- operator f, g;
- depend {y, ff}, x, {gg}, y;
- odesolve(df(y,x) = f(x), y, x);
- {y=arbconst(14) + int(f(x),x)}
- odesolve(df(y,x) = ff, y, x);
- {y=arbconst(15) + int(ff,x)}
- odesolve(df(y,x) = g(y), y, x);
- 1
- {arbconst(16) + int(------,y) - x=0}
- g(y)
- odesolve(df(y,x) = gg, y, x);
- 1
- {arbconst(17) + int(----,y) - x=0}
- gg
- odesolve(df(y,x) = f(x)*g(y), y, x);
- 1
- {arbconst(18)*f(0) - int(f(x),x) + int(------,y)=0}
- g(y)
- odesolve(df(y,x) = ff*gg, y, x);
- 1
- {arbconst(19)*ff! + int(----,y) - int(ff,x)=0}
- gg
- odesolve(df(y,x) = 1/f(x)*g(y), y, x);
- 1 1
- {arbconst(20) - f(0)*int(------,x) + f(0)*int(------,y)=0}
- f(x) g(y)
- odesolve(df(y,x) = 1/ff*gg, y, x);
- 1 1
- {arbconst(21) - int(----,x)*ff! + int(----,y)*ff!=0}
- ff gg
- odesolve(df(y,x) = f(x)/g(y), y, x);
- {arbconst(22)*f(0) - int(f(x),x) + int(g(y),y)=0}
- odesolve(df(y,x) = ff/gg, y, x);
- {arbconst(23)*ff! - int(ff,x) + int(gg,y)=0}
- % These should all fail (they are too implicit):
- depend {ff}, y, {gg}, x;
- odesolve(df(y,x) = ff, y, x);
- {df(y,x) - ff=0}
- odesolve(df(y,x) = gg, y, x);
- {df(y,x) - gg=0}
- odesolve(df(y,x) = ff*gg, y, x);
- {df(y,x) - ff*gg=0}
- odesolve(df(y,x) = 1/ff*gg, y, x);
- {df(y,x)*ff - gg=0}
- odesolve(df(y,x) = ff/gg, y, x);
- {df(y,x)*gg - ff=0}
- % NONlinear ODEs:
- odesolve(df(y,x) + y**(5/3)*arbconst(-1)=0);
- *** Dependent var(s) assumed to be y
- *** Independent var assumed to be x
- 2/3 2/3
- {2*y *arbconst(24)*arbconst(-1) - 2*y *arbconst(-1)*x + 3=0}
- % Do not re-evaluate the solution without turning the algint switch on!
- odesolve(df(y,x,2) + c/(y^2 + k^2)^(3/2) = 0, y, x, algint);
- {2*arbconst(26)*plus_or_minus(tag_2)*c + sqrt(k)*sqrt(c)*sqrt(2)*arbconst(25)*
- 2 2 2 2 2 2
- sqrt(arbconst(25)*k + arbconst(25)*y - sqrt(k + y )*k*y)*sqrt(k + y )
- int(---------------------------------------------------------------------------
- 2 2 2 2 2 2
- arbconst(25) *k + arbconst(25) *y - k *y
- ,y)*k + sqrt(k)*sqrt(c)*sqrt(2)
- 2 2 2 2
- sqrt(arbconst(25)*k + arbconst(25)*y - sqrt(k + y )*k*y)*y 2
- *int(---------------------------------------------------------------,y)*k
- 2 2 2 2 2 2
- arbconst(25) *k + arbconst(25) *y - k *y
- - 2*plus_or_minus(tag_2)*c*x=0}
- % Good test of ODESolve!-Alg!-Solve. Takes forever with fullroots on,
- % but with fullroots off ODESolve solves it. (Slightly tidier with
- % algint, but not necessary. However, the explicit option misses the
- % non-trivial solution that can fairly easily be found by hand!)
- odesolve(df(y,x,3) = 6*df(y,x)*df(y,x,2)/y - 6*df(y,x)^3/(y^2), y, x, algint);
- {sqrt(y)*arbconst(30)*arbconst(29)*arbconst(28)
- - sqrt(y)*arbconst(29)*arbconst(28)*x - 2*sqrt(arbconst(28) + y)=0,
- y=arbconst(31)}
- % Hangs with algint option!
- % off odesolve_plus_or_minus;
- odesolve(a*tan(asin((df(y,x) - y)/(2*y))/2)^2 + a -
- 2*sqrt(3)*tan(asin((df(y,x) - y)/(2*y))/2)*y + 4*sqrt(3)*y +
- tan(asin((df(y,x) - y)/(2*y))/2)^2*y -
- 4*tan(asin((df(y,x) - y)/(2*y))/2)*y + 7*y, y, x);
- x
- { - e *arbconst(32) - sqrt( - 4*sqrt(3)*y - a - 8*y) - sqrt(a)*sqrt(3)=0,
- x
- - e *arbconst(33) - sqrt( - 4*sqrt(3)*y - a - 8*y) + sqrt(a)*sqrt(3)=0}
- % on odesolve_plus_or_minus;
- % From: K Sudhakar <ks@maths.qmw.ac.uk>
- odesolve(2*df(f,x,3)*df(f,x)*f^2*x^2 - 3*df(f,x,2)^2*x^2*f^2 +
- df(f,x)^4*x^2 - df(f,x)^2*f^2, f, x);
- *** depend f , x
- {arbconst(37)*arbconst(36)*arbconst(35)*log(f) + arbconst(37)*arbconst(36)
- - arbconst(36)*arbconst(35)*log(f)*log(x) - arbconst(36)*log(x) + log(f)=0,
- f=arbconst(38)}
- % Related intermediate problem:
- odesolve(2*df(y,x)*x*y + x^2 - 2*x*y - y^2, y, x, explicit);
- - (2*x)/(x - y_) 2 2 2
- {y=root_of(e *arbconst(39)*e *x + x - 2*x*y_ + y_ ,y_,tag_19)}
- % Anharmonic oscillator problem (which apparently Maple V R5.1 solves
- % in terms of a root of an expression involving unevaluated integrals
- % but Maple 6 cannot!).
- % General solution:
- odesolve(M*L*df(phi(tt),tt,2) = -M*g*sin(phi(tt)));
- *** phi declared operator
- *** Dependent var(s) assumed to be phi(tt)
- *** Independent var assumed to be tt
- {2*arbconst(41)*plus_or_minus(tag_20)*g + sqrt(l)*sqrt(g)*sqrt(2)
- sqrt(arbconst(40)*sin(1) + cos(phi(tt)))
- *int(------------------------------------------,phi(tt))
- arbconst(40)*sin(1) + cos(phi(tt))
- - 2*plus_or_minus(tag_20)*g*tt=0}
- % Use of `t' as independent variable:
- odesolve(M*L*df(phi(t),t,2) = -M*g*sin(phi(t)));
- *** Dependent var(s) assumed to be phi(t)
- *** Independent var assumed to be t
- {2*arbconst(43)*plus_or_minus(tag_21)*g + sqrt(l)*sqrt(g)*sqrt(2)
- sqrt(arbconst(42)*sin(1) + cos(phi(t)))
- *int(-----------------------------------------,phi(t))
- arbconst(42)*sin(1) + cos(phi(t))
- - 2*plus_or_minus(tag_21)*g*t=0}
- % Conditional (eigenvalue) solution:
- %% odesolve(M*L*df(phi(t),t,2) = -M*g*sin(phi(t)),
- %% {t=0, phi(t)=0, df(phi(t),t)=Pi});
- %%
- %% Conditional solutions need more work! This fails with
- %% ***** 0 invalid as kernel
- % Try setting
- %% L:=1; g:=10; ws;
- end;
- Time for test: 24198 ms, plus GC time: 1520 ms
|