123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360 |
- module ncfactor; % factorization for non-commutative polynomials.
- % Author: H. Melenk, ZIB Berlin, J. Apel, University of Leipzig.
- % version 1.4: using the commutative factorizer as preprocessor.
- % Oct 2001: using "sove", hoping, that the user did not switch off 'varopt'.
- share nc_factor_time; % time limit in milliseconds.
- nc_factor_time:=0;
- algebraic operator cc!*;
- symbolic procedure nc_factorize u;
- begin scalar r,o,!*gsugar,comm,cr,cl;
- o:=apply1('torder,'(gradlex));
- nc!-gsetup();
- comm := nc_commfactors!* u;
- cl:=car comm; u:=cadr comm;cr:=caddr comm;
- if constant_exprp u then (if u neq 1 then cl:=u.cl)
- else
- r:=for each p in nc_factorize0(a2ncvdp u,nil,nil,nil,nil,nil)
- collect num vdp2a p;
- o:=apply1('torder,{o});
- return'list.append(cl,append(r,cr))end;
- symbolic operator nc_factorize;
- % copyd('nc_commfactors!*,'nc_commfactors);
- symbolic procedure nc_commfactors u;
- begin scalar o,!*gsugar,comm,cr,cl;
- o:=apply1('torder,'(gradlex));
- nc!-gsetup();
- comm:=nc_commfactors!* u;
- cl:=car comm;u:=cadr comm;cr:=caddr comm;
- o:=apply1('torder,{o});
- return{'list,'list.cl,u,'list.cr}end;
- symbolic operator nc_commfactors;
- symbolic procedure nc_commfactors!* u;
- (begin scalar f,ff,uu,comm,l,crl,cll,!*ncg!-right,w;
- uu:=sublis(ncpi!-names!*,numr simp u);
- comm:=(fctrf reorder uu) where ncmp!*=nil;
- if null cddr comm and cdadr comm=1 then
- <<if !*trnc then writepri("no commutative factors found",'only);
- go to no_comm>>;
- l:=for each f in cdr comm join
- for i:=1:cdr f collect reval prepf car f;
- if !*trnc then writepri("testing commutative factors:",'only);
- uu:=a2ncvdp u;
- while l do
- <<f:=car l;l:=cdr l;
- if !*trnc then writepri(mkquote f,'first);
- !*ncg!-right:=right;
- if vdpzero!? cdr(w:=nc!-qremf(uu,ff:=a2ncvdp f))then
- <<if !*trnc then writepri(nc_dir(),'last);cll:=append(cll,{f});uu:=car w>>
- else
- if vdpzero!? cdr<<!*ncg!-right:=not right;w:=nc!-qremf(uu,ff)>>
- then<<if !*trnc then writepri(nc_dir(),'last);crl:=f.crl;uu:=car w>>
- else if !*trnc then writepri(" -- discarded",'last)>>;
- if null crl and null cll then go to no_comm;
- u:=vdp2a uu;
- if !*trnc then
- <<writepri("remaining noncom part:",'first);writepri(mkquote u,'last)>>;
- no_comm:return {crl,u,cll};
- end)where right=!*ncg!-right;
- symbolic procedure nc_dir();if !*ncg!-right then " right" else " left";
- symbolic procedure oneside!-factor(w,m,all);
- % NOTE: we must perform a factorization based on left
- % division (m='l) for obtaining a right factor.
- begin scalar u,d,r,mx,o,!*gsugar;
- % preprocessing for psopfn.
- d:=r:=0;
- u:=reval car w;
- if cdr w then<<d:=reval car(w:=cdr w);if cdr w then r:=reval cadr w>>;
- % preparing for the altorithm.
- o:=apply1('torder,'(gradlex));
- nc!-gsetup();
- if r=0 or r='(list)then r:=nil else
- <<r:=cdr listeval(r,nil);
- r:=vdpevlmon a2vdp(if null cdr r then reval car r else
- 'times.for each y in r collect reval y)>>;
- d:=reval d;
- if d=0 then d:=1000 else if not fixp d then<<mx:=vdpevlmon a2vdp d;d:=1000>>;
- r:=nc_factorize0(a2ncvdp u,m,d,r,mx,all);
- o:=apply1('torder,{o});
- return for each w in r collect num vdp2a w end;
- put('left_factor,'psopfn,
- function (lambda(w);<<w:=oneside!-factor(w,'r,nil) or w;reval car w>>));
- put('left_factors,'psopfn,
- function (lambda(w);'list. oneside!-factor(w,'r,t)));
- put('right_factor,'psopfn,
- function (lambda(w);<<w:=oneside!-factor(w,'l,nil) or w;reval car w>>));
- put('right_factors,'psopfn,
- function (lambda(w);'list.oneside!-factor(w,'l,t)));
- algebraic procedure nc_factorize_all u;
- % Compute all possible factorizations based on successive
- % right factor extraction.
- begin scalar !*ncg!-right,d,f,w,wn,q,r,trnc,nc_factor_time!*;
- nc_factor_time!*:=lisp time();
- trnc:=lisp !*trnc;lisp(!*trnc:=nil);
- w:={{u}};r:={};lisp(!*ncg!-right:=nil);
- loop:if w={} then go to done;
- lisp(wn:='(list));
- for each c in w do
- <<lisp(q:= cadr c);
- f:=right_factors(q,{},{});
- if trnc then write "ncfctrall: Right factors of (",q,"): ",f;
- if f={} then r:=c.r;
- for each fc in f do
- <<d:=nc_divide(q,fc);
- if trnc then write "ncfctrall: Quotient (",q,") / (",fc,"): ",d;
- wn:=(first d.fc.rest c).wn>>>>;
- w:=wn; go to loop;
- done:lisp(!*trnc:=trnc);
- return r end;
- symbolic procedure nc_factorize0(u,m,d,rs,mx,all);
- <<if not numberp nc_factor_time!* then nc_factor_time!*:=time();
- nc_factorize1(u,m,d,rs,mx,all)>>where nc_factor_time!*=nc_factor_time!*;
-
- symbolic procedure nc_factorize1(u,m,d,rs,mx,all);
- % split all left(right) factor of u off.
- % u: polynomial,
- % m: mode: restriction for left or right factor:
- % d: maximum degree restriction,
- % r: variable set restriction (r is an exponent vector).
- % mx: maximum exponent for each variable (is an exponent vector).
- % all: true if we look for all right(left) factors.
- begin scalar ev,evl,evlx,f,ff,!*ncg!-right;
- nc_factorize_timecheck();
- mx:=if null mx then for each y in vdpvars!* collect 1000 else
- for each y in mx collect if y>0 then y else 1000;
- if !*trnc then<<prin2 "factorize ";vdpprint u>>;
- ev:=vdpevlmon u;
- if vevzero!? ev then return{u};
- d:=d or vevtdeg ev/2;
- evlx:=sort(nc_factorize1!-evl ev,function(lambda(x,y);vevcomp(x,y)<0));
- if m='r then go to r;
- % factors up to n
- evl:=evlx;
- while (null f or all) and evl and vevtdeg car evl<=d do
- <<if not vevzero!? car evl
- and car evl neq ev
- % testing support;
- and(null rs or vevmtest!?(car evl,rs))
- % testing maximal degrees;
- and vevmtest!?(mx,car evl)
- then f:=append(f,nc_factorize2(u,car evl,rs,mx,all));
- evl:=cdr evl>>;
- if f or m='l then go to c;
- % right factors up to tdg-n
- d:=vevtdeg ev -d;
- r:!*ncg!-right:=t;
- evl:=evlx;
- while (null f or all)and evl and vevtdeg car evl<=d do
- <<if not vevzero!? car evl
- and car evl neq ev
- % testing support;
- and(null rs or vevmtest!?(car evl,rs))
- % testing maximal degrees;
- and vevmtest!?(mx,car evl)
- then f:=append(f,nc_factorize2(u,car evl,rs,mx,all));
- evl:=cdr evl>>;
- c:if null f then return if m then nil else{u};
- if all then return f;
- % only one factor wanted?
- if m then return{cdr f};
- ff:=nc_factorize1(car f,nil,nil,nil,mx,all);
- return if !*ncg!-right then append({cdr f},ff)else append(ff,{cdr f})end;
-
- symbolic procedure nc_factorize1!-evl u;
- % Collect all monomials dividing u.
- if null u then'(nil) else
- (for i:=0:car u join
- for each e in w collect i.e)where w=nc_factorize1!-evl cdr u;
- algebraic operator ncc!@;
- symbolic procedure nc_factorize2(u,ev,rs,mx,all);
- begin scalar ar,p,q,vl,r,s,so,sol,w,y;integer n;
- scalar !*bcsubs2;
- nc_factorize_timecheck();
- p:=a2dip 0;
- if !*trnc then
- <<prin2 if !*ncg!-right then "right " else "left ";
- prin2 "Ansatz for leading term > ";
- vdpprin2 vdpfmon(a2bc 1,ev);
- prin2 " < time so far:";
- prin2 (time()-nc_factor_time!*);
- prin2t "ms">>;
- % establish formal Ansatz.
- for each e in nc_factorize2evl(ev,rs,mx) do
- <<q:={'ncc!@,n:=n+1};p:=dipsum(p,dipfmon(a2vbc q,e))>>;
- w:=p;
- while not dipzero!? w do<<vl:=bc2a diplbc w.vl;w:=dipmred w>>;
- vl:=reversip vl;
- p:=dip2vdp p;
- % prin2 "complete Ansatz:";vdpprint p;
- % pseudo division.
- r:=nc!-normalform(u,{p},nil,nil);
- nc_factorize_timecheck();
- while not vdpzero!? r do<<s:=vbc2a vdplbc r.s;r:=vdpred r>>;
- if !*trnc then
- <<prin2t "internal equation system:";writepri(mkquote('list.s),'only)>>;
- % solve system
- % 1. look for a free variable:
- %###### but that must be the leading variable!!!
- for each v in vl do if not smember(v,s) then so:=v;
- if !*trnc and so then<<prin2"free:";prin2t so>>;
- if so then sol:={(so.1).for each v in vl collect v.0};
- if null sol or all then sol:=append(sol,nc_factsolve(s,vl,all));
- if null sol then return nil;
- if !*trnc then
- <<prin2t "internal solutions:";
- for each s in so do
- <<for each q in s do
- <<writepri(mkquote car q,'first);
- writepri(mkquote " = ",nil);
- writepri(mkquote cdr q,'last)>>;
- prin2t "=====================================">>;
- % prin2 "check internal solution:";
- % for each e in s do writepri(mkquote aeval sublis(so,e),'only);
- >>;
- coll:nc_factorize_timecheck();
- so:=car sol;sol:=cdr sol;
- y:=dip2vdp dippolish dipsubf(so,vdppoly p);
- % leading term preserved?
- % if vdpevlmon y neq vdpevlmon p then
- % return nil;
- % prin2 "computed factor:";vdpprint y;
- if vevzero!? vdpevlmon y then
- if not all then return nil else
- if sol then go to coll else go to done_all;
- % turn on bcsubs2 if there is an algebraic number.
- if smemq('expt,y) or smemq('sqrt,y) or smemq('root_of,y) then !*bcsubs2:=t;
- w:=nc!-qremf(u,y);
- if not vdpzero!? cdr w then
- <<prin2 "division failure";
- vdpprint u;prin2t "/";
- vdpprint y;prin2 "=> ";vdpprint car w;
- prin2 "rem: ";vdpprint cdr w;
- rederr "noncom factorize">>;
- if !*trnc then
- <<terpri();prin2 "splitting into > ";
- vdpprin2 car w;prin2t " < and";prin2 " > ";
- vdpprin2 y;prin2t " <";terpri()>>;
- ar:=y.ar;
- if all then if sol then go to coll else go to done_all;
- done_one:return car w.y;
- done_all:return ar end;
- symbolic procedure nc_factsolve(s,vl,all);
- begin scalar v,sb,ns,so,soa,sol,nz,w,q,z,r,abort;
- % 1st phase: divide out leading term variable,
- % remove zero products, and terminate for explicitly
- % unsolvable system.
- v:=numr simp car vl;
- ns:=for each e in s collect numr simp e;
- % remove factors of leading coefficient,
- % remove trivial parts and propagate them into system.
- r:=t;
- while r do
- <<r:=nil; s:=ns; ns:=nil;
- for each e in s do if not abort then
- <<e:=absf numr subf(e,sb);
- while(q:=quotf(e,v))do e:=q;
- if null e then nil else
- if domainp e or not(mvar e member vl)then abort:=t else
- if null red e and domainp lc e then
- <<w:=mvar e;sb:=(w.0).sb;r:=t;vl:=delete(w,vl)>>
- else if not member(e,ns)then ns:=e.ns>>>>;
- if abort or null vl then return nil;
- nc_factorize_timecheck();
- % all equations solved, free variable(s) left
- if null ns and vl then
- <<sol:={for each x in vl collect x.1};go to done>>;
- % solve the system.
- s:=for each e in ns collect prepf e;
- if !*trnc then
- <<prin2 "solving ";
- prin2 length s;prin2 " polynomial equations for ";
- prin2 length vl;
- prin2t"variables";
- for each e in s do writepri(mkquote e,'only)>>;
- % modification HM 24.10.2001: introduction of the fluid variable
- % '*varoptt' and setting it 't' locally.
- w:=(cdr solveeval{'list.s,'list.vl} where dipvars!*=nil);
- % Select appropriate solution.
- loop:nc_factorize_timecheck();
- if null w then go to done;
- so:=cdr car w;w:=cdr w;soa:=nil;
- if smemq('i,so)and null !*complex then go to loop;
- % Insert values for non occurring variables.
- for each y in vl do if not smember(y,so)then<<soa:=(y.1).soa; nz:=t>>;
- for each y in so do
- <<z:=nc_factorize_unwrap(reval caddr y,soa);
- nz:=nz or z neq 0;
- soa:=(cadr y.z).soa>>;
- % don't accept solution with leading term 0.
- if not nz then go to loop;
- q:=assoc(car vl,soa);
- if null q or cdr q=0 then go to loop;
- % Make sure solutions are in lowest terms.
- soa:=for each j in soa collect(car j.sublis(soa,cdr j));
- sol:=soa.sol;
- if all then go to loop;
- done:sol:=for each s in sol collect append(sb,s);
- if !*trnc then
- <<prin2t "solutions:";
- for each w in sol do
- writepri(mkquote('list.
- for each s in w collect{'equal,car s,cdr s}),'only);
- prin2t "-------------------------">>;
- return sol end;
- symbolic procedure dipsubf(a,u);
- % construct polynomial u with coefficients from a.
- if dipzero!? u then nil else
- <<q:=if q then cdr q else diplbc u;
- if q neq 0 then dipmoncomp(a2bc q,dipevlmon u,r) else r>>
- where q=assoc(bc2a diplbc u,a),r=dipsubf(a,dipmred u);
-
- symbolic procedure dippolish p1;diprectoint(p1,diplcm p1);
-
- symbolic procedure nc_factorize_unwrap(u,s);
- if atom u then u else
- if eqcar(u,'arbcomplex)then 1 else
- (if q then cdr q else
- for each x in u collect nc_factorize_unwrap(x,s))where q=assoc(u,s);
- symbolic procedure nc_factorize2evl(ev,rs,mx);
- % make list of monomials below ev in gradlex ordering,
- % but only those which occur in rs (if that is non-nil)
- % and which have the maximal degress of mx.
- for each q in nc_factorize2!-evl1(min(evtdeg mx,evtdeg ev),length ev,rs)
- join if not vevcompless!?(ev,q) and vevmtest!?(mx,q)then{q};
- symbolic procedure nc_factorize2!-evl1(n,m,rs);
- % Collect all 'm' exponent vectors with total degree <='n'.
- if m=0 then'(nil)else
- for i:=0:(if null rs or car rs>0 then n else 0)join
- for each e in nc_factorize2!-evl1(n#-i,m#-1,if rs then cdr rs)
- collect i.e;
- symbolic procedure nc_factorize_timecheck();
- if fixp nc_factor_time and nc_factor_time>0 and
- (time() - nc_factor_time!*) > nc_factor_time
- then rederr "time overflow in noncom. factorization";
- endmodule;;end;
|