12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398 |
- load mathmlom;
- %in "$reduce/packages/mathml/examples.mml";
- % Description: This file contains a long list of examples demonstrating the abilities of
- % the translator. Most of these examples come straight from the MathML spec. They
- % were used during the development of the interface and should all be correctly
- % translated into OpenMath.
- %
- % Version 17 April 2000
- %
- % Author: Luis Alvarez Sobreviela
- %
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- mml2om();
- <math>
- <apply><sin/>
- <apply><plus/>
- <apply><cos/>
- <ci> x </ci>
- </apply>
- <apply><power/>
- <ci> x </ci>
- <cn> 3 </cn>
- </apply>
- </apply>
- </apply>
- </math>
- mml2om();
- <math>
- <apply><sin/>
- <apply><plus/>
- <apply><cos/>
- <ci> x </ci>
- </apply>
- <apply><power/>
- <ci type="real"> x </ci>
- <cn> 3 </cn>
- </apply>
- </apply>
- </apply>
- </math>
- mml2om();
- <math>
- <set type=normal>
- <ci> b </ci>
- <cn> 2 </cn>
- <ci> c </ci>
- </set>
- </math>
- mml2om();
- <math>
- <set type="multiset">
- <ci> b </ci>
- <cn> 2 </cn>
- <ci> c </ci>
- </set>
- </math>
- mml2om();
- <math>
- <vector>
- <ci> b </ci>
- <cn> 2 </cn>
- <ci> c </ci>
- </vector>
- </math>
- mml2om();
- <math>
- <interval closure=closed>
- <ci> b </ci>
- <cn> 2 </cn>
- </interval>
- </math>
- mml2om();
- <math>
- <interval closure=open>
- <ci> b </ci>
- <cn> 2 </cn>
- </interval>
- </math>
- mml2om();
- <math>
- <interval closure=open-closed>
- <ci> b </ci>
- <cn> 2 </cn>
- </interval>
- </math>
- mml2om();
- <math>
- <interval closure=closed-open>
- <ci> b </ci>
- <cn> 2 </cn>
- </interval>
- </math>
- mml2om();
- <math>
- <cn type="complex-cartesian"> 6 <sep/> 3 </cn>
- </math>
- mml2om();
- <math>
- <cn type="complex-polar"> 6 <sep/> 3 </cn>
- </math>
- mml2om();
- <math>
- <cn type="integer" base="10"> 6 </cn>
- </math>
- mml2om();
- <math>
- <apply><sum/>
- <bvar>
- <ci> x </ci>
- </bvar>
- <lowlimit>
- <ci> a </ci>
- </lowlimit>
- <uplimit>
- <ci> b </ci>
- </uplimit>
- <apply><plus/>
- <ci> x </ci>
- <apply><sin/>
- <ci> y </ci>
- </apply>
- </apply>
- </apply>
- </math>
-
- mml2om();
- <math>
- <apply><int/>
- <bvar>
- <ci> x </ci>
- </bvar>
- <lowlimit>
- <ci> a </ci>
- </lowlimit>
- <uplimit>
- <ci> b </ci>
- </uplimit>
- <apply><fn><ci> f </ci></fn>
- <ci> x </ci>
- </apply>
- </apply>
- </math>
- mml2om();
- <math>
- <lambda>
- <bvar>
- <ci> x </ci>
- </bvar>
- <apply><sin/>
- <ci> x </ci>
- </apply>
- </lambda>
- </math>
-
- mml2om();
- <math>
- <apply><limit/>
- <bvar>
- <ci> x </ci>
- </bvar>
- <lowlimit>
- <cn> 0 </cn>
- </lowlimit>
- <apply><sin/>
- <ci> x </ci>
- </apply>
- </apply>
- </math>
-
- mml2om();
- <math>
- <apply><limit/>
- <bvar>
- <ci> x </ci>
- </bvar>
- <condition>
- <apply>
- <tendsto type="above"/>
- <ci> x </ci>
- <ci> a </ci>
- </apply>
- </condition>
- <apply><sin/>
- <ci> x </ci>
- </apply>
- </apply>
- </math>
- mml2om();
- <math>
- <apply><not/>
- <apply><exists/>
- <bvar>
- <ci> x </ci>
- </bvar>
- <bvar>
- <ci> y </ci>
- </bvar>
- <bvar>
- <ci> z </ci>
- </bvar>
- <bvar>
- <ci> n </ci>
- </bvar>
- <apply><and/>
- <apply><gt/>
- <ci> n </ci>
- <cn type="integer"> 2 </cn>
- </apply>
- <apply><eq/>
- <apply><plus/>
- <apply><power/>
- <ci> x </ci>
- <ci> n </ci>
- </apply>
- <apply><power/>
- <ci> y </ci>
- <ci> n </ci>
- </apply>
- </apply>
- <apply><power/>
- <ci> z </ci>
- <ci> n </ci>
- </apply>
- </apply>
- </apply>
- </apply>
- </apply>
- </math>
- mml2om();
- <math>
- <matrix>
- <matrixrow>
- <cn> 0 </cn> <cn> 1 </cn> <cn> 0 </cn>
- </matrixrow>
- <matrixrow>
- <cn> 0 </cn> <cn> 0 </cn> <cn> 1 </cn>
- </matrixrow>
- <matrixrow>
- <cn> 1 </cn> <cn> 0 </cn> <cn> 0 </cn>
- </matrixrow>
- </matrix>
- </math>
- mml2om();
- <math>
- <apply><int/>
- <bvar>
- <ci>x</ci>
- </bvar>
- <apply><power/>
- <ci>x</ci>
- <cn type="integer">2</cn>
- </apply>
- </apply>
- </math>
-
- mml2om();
- <math>
- <apply><int/>
- <bvar>
- <ci> x </ci>
- </bvar>
- <apply><sin/>
- <ci> x </ci>
- </apply>
- </apply>
- </math>
- mml2om();
- <math>
- <apply><sum/>
- <bvar>
- <ci> x </ci>
- </bvar>
- <lowlimit>
- <ci> a </ci>
- </lowlimit>
- <uplimit>
- <ci> b </ci>
- </uplimit>
- <apply><fn><ci> f </ci></fn>
- <ci> x </ci>
- </apply>
- </apply>
- </math>
-
- mml2om();
- <math>
- <apply><diff/>
- <bvar>
- <ci> x </ci>
- </bvar>
- <apply><fn><ci>f</ci></fn>
- <ci> x </ci>
- </apply>
- </apply>
- </math>
-
- mml2om();
- <math>
- <apply><diff/>
- <bvar>
- <ci> x </ci>
- <degree>
- <cn> 2 </cn>
- </degree>
- </bvar>
- <apply><fn><ci>f</ci></fn>
- <ci> x </ci>
- </apply>
- </apply>
- </math>
-
- mml2om();
- <math>
- <apply><diff/>
- <bvar>
- <ci> x </ci>
- <degree>
- <cn> 3 </cn>
- </degree>
- </bvar>
- <apply><fn><ci>f</ci></fn>
- <ci> x </ci>
- </apply>
- </apply>
- </math>
-
- mml2om();
- <math>
- <set type=normal>
- <ci> b </ci>
- <ci> a </ci>
- <ci> c </ci>
- </set>
- </math>
- mml2om();
- <math>
- <list>
- <ci> b </ci>
- <ci> a </ci>
- <ci> c </ci>
- </list>
- </math>
- mml2om();
- <math>
- <list order="lexicographic">
- <ci> b </ci>
- <ci> a </ci>
- <ci> c </ci>
- </list>
- </math>
- mml2om();
- <math>
- <apply><union definitionurl="www.nag.co.uk"/>
- <ci type="set"> A </ci>
- <ci type="set"> B </ci>
- </apply>
- </math>
- mml2om();
- <math>
- <apply><union/>
- <set type="normal">
- <ci> b </ci>
- <cn> 2 </cn>
- <ci> c </ci>
- </set>
- <set>
- <ci> b </ci>
- <ci> r </ci>
- <cn> 2 </cn>
- <cn> 4 </cn>
- <ci> c </ci>
- </set>
- </apply>
- </math>
- mml2om();
- <math>
- <apply><intersect definitionurl="www.mit.edu"/>
- <ci type="set"> A </ci>
- <ci type="set"> B </ci>
- </apply>
- </math>
- mml2om();
- <math>
- <apply><intersect/>
- <set>
- <ci> b </ci>
- <cn> 2 </cn>
- <ci> c </ci>
- </set>
- <set>
- <ci> b </ci>
- <ci> r </ci>
- <cn> 2 </cn>
- <cn> 4 </cn>
- <ci> c </ci>
- </set>
- </apply>
- </math>
- mml2om();
- <math>
- <reln><in definitionurl="www.www.www"/>
- <ci> a </ci>
- <ci type="set"> A </ci>
- </reln>
- </math>
- mml2om();
- <math>
- <reln><notin definitionurl="www.www.www"/>
- <ci> a </ci>
- <ci> A </ci>
- </reln>
- </math>
- mml2om();
- <math>
- <reln><prsubset definitionurl="www.www.www"/>
- <ci> A </ci>
- <ci> B </ci>
- </reln>
- </math>
- mml2om();
- <math>
- <reln><notsubset definitionurl="www.www.www"/>
- <ci> A </ci>
- <ci> B </ci>
- </reln>
- </math>
- mml2om();
- <math>
- <reln><notprsubset definitionurl="www.www.www"/>
- <ci> A </ci>
- <ci> B </ci>
- </reln>
- </math>
- mml2om();
- <math>
- <apply><setdiff definitionurl="www.www.www"/>
- <ci> A </ci>
- <ci> B </ci>
- </apply>
- </math>
- mml2om();
- <math>
- <apply><sum/>
- <bvar>
- <ci> x </ci>
- </bvar>
- <lowlimit>
- <ci> a </ci>
- </lowlimit>
- <uplimit>
- <ci> b </ci>
- </uplimit>
- <apply><fn><ci> f </ci></fn>
- <ci> x </ci>
- </apply>
- </apply>
- </math>
- mml2om();
- <math>
- <apply><product/>
- <bvar>
- <ci> x </ci>
- </bvar>
- <lowlimit>
- <ci> a </ci>
- </lowlimit>
- <uplimit>
- <ci> b </ci>
- </uplimit>
- <apply><fn><ci> f </ci></fn>
- <ci> x </ci>
- </apply>
- </apply>
- </math>
- mml2om();
- <math>
- <apply><limit/>
- <bvar>
- <ci> V </ci>
- </bvar>
- <condition>
- <apply>
- <tendsto type=above/>
- <ci> V </ci>
- <cn> 0 </cn>
- </apply>
- </condition>
- <apply><divide/>
- <apply><int/>
- <bvar>
- <ci> S</ci>
- </bvar>
- <ci> a </ci>
- </apply>
- <ci> V </ci>
- </apply>
- </apply>
- </math>
- mml2om();
- <math>
- <apply><limit/>
- <bvar>
- <ci> x </ci>
- </bvar>
- <lowlimit>
- <cn> 0 </cn>
- </lowlimit>
- <apply><sin/>
- <ci> x </ci>
- </apply>
- </apply>
- </math>
- mml2om();
- <math>
- <apply><limit/>
- <bvar>
- <ci> x </ci>
- </bvar>
- <condition>
- <reln>
- <tendsto type="above"/>
- <ci> x </ci>
- <ci> a </ci>
- </reln>
- </condition>
- <apply><sin/>
- <ci> x </ci>
- </apply>
- </apply>
- </math>
- mml2om();
- <math>
- <apply><sin/>
- <apply><plus/>
- <apply><cos/>
- <ci> x </ci>
- </apply>
- <apply><power/>
- <ci> x </ci>
- <cn> 3 </cn>
- </apply>
- </apply>
- </apply>
- </math>
- mml2om();
- <math>
- <apply><mean/>
- <ci> b </ci>
- <ci> r </ci>
- <cn> 2 </cn>
- <cn> 4 </cn>
- <ci> c </ci>
- </apply>
- </math>
- mml2om();
- <math>
- <apply><sdev/>
- <ci> b </ci>
- <ci> r </ci>
- <cn> 2 </cn>
- <cn> 4 </cn>
- <ci> c </ci>
- </apply>
- </math>
- mml2om();
- <math>
- <apply><var/>
- <ci> b </ci>
- <ci> r </ci>
- <cn> 2 </cn>
- <cn> 4 </cn>
- <ci> c </ci>
- </apply>
- </math>
- mml2om();
- <math>
- <vector>
- <cn> 1 </cn>
- <cn> 2 </cn>
- <cn> 3 </cn>
- <ci> x </ci>
- </vector>
- </math>
- mml2om();
- <math>
- <matrix>
- <matrixrow>
- <cn> 0 </cn> <cn> 1 </cn> <cn> 0 </cn>
- </matrixrow>
- <matrixrow>
- <cn> 0 </cn> <cn> 0 </cn> <cn> 1 </cn>
- </matrixrow>
- <matrixrow>
- <cn> 1 </cn> <cn> 0 </cn> <cn> 0 </cn>
- </matrixrow>
- </matrix>
- </math>
- mml2om();
- <math>
- <apply><determinant/>
- <matrix>
- <matrixrow>
- <cn> 3 </cn> <cn> 1 </cn> <cn> 5 </cn>
- </matrixrow>
- <matrixrow>
- <cn> 7 </cn> <cn> 0 </cn> <cn> 2 </cn>
- </matrixrow>
- <matrixrow>
- <cn> 1 </cn> <cn> 7 </cn> <cn> 8 </cn>
- </matrixrow>
- </matrix>
- </apply>
- </math>
- mml2om();
- <math>
- <apply><transpose/>
- <matrix>
- <matrixrow>
- <cn> 3 </cn> <cn> 1 </cn> <cn> 5 </cn>
- </matrixrow>
- <matrixrow>
- <cn> 7 </cn> <cn> 0 </cn> <cn> 2 </cn>
- </matrixrow>
- <matrixrow>
- <cn> 1 </cn> <cn> 7 </cn> <cn> 8 </cn>
- </matrixrow>
- </matrix>
- </apply>
- </math>
- mml2om();
- <math>
- <apply><selector/>
- <matrix>
- <matrixrow>
- <cn> 1 </cn> <cn> 2 </cn>
- </matrixrow>
- <matrixrow>
- <cn> 3 </cn> <cn> 4 </cn>
- </matrixrow>
- </matrix>
- <cn> 1 </cn>
- </apply>
- </math>
- mml2om();
- <math>
- <apply><select/>
- <matrix>
- <matrixrow>
- <cn> 1 </cn> <cn> 2 </cn>
- </matrixrow>
- <matrixrow>
- <cn> 3 </cn> <cn> 4 </cn>
- </matrixrow>
- </matrix>
- <cn> 2 </cn>
- <cn> 2 </cn>
- </apply>
- </math>
- mml2om();
- <math>
- <apply><determinant/>
- <matrix>
- <matrixrow>
- <ci>a</ci>
- <cn type="integer">1</cn>
- </matrixrow>
- <matrixrow>
- <cn type="integer">2</cn>
- <ci>s</ci>
- </matrixrow>
- </matrix>
- </apply>
- </math>
- mml2om();
- <math>
- <apply><determinant/>
- <apply><transpose/>
- <matrix>
- <matrixrow>
- <cn type="integer">1</cn>
- <cn type="integer">2</cn>
- <cn type="integer">3</cn>
- <cn type="integer">4</cn>
- </matrixrow>
- <matrixrow>
- <cn type="integer">1</cn>
- <cn type="integer">2</cn>
- <cn type="integer">1</cn>
- <cn type="integer">2</cn>
- </matrixrow>
- <matrixrow>
- <cn type="integer">2</cn>
- <cn type="integer">3</cn>
- <cn type="integer">2</cn>
- <cn type="integer">1</cn>
- </matrixrow>
- <matrixrow>
- <cn type="integer">2</cn>
- <cn type="integer">1</cn>
- <cn type="integer">1</cn>
- <cn type="integer">1</cn>
- </matrixrow>
- </matrix>
- </apply>
- </apply>
- </math>
- mml2om();
- <math>
- <apply><plus/>
- <apply><times/>
- <cn type="integer">2</cn>
- <apply><cos/>
- <ci>x</ci>
- </apply>
- <ci>x</ci>
- </apply>
- <apply><minus/>
- <apply><times/>
- <apply><sin/>
- <ci>x</ci>
- </apply>
- <apply><power/>
- <ci>x</ci>
- <cn type="integer">2</cn>
- </apply>
- </apply>
- </apply>
- </apply>
- </math>
- mml2om();
- <math>
- <list>
- <reln><eq/>
- <ci>x</ci>
- <apply><plus/>
- <cn type="constant">ⅈ</cn>
- <apply><minus/>
- <cn type="integer">1</cn>
- </apply>
- </apply>
- </reln>
- <reln><eq/>
- <ci>x</ci>
- <apply><plus/>
- <apply><minus/>
- <cn type="constant">ⅈ</cn>
- </apply>
- <apply><minus/>
- <cn type="integer">1</cn>
- </apply>
- </apply>
- </reln>
- </list>
- </math>
- mml2om();
- <math>
- <apply><plus/>
- <apply><minus/>
- <apply><times/>
- <apply><cos/>
- <apply><times/>
- <ci>x</ci>
- <ci>y</ci>
- </apply>
- </apply>
- <ci>x</ci>
- <ci>y</ci>
- </apply>
- </apply>
- <apply><times/>
- <apply><power/>
- <cn type="integer">2</cn>
- <apply><times/>
- <ci>x</ci>
- <ci>y</ci>
- </apply>
- </apply>
- <apply><power/>
- <apply><log/>
- <cn type="integer">2</cn>
- </apply>
- <cn type="integer">2</cn>
- </apply>
- <ci>x</ci>
- <ci>y</ci>
- </apply>
- <apply><times/>
- <apply><power/>
- <cn type="integer">2</cn>
- <apply><times/>
- <ci>x</ci>
- <ci>y</ci>
- </apply>
- </apply>
- <apply><log/>
- <cn type="integer">2</cn>
- </apply>
- </apply>
- <apply><minus/>
- <apply><sin/>
- <apply><times/>
- <ci>x</ci>
- <ci>y</ci>
- </apply>
- </apply>
- </apply>
- <cn type="integer">1</cn>
- </apply>
- </math>
- mml2om();
- <math>
- <reln><eq/>
- <cn>2</cn>
- <cn>2</cn>
- <cn>2</cn>
- </reln>
- </math>
- mml2om();
- <math>
- <reln><eq/>
- <cn>2</cn>
- <ci>A</ci>
- <ci>u</ci>
- </reln>
- </math>
- mml2om();
- <math>
- <reln><neq/>
- <cn>2</cn>
- <cn>2</cn>
- </reln>
- </math>
- mml2om();
- <math>
- <reln><neq/>
- <cn>2</cn>
- <ci>A</ci>
- </reln>
- </math>
- mml2om();
- <math>
- <reln><lt/>
- <cn>2</cn>
- <cn>2</cn>
- <cn>2</cn>
- </reln>
- </math>
- mml2om();
- <math>
- <reln><lt/>
- <cn>2</cn>
- <ci>A</ci>
- <ci>u</ci>
- </reln>
- </math>
- mml2om();
- <math>
- <reln><gt/>
- <cn>2</cn>
- <cn>2</cn>
- <cn>2</cn>
- </reln>
- </math>
- mml2om();
- <math>
- <reln><gt/>
- <cn>2</cn>
- <ci>A</ci>
- <ci>u</ci>
- </reln>
- </math>
- mml2om();
- <math>
- <reln><geq/>
- <cn>2</cn>
- <cn>2</cn>
- <cn>2</cn>
- </reln>
- </math>
- mml2om();
- <math>
- <reln><geq/>
- <cn>2</cn>
- <ci>A</ci>
- <ci>u</ci>
- </reln>
- </math>
- mml2om();
- <math>
- <reln><leq/>
- <cn>2</cn>
- <cn>2</cn>
- <cn>2</cn>
- </reln>
- </math>
- mml2om();
- <math>
- <reln><leq/>
- <cn>2</cn>
- <ci>A</ci>
- <ci>u</ci>
- </reln>
- </math>
- %The following examples work perfectly when read
- %in by mml2om() and prove that the tags employed
- %work correctly. The ir output can then be used
- %to see if the mathml produced works:
- mml2om();
- <math>
- <apply><int/>
- <bvar>
- <ci>x</ci>
- </bvar>
- <lowlimit>
- <cn type="integer">0</cn>
- </lowlimit>
- <uplimit>
- <cn type="integer">1</cn>
- </uplimit>
- <apply><power/>
- <ci>x</ci>
- <cn type="integer">2</cn>
- </apply>
- </apply>
- </math>
- mml2om();
- <math>
- <apply><int/>
- <bvar>
- <ci>x</ci>
- </bvar>
- <lowlimit>
- <cn type="integer">1</cn>
- </lowlimit>
- <uplimit>
- <cn type="constant">∞</cn>
- </uplimit>
- <ci>x</ci>
- </apply>
- </math>
- mml2om();
- <math>
- <apply><int/>
- <bvar>
- <ci> x </ci>
- </bvar>
- <interval>
- <ci> a </ci>
- <ci> b </ci>
- </interval>
- <apply><cos/>
- <ci> x </ci>
- </apply>
- </apply>
- </math>
- %this example is MathML1.0 and when passed
- %through function mml2om() it translates it to
- %MathML2.0
- mml2om();
- <math>
- <apply><diff/>
- <bvar>
- <ci> x </ci>
- <degree>
- <cn> 2 </cn>
- </degree>
- </bvar>
- <apply><fn><ci>f</ci></fn>
- <ci> x </ci>
- </apply>
- </apply>
- </math>
- mml2om();
- <math>
- <list>
- <apply><plus/>
- <ci> x </ci>
- <ci> y </ci>
- </apply>
- <cn> 3 </cn>
- <cn> 7 </cn>
- </list>
- </math>
- mml2om();
- <math>
- <interval closure="open-closed">
- <ci> a </ci>
- <ci> b </ci>
- </interval>
- </math>
- mml2om();
- <math>
- <interval>
- <ci> a </ci>
- <ci> b </ci>
- </interval>
- </math>
- mml2om();
- <math>
- <list>
- <list>
- <reln><eq/>
- <ci>x</ci>
- <apply>
- <csymbol definitionURL="..." encoding="...">
- <ci>root_of</ci>
- </csymbol>
- <apply><plus/>
- <apply><minus/>
- <apply><power/>
- <ci>y</ci>
- <ci>x_</ci>
- </apply>
- </apply>
- <apply><minus/>
- <apply><times/>
- <apply><int/>
- <bvar>
- <ci>x_</ci>
- </bvar>
- <apply><power/>
- <ci>x_</ci>
- <ci>x_</ci>
- </apply>
- </apply>
- <ci>y</ci>
- </apply>
- </apply>
- <ci>x_</ci>
- <ci>y</ci>
- </apply>
- <ci>x_</ci>
- <ci>tag_1</ci>
- </apply>
- </reln>
- <reln><eq/>
- <ci>a</ci>
- <apply><plus/>
- <ci>x</ci>
- <ci>y</ci>
- </apply>
- </reln>
- </list>
- </list>
- </math>
- mml2om();
- <math>
- <list>
- <list>
- <reln><eq/>
- <ci>x</ci>
- <apply>
- <csymbol definitionURL="..." encoding="...">
- <ci>root_of</ci>
- </csymbol>
- <apply><plus/>
- <apply><times/>
- <apply><exp/>
- <apply><plus/>
- <cn type="constant">ⅈ</cn>
- <ci>x_</ci>
- </apply>
- </apply>
- <ci>y</ci>
- </apply>
- <apply><exp/>
- <apply><plus/>
- <cn type="constant">ⅈ</cn>
- <ci>x_</ci>
- </apply>
- </apply>
- <apply><power/>
- <ci>x_</ci>
- <apply><plus/>
- <ci>y</ci>
- <cn type="integer">1</cn>
- </apply>
- </apply>
- <apply><times/>
- <apply><int/>
- <bvar>
- <ci>x_</ci>
- </bvar>
- <apply><power/>
- <ci>x_</ci>
- <ci>x_</ci>
- </apply>
- </apply>
- <apply><power/>
- <ci>y</ci>
- <cn type="integer">2</cn>
- </apply>
- </apply>
- <apply><times/>
- <apply><int/>
- <bvar>
- <ci>x_</ci>
- </bvar>
- <apply><power/>
- <ci>x_</ci>
- <ci>x_</ci>
- </apply>
- </apply>
- <ci>y</ci>
- </apply>
- </apply>
- <ci>x_</ci>
- <ci>tag_2</ci>
- </apply>
- </reln>
- <reln><eq/>
- <ci>z</ci>
- <ci>y</ci>
- </reln>
- </list>
- </list>
- </math>
- mml2om();
- <math>
- <apply><curl/>
- <vector>
- <ci> b </ci>
- <cn> 2 </cn>
- <ci> c </ci>
- </vector>
- </apply>
- </math>
- mml2om();
- <math>
- <apply><divergence/>
- <vector>
- <ci> b </ci>
- <cn> 2 </cn>
- <ci> c </ci>
- </vector>
- </apply>
- </math>
- mml2om();
- <math>
- <apply><laplacian/>
- <vector>
- <ci> b </ci>
- <cn> 2 </cn>
- <ci> c </ci>
- </vector>
- </apply>
- </math>
- mml2om();
- <math>
- <apply><forall/>
- <bvar>
- <ci> a </ci>
- </bvar>
- <apply><eq/>
- <apply><inverse/>
- <apply><inverse/>
- <ci> a </ci>
- </apply>
- </apply>
- <ci> a </ci>
- </apply>
- </apply>
- </math>
- %end;
- %in "$reduce/packages/mathml/examples.om";
- % Description: This file contains a long list of examples demonstrating the abilities of
- % the translator. Most of these examples come straight from the CDs. They
- % were used during the development of the interface and should all be correctly
- % translated into MathML.
- %
- % Version 17 April 2000
- %
- % Author: Luis Alvarez Sobreviela
- %
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="arith1" name="plus"/>
- <OMV name=f/>
- <OMV name=d/>
- <OMA>
- <OMS cd="arith1" name="plus"/>
- <OMI>1</OMI>
- <OMF dec=1e10/>
- </OMA>
- </OMA>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMBIND>
- <OMS cd=fns1 name=lambda/>
- <OMBVAR>
- <OMV name=x/>
- </OMBVAR>
- <OMA>
- <OMS cd="transc1" name=sin/>
- <OMV name=x/>
- </OMA>
- </OMBIND>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMBIND>
- <OMS cd=fns1 name=lambda/>
- <OMBVAR>
- <OMV name=x/>
- <OMV name=y/>
- </OMBVAR>
- <OMA>
- <OMS cd="arith1" name=plus/>
- <OMV name=x/>
- <OMA>
- <OMS cd="transc1" name=sin/>
- <OMV name=y/>
- </OMA>
- </OMA>
- </OMBIND>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="arith1" name=plus/>
- <OMV name=x/>
- <OMA>
- <OMS cd="transc1" name=sin/>
- <OMV name=x/>
- </OMA>
- </OMA>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMBIND>
- <OMS cd="quant1" name="forall"/>
- <OMBVAR>
- <OMV name="x"/>
- </OMBVAR>
- <OMA>
- <OMS cd="relation1" name="leq"/>
- <OMA>
- <OMS cd="arith1" name="abs"/>
- <OMA>
- <OMS cd="transc1" name="sin"/>
- <OMV name="x"/>
- </OMA>
- </OMA>
- <OMF dec="1.0"/>
- </OMA>
- </OMBIND>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="logic1" name="not"/>
- <OMBIND>
- <OMS cd="quant1" name="exists"/>
- <OMBVAR>
- <OMV name="x"/>
- <OMV name="y"/>
- <OMV name="z"/>
- <OMV name="n"/>
- </OMBVAR>
- <OMA>
- <OMS cd="logic1" name="and"/>
- <OMA>
- <OMS cd="relation1" name="gt"/>
- <OMV name="n"/>
- <OMI> 2 </OMI>
- </OMA>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="arith1" name="plus"/>
- <OMA>
- <OMS cd="arith1" name="power"/>
- <OMV name="x"/>
- <OMV name="n"/>
- </OMA>
- <OMA>
- <OMS cd="arith1" name="power"/>
- <OMV name="y"/>
- <OMV name="n"/>
- </OMA>
- </OMA>
- <OMA>
- <OMS cd="arith1" name="power"/>
- <OMV name="z"/>
- <OMV name="n"/>
- </OMA>
- </OMA>
- </OMA>
- </OMBIND>
- </OMA>
- </OMOBJ>
- % The following two examples show how the translator
- % can deal with matrices represented either in columns
- % or rows. The translator then converts matrices
- % represented in columns into ones represented in
- % rows. Mapping to MathML is then possible.
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="linalg2" name="matrix"/>
- <OMA>
- <OMS cd="linalg2" name="matrixcolumn"/>
- <OMI> 1 </OMI>
- <OMI> 2 </OMI>
- </OMA>
- <OMA>
- <OMS cd="linalg2" name="matrixcolumn"/>
- <OMI> 3 </OMI>
- <OMI> 4 </OMI>
- </OMA>
- <OMA>
- <OMS cd="linalg2" name="matrixcolumn"/>
- <OMI> 5 </OMI>
- <OMI> 6 </OMI>
- </OMA>
- </OMA>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="linalg2" name="matrix"/>
- <OMA>
- <OMS cd="linalg2" name="matrixrow"/>
- <OMI> 1 </OMI>
- <OMI> 0 </OMI>
- </OMA>
- <OMA>
- <OMS cd="linalg2" name="matrixrow"/>
- <OMI> 0 </OMI>
- <OMI> 1 </OMI>
- </OMA>
- </OMA>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMBIND>
- <OMS cd="quant1" name="forall"/>
- <OMBVAR>
- <OMV name="M"/>
- </OMBVAR>
- <OMA>
- <OMS cd="logic1" name="and"/>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="arith1" name="times"/>
- <OMA>
- <OMS cd="linalg3" name="identity"/>
- <OMA>
- <OMS cd="linalg3" name="rowcount"/>
- <OMV name="M"/>
- </OMA>
- </OMA>
- <OMV name="M"/>
- </OMA>
- <OMV name="M"/>
- </OMA>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="arith1" name="times"/>
- <OMV name="M"/>
- <OMA>
- <OMS cd="linalg3" name="identity"/>
- <OMA>
- <OMS cd="linalg3" name="columncount"/>
- <OMV name="M"/>
- </OMA>
- </OMA>
- </OMA>
- <OMV name="M"/>
- </OMA>
- </OMA>
- </OMBIND>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="limit1" name="limit"/>
- <OMF dec="0.0"/>
- <OMS cd="limit1" name="above"/>
- <OMBIND>
- <OMS cd="fns1" name="lambda"/>
- <OMBVAR>
- <OMV name="x"/>
- </OMBVAR>
- <OMA>
- <OMS cd="transc1" name="sin"/>
- <OMV name="x"/>
- </OMA>
- </OMBIND>
- </OMA>
- </OMOBJ>
-
- % This following example will show that the translator only
- % identifies the limit symbol of the limit1 CD
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="fakeCD" name="limit"/>
- <OMF dec="0.0"/>
- <OMS cd="limit1" name="above"/>
- <OMBIND>
- <OMS cd="fns1" name="lambda"/>
- <OMBVAR>
- <OMV name="x"/>
- </OMBVAR>
- <OMA>
- <OMS cd="transc1" name="sin"/>
- <OMV name="x"/>
- </OMA>
- </OMBIND>
- </OMA>
- </OMOBJ>
-
- % The following two examples show how the translator
- % recognizes whether a symbol has a mathml equivalent
- % depending on the CD it comes from.
- % They both use symbol 'notsubset' but from different
- % CDs. Only one of them can be mapped to MathML
- % and the program distinguishes it by checking if
- % the CD given is the correct one on its table
- % om_mml!*.
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="multiset1" name="notsubset"/>
- <OMA>
- <OMS cd="multiset1" name="set"/>
- <OMI> 2 </OMI>
- <OMI> 3 </OMI>
- <OMI> 3 </OMI>
- </OMA>
- <OMA>
- <OMS cd="multiset1" name="set"/>
- <OMI> 1 </OMI>
- <OMI> 2 </OMI>
- <OMI> 3 </OMI>
- </OMA>
- </OMA>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="set1" name="notsubset"/>
- <OMA>
- <OMS cd="multiset1" name="set"/>
- <OMI> 2 </OMI>
- <OMI> 3 </OMI>
- <OMI> 3 </OMI>
- </OMA>
- <OMA>
- <OMS cd="multiset1" name="set"/>
- <OMI> 1 </OMI>
- <OMI> 2 </OMI>
- <OMI> 3 </OMI>
- </OMA>
- </OMA>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMBIND>
- <OMS cd="quant1" name="forall"/>
- <OMBVAR>
- <OMV name="a"/>
- <OMV name="b"/>
- </OMBVAR>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="arith1" name="plus"/>
- <OMV name="a"/>
- <OMV name="b"/>
- </OMA>
- <OMA>
- <OMS cd="arith1" name="plus"/>
- <OMV name="b"/>
- <OMV name="a"/>
- </OMA>
- </OMA>
- </OMBIND>
- </OMOBJ>
- % Example of a symbol which has a MathML equivalent
- % but under another name.
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="arith1" name="unary_minus"/>
- <OMI> 1 </OMI>
- </OMA>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="logic1" name="not"/>
- <OMS cd="logic1" name="false"/>
- </OMA>
- <OMS cd="logic1" name="true"/>
- </OMA>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="arith1" name="times"/>
- <OMA>
- <OMS cd="fns1" name="identity"/>
- <OMA>
- <OMS cd="linalg3" name="rowcount"/>
- <OMV name="M"/>
- </OMA>
- </OMA>
- <OMV name="M"/>
- </OMA>
- <OMV name="M"/>
- </OMA>
- </OMOBJ>
-
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="linalg1" name="scalarproduct"/>
- <OMA>
- <OMS cd="linalg1" name="vector"/>
- <OMI> 3 </OMI>
- <OMI> 6 </OMI>
- <OMI> 9 </OMI>
- </OMA>
- <OMA>
- <OMS cd="linalg1" name="vector"/>
- <OMI> 3 </OMI>
- <OMI> 6 </OMI>
- <OMI> 9 </OMI>
- </OMA>
- </OMA>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="linalg1" name="outerproduct"/>
- <OMA>
- <OMS cd="linalg1" name="vector"/>
- <OMI> 3 </OMI>
- <OMI> 6 </OMI>
- <OMI> 9 </OMI>
- </OMA>
- <OMA>
- <OMS cd="linalg1" name="vector"/>
- <OMI> 3 </OMI>
- <OMI> 6 </OMI>
- <OMI> 9 </OMI>
- </OMA>
- </OMA>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMBIND>
- <OMS cd="quant1" name="forall"/>
- <OMBVAR>
- <OMV name="a"/>
- </OMBVAR>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="arith1" name="plus"/>
- <OMV name="a"/>
- <OMS cd="alg1" name="zero"/>
- </OMA>
- <OMV name="a"/>
- </OMA>
- </OMBIND>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMBIND>
- <OMS cd="quant1" name="forall"/>
- <OMBVAR>
- <OMV name="a"/>
- </OMBVAR>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="arith1" name="times"/>
- <OMS cd="alg1" name="one"/>
- <OMV name="a"/>
- </OMA>
- <OMV name="a"/>
- </OMA>
- </OMBIND>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="bigfloat1" name="bigfloat"/>
- <OMV name="m"/>
- <OMV name="r"/>
- <OMV name="e"/>
- </OMA>
- <OMA>
- <OMS cd="arith1" name="times"/>
- <OMV name="m"/>
- <OMA>
- <OMS cd="arith1" name="power"/>
- <OMV name="r"/>
- <OMV name="e"/>
- </OMA>
- </OMA>
- </OMA>
- </OMOBJ>
- % The integral symbols defint and int are ambigious as defined
- % in the CDs. They do not specify their variable of integration
- % explicitly. The following shows that when the function
- % to integrate is defined as a lambda expression, then the
- % bound variable is easily determined. However, in other
- % cases, it is not possible to determine the bound variable.
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="calculus1" name="int"/>
- <OMBIND>
- <OMS cd="fns1" name="lambda"/>
- <OMBVAR>
- <OMV name="x"/>
- </OMBVAR>
- <OMA>
- <OMS cd="transc1" name="sin"/>
- <OMV name="x"/>
- </OMA>
- </OMBIND>
- </OMA>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="calculus1" name="int"/>
- <OMA>
- <OMS cd="arith1" name="plus"/>
- <OMV name="x"/>
- <OMV name="y"/>
- </OMA>
- </OMA>
- </OMOBJ>
- % Some calculus
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="calculus1" name="diff"/>
- <OMBIND>
- <OMS cd="fns1" name="lambda"/>
- <OMBVAR>
- <OMV name="x"/>
- </OMBVAR>
- <OMA>
- <OMS cd="arith1" name="plus"/>
- <OMV name="x"/>
- <OMF dec="1.0"/>
- </OMA>
- </OMBIND>
- </OMA>
- <OMF dec="1.0"/>
- </OMA>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="calculus1" name="partialdiff"/>
- <OMA>
- <OMS cd="list1" name="list"/>
- <OMI> 1 </OMI>
- <OMI> 3 </OMI>
- </OMA>
- <OMBIND>
- <OMS cd="fns1" name="lambda"/>
- <OMBVAR>
- <OMV name="x"/>
- <OMV name="y"/>
- <OMV name="z"/>
- </OMBVAR>
- <OMA>
- <OMS cd="arith2" name="times"/>
- <OMV name="x"/>
- <OMV name="y"/>
- <OMV name="z"/>
- </OMA>
- </OMBIND>
- </OMA>
- <OMV name="y"/>
- </OMA>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="integer1" name="factorial"/>
- <OMV name="n"/>
- </OMA>
- <OMA>
- <OMS cd="arith1" name="product"/>
- <OMA>
- <OMS cd="interval1" name="integer_interval"/>
- <OMI> 1 </OMI>
- <OMV name="n"/>
- </OMA>
- <OMBIND>
- <OMS cd="fns1" name="lambda"/>
- <OMBVAR>
- <OMV name="i"/>
- </OMBVAR>
- <OMV name="i"/>
- </OMBIND>
- </OMA>
- </OMA>
- </OMOBJ>
-
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="logic1" name="not"/>
- <OMBIND>
- <OMS cd="quant1" name="exists"/>
- <OMBVAR>
- <OMV name="c"/>
- </OMBVAR>
- <OMA>
- <OMS cd="logic1" name="and"/>
- <OMA>
- <OMS cd="set1" name="in"/>
- <OMA>
- <OMS cd="arith1" name="divide"/>
- <OMV name="a"/>
- <OMV name="c"/>
- </OMA>
- <OMS cd="setname1" name="Z"/>
- </OMA>
- <OMA>
- <OMS cd="set1" name="in"/>
- <OMA>
- <OMS cd="arith1" name="divide"/>
- <OMV name="b"/>
- <OMV name="c"/>
- </OMA>
- <OMS cd="setname1" name="Z"/>
- </OMA>
- <OMA>
- <OMS cd="relation1" name="gt"/>
- <OMV name="c"/>
- <OMA>
- <OMS cd="integer1" name="gcd"/>
- <OMV name="a"/>
- <OMV name="b"/>
- </OMA>
- </OMA>
- </OMA>
- </OMBIND>
- </OMA>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMBIND>
- <OMS cd="quant1" name="forall"/>
- <OMBVAR>
- <OMV name="x"/>
- </OMBVAR>
- <OMA>
- <OMS cd="logic1" name="implies"/>
- <OMS cd="logic1" name="false"/>
- <OMV name="x"/>
- </OMA>
- </OMBIND>
- </OMOBJ>
-
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="minmax1" name="max"/>
- <OMI> 1 </OMI>
- <OMI> 9 </OMI>
- <OMI> 5 </OMI>
- </OMA>
- <OMI> 9 </OMI>
- </OMA>
- </OMOBJ>
- % The following examples belong to the multiset CD
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="logic1" name="implies"/>
- <OMA>
- <OMS cd="logic1" name="and"/>
- <OMA>
- <OMS cd="multiset1" name="in"/>
- <OMV name="a"/>
- <OMV name="A"/>
- </OMA>
- <OMA>
- <OMS cd="multiset1" name="in"/>
- <OMV name="a"/>
- <OMV name="B"/>
- </OMA>
- </OMA>
- <OMA>
- <OMS cd="multiset1" name="in"/>
- <OMV name="a"/>
- <OMA>
- <OMS cd="multiset1" name="intersect"/>
- <OMV name="A"/>
- <OMV name="B"/>
- </OMA>
- </OMA>
- </OMA>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="multiset1" name="multiset"/>
- <OMI> 4 </OMI>
- <OMI> 1 </OMI>
- <OMI> 0 </OMI>
- <OMI> 1 </OMI>
- <OMI> 4 </OMI>
- </OMA>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="logic1" name="and"/>
- <OMA>
- <OMS cd="multiset1" name="subset"/>
- <OMA>
- <OMS cd="multiset1" name="intersect"/>
- <OMV name="A"/>
- <OMV name="B"/>
- </OMA>
- <OMV name="A"/>
- </OMA>
- <OMA>
- <OMS cd="multiset1" name="subset"/>
- <OMA>
- <OMS cd="multiset1" name="intersect"/>
- <OMV name="A"/>
- <OMV name="B"/>
- </OMA>
- <OMV name="B"/>
- </OMA>
- </OMA>
- </OMOBJ>
-
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="logic1" name="and"/>
- <OMA>
- <OMS cd="multiset1" name="subset"/>
- <OMV name="A"/>
- <OMA>
- <OMS cd="multiset1" name="union"/>
- <OMV name="A"/>
- <OMV name="B"/>
- </OMA>
- </OMA>
- <OMA>
- <OMS cd="multiset1" name="subset"/>
- <OMV name="B"/>
- <OMA>
- <OMS cd="multiset1" name="union"/>
- <OMV name="A"/>
- <OMV name="B"/>
- </OMA>
- </OMA>
- </OMA>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMBIND>
- <OMS cd="quant1" name="forall"/>
- <OMBVAR>
- <OMV name="A"/>
- <OMV name="B"/>
- <OMV name="C"/>
- </OMBVAR>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="multiset1" name="union"/>
- <OMV name="A"/>
- <OMA>
- <OMS cd="multiset1" name="intersect"/>
- <OMV name="B"/>
- <OMV name="C"/>
- </OMA>
- </OMA>
- <OMA>
- <OMS cd="multiset1" name="intersect"/>
- <OMA>
- <OMS cd="multiset1" name="union"/>
- <OMV name="A"/>
- <OMV name="B"/>
- </OMA>
- <OMA>
- <OMS cd="multiset1" name="union"/>
- <OMV name="A"/>
- <OMV name="C"/>
- </OMA>
- </OMA>
- </OMA>
- </OMBIND>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="multiset1" name="subset"/>
- <OMA>
- <OMS cd="multiset1" name="setdiff"/>
- <OMV name="A"/>
- <OMV name="B"/>
- </OMA>
- <OMV name="A"/>
- </OMA>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="logic1" name="implies"/>
- <OMA>
- <OMS cd="logic1" name="and"/>
- <OMA>
- <OMS cd="multiset1" name="subset"/>
- <OMV name="B"/>
- <OMV name="A"/>
- </OMA>
- <OMA>
- <OMS cd="multiset1" name="subset"/>
- <OMV name="C"/>
- <OMV name="B"/>
- </OMA>
- </OMA>
- <OMA>
- <OMS cd="multiset1" name="subset"/>
- <OMV name="C"/>
- <OMV name="A"/>
- </OMA>
- </OMA>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="multiset1" name="notin"/>
- <OMI> 4 </OMI>
- <OMA>
- <OMS cd="multiset1" name="multiset"/>
- <OMI> 1 </OMI>
- <OMI> 1 </OMI>
- <OMI> 2 </OMI>
- <OMI> 3 </OMI>
- </OMA>
- </OMA>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="multiset1" name="prsubset"/>
- <OMA>
- <OMS cd="multiset1" name="multiset"/>
- <OMI> 2 </OMI>
- <OMI> 3 </OMI>
- </OMA>
- <OMA>
- <OMS cd="multiset1" name="multiset"/>
- <OMI> 2 </OMI>
- <OMI> 2 </OMI>
- <OMI> 3 </OMI>
- </OMA>
- </OMA>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="multiset1" name="notsubset"/>
- <OMA>
- <OMS cd="multiset1" name="multiset"/>
- <OMI> 2 </OMI>
- <OMI> 3 </OMI>
- <OMI> 3 </OMI>
- </OMA>
- <OMA>
- <OMS cd="multiset1" name="multiset"/>
- <OMI> 1 </OMI>
- <OMI> 2 </OMI>
- <OMI> 3 </OMI>
- </OMA>
- </OMA>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="multiset1" name="notprsubset"/>
- <OMA>
- <OMS cd="multiset1" name="multiset"/>
- <OMI> 1 </OMI>
- <OMI> 2 </OMI>
- <OMI> 1 </OMI>
- </OMA>
- <OMA>
- <OMS cd="multiset1" name="multiset"/>
- <OMI> 1 </OMI>
- <OMI> 2 </OMI>
- <OMI> 1 </OMI>
- </OMA>
- </OMA>
- </OMOBJ>
- % Examples from CD nums1
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMI> 8 </OMI>
- <OMA>
- <OMS cd="nums1" name="based_integer"/>
- <OMI> 8 </OMI>
- <OMSTR> 10 </OMSTR>
- </OMA>
- </OMA>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="nums1" name="rational"/>
- <OMI> 1 </OMI>
- <OMI> 2 </OMI>
- </OMA>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMBIND>
- <OMS cd="quant1" name="forall"/>
- <OMBVAR>
- <OMV name="x"/>
- <OMV name="y"/>
- </OMBVAR>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="nums1" name="complex_cartesian"/>
- <OMV name="x"/>
- <OMV name="y"/>
- </OMA>
- <OMA>
- <OMS cd="arith1" name="plus"/>
- <OMV name="x"/>
- <OMA>
- <OMS cd="arith1" name="times"/>
- <OMS cd="nums1" name="i"/>
- <OMV name="y"/>
- </OMA>
- </OMA>
- </OMA>
- </OMBIND>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMBIND>
- <OMS cd="quant1" name="forall"/>
- <OMBVAR>
- <OMV name="x"/>
- <OMV name="y"/>
- <OMV name="r"/>
- <OMV name="a"/>
- </OMBVAR>
- <OMA>
- <OMS cd="logic1" name="implies"/>
- <OMA>
- <OMS cd="logic1" name="and"/>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="arith1" name="times"/>
- <OMV name="r"/>
- <OMA>
- <OMS cd="transc1" name="sin"/>
- <OMV name="a"/>
- </OMA>
- </OMA>
- <OMV name="y"/>
- </OMA>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="arith1" name="times"/>
- <OMV name="r"/>
- <OMA>
- <OMS cd="transc1" name="cos"/>
- <OMV name="a"/>
- </OMA>
- </OMA>
- <OMV name="x"/>
- </OMA>
- </OMA>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="nums1" name="complex_polar"/>
- <OMV name="r"/>
- <OMV name="a"/>
- </OMA>
- <OMA>
- <OMS cd="nums1" name="complex_cartesian"/>
- <OMV name="x"/>
- <OMV name="y"/>
- </OMA>
- </OMA>
- </OMA>
- </OMBIND>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMBIND>
- <OMS cd="quant1" name="forall"/>
- <OMBVAR>
- <OMV name="x"/>
- </OMBVAR>
- <OMA>
- <OMS cd="logic1" name="implies"/>
- <OMA>
- <OMS cd="logic1" name="and"/>
- <OMA>
- <OMS cd="set1" name="in"/>
- <OMV name="a"/>
- <OMS cd="setname1" name="R"/>
- </OMA>
- <OMA>
- <OMS cd="set1" name="in"/>
- <OMV name="k"/>
- <OMS cd="setname1" name="Z"/>
- </OMA>
- </OMA>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="nums1" name="complex_polar"/>
- <OMV name="x"/>
- <OMV name="a"/>
- </OMA>
- <OMA>
- <OMS cd="nums1" name="complex_polar"/>
- <OMV name="x"/>
- <OMA>
- <OMS cd="arith1" name="plus"/>
- <OMV name="a"/>
- <OMA>
- <OMS cd="arith1" name="times"/>
- <OMI> 2 </OMI>
- <OMS cd="nums1" name="pi"/>
- <OMV name="k"/>
- </OMA>
- </OMA>
- </OMA>
- </OMA>
- </OMA>
- </OMBIND>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMS cd="nums1" name="e"/>
- <OMA>
- <OMS cd="arith1" name="sum"/>
- <OMA>
- <OMS cd="interval1" name="integer_interval"/>
- <OMS cd="alg1" name="zero"/>
- <OMS cd="nums1" name="infinity"/>
- </OMA>
- <OMBIND>
- <OMS cd="fns1" name="lambda"/>
- <OMBVAR>
- <OMV name="j"/>
- </OMBVAR>
- <OMA>
- <OMS cd="arith1" name="divide"/>
- <OMS cd="alg1" name="one"/>
- <OMA>
- <OMS cd="integer1" name="factorial"/>
- <OMV name="j"/>
- </OMA>
- </OMA>
- </OMBIND>
- </OMA>
- </OMA>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="arith1" name="power"/>
- <OMS cd="nums1" name="i"/>
- <OMI> 2 </OMI>
- </OMA>
- <OMA>
- <OMS cd="arith1" name="minus"/>
- <OMS cd="alg1" name="one"/>
- </OMA>
- </OMA>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMBIND>
- <OMS cd="quant1" name="forall"/>
- <OMBVAR>
- <OMV name="x"/>
- <OMV name="y"/>
- </OMBVAR>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMV name="y"/>
- <OMA>
- <OMS name="imaginary" cd="nums1"/>
- <OMA>
- <OMS name="complex_cartesian" cd="nums1"/>
- <OMV name="x"/>
- <OMV name="y"/>
- </OMA>
- </OMA>
- </OMA>
- </OMBIND>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMBIND>
- <OMS cd="quant1" name="forall"/>
- <OMBVAR>
- <OMV name="x"/>
- <OMV name="y"/>
- </OMBVAR>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMV name="x"/>
- <OMA>
- <OMS name="real" cd="nums1"/>
- <OMA>
- <OMS name="complex_cartesian" cd="nums1"/>
- <OMV name="x"/>
- <OMV name="y"/>
- </OMA>
- </OMA>
- </OMA>
- </OMBIND>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="logic1" name="implies"/>
- <OMA>
- <OMS cd="set1" name="in"/>
- <OMV name="a"/>
- <OMS cd="setname1" name="R"/>
- </OMA>
- <OMA>
- <OMS cd="relation1" name="lt"/>
- <OMV name="x"/>
- <OMS cd="nums1" name="infinity"/>
- </OMA>
- </OMA>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="relation1" name="neq"/>
- <OMS cd="nums1" name="NaN"/>
- <OMS cd="nums1" name="NaN"/>
- </OMA>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMS cd="nums1" name="pi"/>
- <OMA>
- <OMS cd="arith1" name="sum"/>
- <OMA>
- <OMS cd="interval1" name="integer_interval"/>
- <OMS cd="alg1" name="zero"/>
- <OMS cd="nums1" name="infinity"/>
- </OMA>
- <OMBIND>
- <OMS cd="fns1" name="lambda"/>
- <OMBVAR>
- <OMV name="j"/>
- </OMBVAR>
- <OMA>
- <OMS cd="arith1" name="minus"/>
- <OMA>
- <OMS cd="arith1" name="divide"/>
- <OMS cd="alg1" name="one"/>
- <OMA>
- <OMS cd="arith1" name="plus"/>
- <OMA>
- <OMS cd="arith1" name="times"/>
- <OMI> 4 </OMI>
- <OMV name="j"/>
- </OMA>
- <OMS cd="alg1" name="one"/>
- </OMA>
- </OMA>
- <OMA>
- <OMS cd="arith1" name="divide"/>
- <OMS cd="alg1" name="one"/>
- <OMA>
- <OMS cd="arith1" name="plus"/>
- <OMA>
- <OMS cd="arith1" name="times"/>
- <OMI> 4 </OMI>
- <OMV name="j"/>
- </OMA>
- <OMS cd="alg1" name="one"/>
- </OMA>
- </OMA>
- </OMA>
- </OMBIND>
- </OMA>
- </OMA>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMBIND>
- <OMS cd="quant1" name="forall"/>
- <OMBVAR>
- <OMV name="x"/>
- </OMBVAR>
- <OMA>
- <OMS cd="logic1" name="and"/>
- <OMA>
- <OMS cd="relation1" name="lt"/>
- <OMA>
- <OMS cd="arith1" name="minus"/>
- <OMA>
- <OMS cd="rounding1" name="ceiling"/>
- <OMV name="x"/>
- </OMA>
- <OMS cd="alg1" name="one"/>
- </OMA>
- <OMV name="x"/>
- </OMA>
- <OMA>
- <OMS cd="relation1" name="leq"/>
- <OMV name="x"/>
- <OMA>
- <OMS cd="rounding1" name="ceiling"/>
- <OMV name="x"/>
- </OMA>
- </OMA>
- </OMA>
- </OMBIND>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="stats1" name="mean"/>
- <OMI> 1 </OMI> <OMI> 2 </OMI> <OMI> 3 </OMI>
- </OMA>
- <OMI> 3 </OMI>
- </OMA>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="stats1" name="sdev"/>
- <OMF dec="3.1"/>
- <OMF dec="2.2"/>
- <OMF dec="1.8"/>
- <OMF dec="1.1"/>
- <OMF dec="3.3"/>
- <OMF dec="2.4"/>
- <OMF dec="5.5"/>
- <OMF dec="2.3"/>
- <OMF dec="1.7"/>
- <OMF dec="1.8"/>
- <OMF dec="3.4"/>
- <OMF dec="4.0"/>
- <OMF dec="3.3"/>
- </OMA>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="logic1" name="implies"/>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="arith1" name="power"/>
- <OMV name="a"/>
- <OMV name="b"/>
- </OMA>
- <OMV name="c"/>
- </OMA>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="transc1" name="log"/>
- <OMV name="a"/>
- <OMV name="c"/>
- </OMA>
- <OMV name="b"/>
- </OMA>
- </OMA>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS name="and" cd="logic1"/>
- <OMA>
- <OMS name="lt" cd="relation1"/>
- <OMA>
- <OMS name="unary_minus" cd="arith1"/>
- <OMS name="pi" cd="nums1"/>
- </OMA>
- <OMA>
- <OMS name="imaginary" cd="nums1"/>
- <OMA>
- <OMS name="ln" cd="transc1"/>
- <OMV name="x"/>
- </OMA>
- </OMA>
- </OMA>
- <OMA>
- <OMS name="leq" cd="relation1"/>
- <OMA>
- <OMS name="imaginary" cd="nums1"/>
- <OMA>
- <OMS name="ln" cd="transc1"/>
- <OMV name="x"/>
- </OMA>
- </OMA>
- <OMS name="pi" cd="nums1"/>
- </OMA>
- </OMA>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="veccalc1" name="curl"/>
- <OMV name="F"/>
- </OMA>
- <OMA>
- <OMS cd="arith1" name="plus"/>
- <OMA>
- <OMS cd="linalg1" name="vectorproduct"/>
- <OMA>
- <OMS cd="linalg1" name="vector"/>
- <OMI> 1 </OMI>
- <OMI> 0 </OMI>
- <OMI> 0 </OMI>
- </OMA>
- <OMA>
- <OMS cd="calculus1" name="partialdiff"/>
- <OMA>
- <OMS cd="list1" name="list"/>
- <OMI> 1 </OMI>
- </OMA>
- <OMV name="F"/>
- </OMA>
- </OMA>
- <OMA>
- <OMS cd="linalg1" name="vectorproduct"/>
- <OMA>
- <OMS cd="linalg1" name="vector"/>
- <OMI> 0 </OMI>
- <OMI> 1 </OMI>
- <OMI> 0 </OMI>
- </OMA>
- <OMA>
- <OMS cd="calculus1" name="partialdiff"/>
- <OMA>
- <OMS cd="list1" name="list"/>
- <OMI> 2 </OMI>
- </OMA>
- <OMV name="F"/>
- </OMA>
- </OMA>
- <OMA>
- <OMS cd="linalg1" name="vectorproduct"/>
- <OMA>
- <OMS cd="linalg1" name="vector"/>
- <OMI> 0 </OMI>
- <OMI> 0 </OMI>
- <OMI> 1 </OMI>
- </OMA>
- <OMA>
- <OMS cd="calculus1" name="partialdiff"/>
- <OMA>
- <OMS cd="list1" name="list"/>
- <OMI> 3 </OMI>
- </OMA>
- <OMV name="F"/>
- </OMA>
- </OMA>
- </OMA>
- </OMA>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMBIND>
- <OMS cd="quant1" name="forall"/>
- <OMBVAR>
- <OMV name="x"/>
- </OMBVAR>
- <OMA>
- <OMS cd="logic1" name="and"/>
- <OMA>
- <OMS cd="relation1" name="lt"/>
- <OMA>
- <OMS name="unary_minus" cd="arith1"/>
- <OMS cd="nums1" name="pi"/>
- </OMA>
- <OMA>
- <OMS name="arg" cd="arith2"/>
- <OMV name="x"/>
- </OMA>
- </OMA>
- <OMA>
- <OMS cd="relation1" name="leq"/>
- <OMA>
- <OMS name="arg" cd="arith2"/>
- <OMV name="x"/>
- </OMA>
- <OMS cd="nums1" name="pi"/>
- </OMA>
- </OMA>
- </OMBIND>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMBIND>
- <OMS cd="quant1" name="forall"/>
- <OMBVAR>
- <OMV name="a"/>
- </OMBVAR>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="arith2" name="inverse"/>
- <OMA>
- <OMS cd="arith2" name="inverse"/>
- <OMV name="a"/>
- </OMA>
- </OMA>
- <OMV name="a"/>
- </OMA>
- </OMBIND>
- </OMOBJ>
- % An example of elements which do not have a MathML
- % equivalent. This example comes from the fns1 CD
- om2mml();
- <OMOBJ>
- <OMBIND>
- <OMS cd="quant1" name="forall"/>
- <OMBVAR>
- <OMV name="n"/>
- </OMBVAR>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="fns2" name="apply_to_list"/>
- <OMA>
- <OMS cd="arith1" name="plus"/>
- <OMA>
- <OMS cd="list1" name="make_list"/>
- <OMI> 1 </OMI>
- <OMV name="n"/>
- <OMS cd="fns1" name="identity"/>
- </OMA>
- </OMA>
- </OMA>
- <OMA>
- <OMS cd="arith1" name="divide"/>
- <OMA>
- <OMS cd="arith1" name="times"/>
- <OMV name="n"/>
- <OMA>
- <OMS cd="arith1" name="plus"/>
- <OMV name="n"/>
- <OMI> 1 </OMI>
- </OMA>
- </OMA>
- <OMI> 2 </OMI>
- </OMA>
- </OMA>
- </OMBIND>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="linalg3" name="determinant"/>
- <OMA>
- <OMS cd="linalg3" name="identity"/>
- <OMV name="n"/>
- </OMA>
- </OMA>
- <OMS cd="alg1" name="one"/>
- </OMA>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="linalg3" name="transpose"/>
- <OMA>
- <OMS cd="linalg1" name="matrix"/>
- <OMA>
- <OMS cd="linalg1" name="matrixrow"/>
- <OMI> 0 </OMI>
- <OMI> 1 </OMI>
- </OMA>
- <OMA>
- <OMS cd="linalg1" name="matrixrow"/>
- <OMI> 2 </OMI>
- <OMI> 3 </OMI>
- </OMA>
- </OMA>
- </OMA>
- <OMA>
- <OMS cd="linalg1" name="matrix"/>
- <OMA>
- <OMS cd="linalg1" name="matrixrow"/>
- <OMI> 0 </OMI>
- <OMI> 2 </OMI>
- </OMA>
- <OMA>
- <OMS cd="linalg1" name="matrixrow"/>
- <OMI> 1 </OMI>
- <OMI> 3 </OMI>
- </OMA>
- </OMA>
- </OMA>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="logic2" name="equivalent"/>
- <OMA>
- <OMS cd="logic2" name="equivalent"/>
- <OMV name="A"/>
- <OMV name="B"/>
- </OMA>
- <OMA>
- <OMS cd="logic1" name="and"/>
- <OMA>
- <OMS cd="logic1" name="implies"/>
- <OMV name="A"/>
- <OMV name="B"/>
- </OMA>
- <OMA>
- <OMS cd="logic1" name="implies"/>
- <OMV name="B"/>
- <OMV name="A"/>
- </OMA>
- </OMA>
- </OMA>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMATTR>
- <OMATP>
- <OMS cd="typmml" name="type"/>
- <OMS cd="typmml" name="complex_polar_type"/>
- </OMATP>
- <OMV name="z"/>
- </OMATTR>
- </OMOBJ>
- % Examples of assigning types to variables.
- om2mml();
- <OMOBJ>
- <OMATTR>
- <OMATP>
- <OMS cd="typmml" name="type"/>
- <OMS cd="typmml" name="integer_type"/>
- </OMATP>
- <OMV name="z"/>
- </OMATTR>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMATTR>
- <OMATP>
- <OMS cd="typmml" name="type"/>
- <OMS cd="typmml" name="real_type"/>
- </OMATP>
- <OMV name="z"/>
- </OMATTR>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMATTR>
- <OMATP>
- <OMS cd="typmml" name="type"/>
- <OMS cd="typmml" name="rational_type"/>
- </OMATP>
- <OMV name="z"/>
- </OMATTR>
- </OMOBJ>
- % These examples show the use of attributions within OpenMath
- % expressions.
- om2mml();
- <OMOBJ>
- <OMA>
- <OMATTR>
- <OMATP>
- <OMS cd="typmml" name="type"/>
- <OMS cd="typmml" name="fn_type"/>
- </OMATP>
- <OMV name="f"/>
- </OMATTR>
- <OMI>1</OMI>
- <OMI>2</OMI>
- <OMI>3</OMI>
- </OMA>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="arith1" name=times/>
- <OMATTR>
- <OMATP>
- <OMS cd="typmml" name="type"/>
- <OMS cd="typmml" name="matrix_type"/>
- </OMATP>
- <OMV name=A/>
- </OMATTR>
- <OMA>
- <OMS cd="transc1" name=sin/>
- <OMV name=x/>
- </OMA>
- </OMA>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="linalg3" name="vector_selector"/>
- <OMI>2</OMI>
- <OMA>
- <OMS cd="linalg1" name="vector"/>
- <OMI> 3 </OMI>
- <OMI> 6 </OMI>
- <OMI> 9 </OMI>
- </OMA>
- </OMA>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="linalg3" name="vector_selector"/>
- <OMI>2</OMI>
- <OMA>
- <OMS cd="linalg1" name="matrixrow"/>
- <OMI> 0 </OMI>
- <OMI> 1 </OMI>
- <OMI> 0 </OMI>
- </OMA>
- </OMA>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMBIND>
- <OMS cd="quant1" name="forall"/>
- <OMBVAR>
- <OMV name="M"/>
- </OMBVAR>
- <OMA>
- <OMS cd="logic1" name="and"/>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="arith1" name="times"/>
- <OMA>
- <OMS cd="linalg3" name="zero"/>
- <OMA>
- <OMS cd="linalg3" name="rowcount"/>
- <OMV name="M"/>
- </OMA>
- <OMA>
- <OMS cd="linalg3" name="rowcount"/>
- <OMV name="M"/>
- </OMA>
- </OMA>
- <OMV name="M"/>
- </OMA>
- <OMA>
- <OMS cd="linalg3" name="zero"/>
- <OMA>
- <OMS cd="linalg3" name="rowcount"/>
- <OMV name="M"/>
- </OMA>
- <OMA>
- <OMS cd="linalg3" name="columncount"/>
- <OMV name="M"/>
- </OMA>
- </OMA>
- </OMA>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="arith1" name="times"/>
- <OMV name="M"/>
- <OMA>
- <OMS cd="linalg3" name="zero"/>
- <OMA>
- <OMS cd="linalg3" name="columncount"/>
- <OMV name="M"/>
- </OMA>
- <OMA>
- <OMS cd="linalg3" name="columncount"/>
- <OMV name="M"/>
- </OMA>
- </OMA>
- </OMA>
- <OMA>
- <OMS cd="linalg3" name="zero"/>
- <OMA>
- <OMS cd="linalg3" name="rowcount"/>
- <OMV name="M"/>
- </OMA>
- <OMA>
- <OMS cd="linalg3" name="columncount"/>
- <OMV name="M"/>
- </OMA>
- </OMA>
- </OMA>
- </OMA>
- </OMBIND>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="linalg3" name="vector_selector"/>
- <OMI> 1 </OMI>
- <OMATTR>
- <OMATP>
- <OMS cd="typmml" name="type"/>
- <OMS cd="typmml" name="vector_type"/>
- </OMATP>
- <OMV name=A/>
- </OMATTR>
- </OMA>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="linalg3" name="matrix_selector"/>
- <OMI> 1 </OMI>
- <OMI> 1 </OMI>
- <OMATTR>
- <OMATP>
- <OMS cd="typmml" name="type"/>
- <OMS cd="typmml" name="matrix_type"/>
- </OMATP>
- <OMV name=A/>
- </OMATTR>
- </OMA>
- </OMOBJ>
- % The following two examples were produced by REDUCE in MathML with the
- % MathML interface, then translated to OpenMath. It is now possible to
- % translate them back to MathML.
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="list1" name="list"/>
- <OMA>
- <OMS cd="list1" name="list"/>
- <OMA>
- <OMS cd="relation1" name="eq">
- <OMV name="x"/>
- <OMA>
- <OMATTR>
- <OMATP>
- <OMS cd="typmml" name="type"/>
- <OMS cd="typmml" name="fn_type"/>
- </OMATP>
- <OMV name="root_of"/>
- </OMATTR>
- <OMA>
- <OMS cd="arith1" name="plus">
- <OMA>
- <OMS cd="arith1" name="minus">
- <OMA>
- <OMS cd="arith1" name="power">
- <OMV name="y"/>
- <OMV name="x_"/>
- </OMA>
- </OMA>
- <OMA>
- <OMS cd="arith1" name="minus">
- <OMA>
- <OMS cd="arith1" name="times">
- <OMA>
- <OMS cd="calculus1" name="int"/>
- <OMBIND>
- <OMS cd="fns1" name="lambda"/>
- <OMBVAR>
- <OMV name="x_"/>
- </OMBVAR>
- <OMA>
- <OMS cd="arith1" name="power">
- <OMV name="x_"/>
- <OMV name="x_"/>
- </OMA>
- </OMBIND>
- </OMA>
- <OMV name="y"/>
- </OMA>
- </OMA>
- <OMV name="x_"/>
- <OMV name="y"/>
- </OMA>
- <OMV name="x_"/>
- <OMV name="tag_1"/>
- </OMA>
- </OMA>
- <OMA>
- <OMS cd="relation1" name="eq">
- <OMV name="a"/>
- <OMA>
- <OMS cd="arith1" name="plus">
- <OMV name="x"/>
- <OMV name="y"/>
- </OMA>
- </OMA>
- </OMA>
- </OMA>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="list1" name="list"/>
- <OMA>
- <OMS cd="list1" name="list"/>
- <OMA>
- <OMS cd="relation1" name="eq">
- <OMV name="x"/>
- <OMA>
- <OMATTR>
- <OMATP>
- <OMS cd="typmml" name="type"/>
- <OMS cd="typmml" name="fn_type"/>
- </OMATP>
- <OMV name="root_of"/>
- </OMATTR>
- <OMA>
- <OMS cd="arith1" name="plus">
- <OMA>
- <OMS cd="arith1" name="times">
- <OMA>
- <OMS cd="transc1" name="exp">
- <OMA>
- <OMS cd="arith1" name="plus">
- <OMS cd="nums1" name="i"/>
- <OMV name="x_"/>
- </OMA>
- </OMA>
- <OMV name="y"/>
- </OMA>
- <OMA>
- <OMS cd="transc1" name="exp">
- <OMA>
- <OMS cd="arith1" name="plus">
- <OMS cd="nums1" name="i"/>
- <OMV name="x_"/>
- </OMA>
- </OMA>
- <OMA>
- <OMS cd="arith1" name="power">
- <OMV name="x_"/>
- <OMA>
- <OMS cd="arith1" name="plus">
- <OMV name="y"/>
- <OMI> 1 </OMI>
- </OMA>
- </OMA>
- <OMA>
- <OMS cd="arith1" name="times">
- <OMA>
- <OMS cd="calculus1" name="int"/>
- <OMBIND>
- <OMS cd="fns1" name="lambda"/>
- <OMBVAR>
- <OMV name="x_"/>
- </OMBVAR>
- <OMA>
- <OMS cd="arith1" name="power">
- <OMV name="x_"/>
- <OMV name="x_"/>
- </OMA>
- </OMBIND>
- </OMA>
- <OMA>
- <OMS cd="arith1" name="power">
- <OMV name="y"/>
- <OMI> 2 </OMI>
- </OMA>
- </OMA>
- <OMA>
- <OMS cd="arith1" name="times">
- <OMA>
- <OMS cd="calculus1" name="int"/>
- <OMBIND>
- <OMS cd="fns1" name="lambda"/>
- <OMBVAR>
- <OMV name="x_"/>
- </OMBVAR>
- <OMA>
- <OMS cd="arith1" name="power">
- <OMV name="x_"/>
- <OMV name="x_"/>
- </OMA>
- </OMBIND>
- </OMA>
- <OMV name="y"/>
- </OMA>
- </OMA>
- <OMV name="x_"/>
- <OMV name="tag_2"/>
- </OMA>
- </OMA>
- <OMA>
- <OMS cd="relation1" name="eq">
- <OMV name="z"/>
- <OMV name="y"/>
- </OMA>
- </OMA>
- </OMA>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMATTR>
- <OMATP>
- <OMS cd="cc" name="type"/>
- <OMS cd="omtypes" name="integer"/>
- </OMATP>
- <OMI> 0 </OMI>
- </OMATTR>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMATTR>
- <OMATP>
- <OMS cd="cc" name="type"/>
- <OMS cd="omtypes" name="float"/>
- </OMATP>
- <OMF dec=1.0/>
- </OMATTR>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS name="complex_cartesian" cd="nums1"/>
- <OMV name="x"/>
- <OMV name="y"/>
- </OMA>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS name="complex_polar" cd="nums1"/>
- <OMV name="x"/>
- <OMV name="y"/>
- </OMA>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS name="rational" cd="nums1"/>
- <OMV name="x"/>
- <OMV name="y"/>
- </OMA>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS name="complex_cartesian" cd="nums1"/>
- <OMI>4</OMI>
- <OMI>2</OMI>
- </OMA>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS name="complex_polar" cd="nums1"/>
- <OMI>4</OMI>
- <OMI>2</OMI>
- </OMA>
- </OMOBJ>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS name="rational" cd="nums1"/>
- <OMI>4</OMI>
- <OMI>2</OMI>
- </OMA>
- </OMOBJ>
- % end;
- end;
|