123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635 |
- Sun Apr 18 17:56:49 2004 run on Linux
- load mathmlom;
- %in "$reduce/packages/mathml/examples.mml";
- % Description: This file contains a long list of examples demonstrating the abilities of
- % the translator. Most of these examples come straight from the MathML spec. They
- % were used during the development of the interface and should all be correctly
- % translated into OpenMath.
- %
- % Version 17 April 2000
- %
- % Author: Luis Alvarez Sobreviela
- %
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- mml2om();
- <math>
- <apply><sin/>
- <apply><plus/>
- <apply><cos/>
- <ci> x </ci>
- </apply>
- <apply><power/>
- <ci> x </ci>
- <cn> 3 </cn>
- </apply>
- </apply>
- </apply>
- </math>
- Intermediate representation:
- (sin nil (plus nil (cos nil x) (power nil x 3)))
- <OMOBJ>
- <OMA>
- <OMS cd="transc1" name="sin">
- <OMA>
- <OMS cd="arith1" name="plus">
- <OMA>
- <OMS cd="transc1" name="cos">
- <OMV name="x"/>
- </OMA>
- <OMA>
- <OMS cd="arith1" name="power">
- <OMV name="x"/>
- <OMI> 3 </OMI>
- </OMA>
- </OMA>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <apply><sin/>
- <apply><plus/>
- <apply><cos/>
- <ci> x </ci>
- </apply>
- <apply><power/>
- <ci type="real"> x </ci>
- <cn> 3 </cn>
- </apply>
- </apply>
- </apply>
- </math>
- Intermediate representation:
- (sin nil (plus nil (cos nil x) (power nil (ci ((type real)) x) 3)))
- <OMOBJ>
- <OMA>
- <OMS cd="transc1" name="sin">
- <OMA>
- <OMS cd="arith1" name="plus">
- <OMA>
- <OMS cd="transc1" name="cos">
- <OMV name="x"/>
- </OMA>
- <OMA>
- <OMS cd="arith1" name="power">
- <OMATTR>
- <OMATP>
- <OMS cd="typmml" name="type">
- <OMS cd="typmml" name="(real real_type)real_type">
- </OMATP>
- <OMV name="x"/>
- </OMATTR>
- <OMI> 3 </OMI>
- </OMA>
- </OMA>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <set type=normal>
- <ci> b </ci>
- <cn> 2 </cn>
- <ci> c </ci>
- </set>
- </math>
- Intermediate representation:
- (set ((type normal)) b 2 c)
- <OMOBJ>
- <OMA>
- <OMS cd="set1" name="set"/>
- <OMV name="b"/>
- <OMI> 2 </OMI>
- <OMV name="c"/>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <set type="multiset">
- <ci> b </ci>
- <cn> 2 </cn>
- <ci> c </ci>
- </set>
- </math>
- Intermediate representation:
- (set ((type multiset)) b 2 c)
- <OMOBJ>
- <OMA>
- <OMS cd="multiset1" name="set"/>
- <OMV name="b"/>
- <OMI> 2 </OMI>
- <OMV name="c"/>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <vector>
- <ci> b </ci>
- <cn> 2 </cn>
- <ci> c </ci>
- </vector>
- </math>
- Intermediate representation:
- (vectorml nil b 2 c)
- <OMOBJ>
- <OMA>
- <OMS cd="linalg1" name="vector"/>
- <OMV name="b"/>
- <OMI> 2 </OMI>
- <OMV name="c"/>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <interval closure=closed>
- <ci> b </ci>
- <cn> 2 </cn>
- </interval>
- </math>
- Intermediate representation:
- (interval ((closure closed)) b 2)
- <OMOBJ>
- <OMA>
- <OMS cd="interval1" name="interval_cc"/>
- <OMV name="b"/>
- <OMI> 2 </OMI>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <interval closure=open>
- <ci> b </ci>
- <cn> 2 </cn>
- </interval>
- </math>
- Intermediate representation:
- (interval ((closure open)) b 2)
- <OMOBJ>
- <OMA>
- <OMS cd="interval1" name="interval_oo"/>
- <OMV name="b"/>
- <OMI> 2 </OMI>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <interval closure=open-closed>
- <ci> b </ci>
- <cn> 2 </cn>
- </interval>
- </math>
- Intermediate representation:
- (interval ((closure open!-closed)) b 2)
- <OMOBJ>
- <OMA>
- <OMS cd="interval1" name="interval_oc"/>
- <OMV name="b"/>
- <OMI> 2 </OMI>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <interval closure=closed-open>
- <ci> b </ci>
- <cn> 2 </cn>
- </interval>
- </math>
- Intermediate representation:
- (interval ((closure closed!-open)) b 2)
- <OMOBJ>
- <OMA>
- <OMS cd="interval1" name="interval_co"/>
- <OMV name="b"/>
- <OMI> 2 </OMI>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <cn type="complex-cartesian"> 6 <sep/> 3 </cn>
- </math>
- Intermediate representation:
- (complex_cartesian nil 6 3)
- <OMOBJ>
- <OMA>
- <OMS cd="nums1" name="complex_cartesian">
- <OMI> 6 </OMI>
- <OMI> 3 </OMI>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <cn type="complex-polar"> 6 <sep/> 3 </cn>
- </math>
- Intermediate representation:
- (complex_polar nil 6 3)
- <OMOBJ>
- <OMA>
- <OMS cd="nums1" name="complex_polar">
- <OMI> 6 </OMI>
- <OMI> 3 </OMI>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <cn type="integer" base="10"> 6 </cn>
- </math>
- Intermediate representation:
- (based_integer nil 10 (string 6))
- <OMOBJ>
- <OMA>
- <OMS cd="nums1" name="based_integer">
- <OMI> 10 </OMI>
- <OMSTR> 6 </OMSTR>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <apply><sum/>
- <bvar>
- <ci> x </ci>
- </bvar>
- <lowlimit>
- <ci> a </ci>
- </lowlimit>
- <uplimit>
- <ci> b </ci>
- </uplimit>
- <apply><plus/>
- <ci> x </ci>
- <apply><sin/>
- <ci> y </ci>
- </apply>
- </apply>
- </apply>
- </math>
- Intermediate representation:
- (sum nil (bvar x 1) (lowupperlimit a b) (plus nil x (sin nil y)))
- <OMOBJ>
- <OMA>
- <OMS cd="arith1" name="sum"/>
- <OMA>
- <OMS cd="interval1" name="integer_interval"/>
- <OMV name="a"/>
- <OMV name="b"/>
- </OMA>
- <OMBIND>
- <OMS cd="fns1" name="lambda"/>
- <OMBVAR>
- <OMV name="x"/>
- </OMBVAR>
- <OMA>
- <OMS cd="arith1" name="plus">
- <OMV name="x"/>
- <OMA>
- <OMS cd="transc1" name="sin">
- <OMV name="y"/>
- </OMA>
- </OMA>
- </OMBIND>
- </OMA>
- </OMOBJ>
-
- mml2om();
- <math>
- <apply><int/>
- <bvar>
- <ci> x </ci>
- </bvar>
- <lowlimit>
- <ci> a </ci>
- </lowlimit>
- <uplimit>
- <ci> b </ci>
- </uplimit>
- <apply><fn><ci> f </ci></fn>
- <ci> x </ci>
- </apply>
- </apply>
- </math>
- Intermediate representation:
- (int nil (bvar x 1) (lowupperlimit a b) (f nil x))
- <OMOBJ>
- <OMA>
- <OMS cd="calculus1" name="defint"/>
- <OMA>
- <OMS cd="interval1" name="integer_interval"/>
- <OMV name="a"/>
- <OMV name="b"/>
- </OMA>
- <OMBIND>
- <OMS cd="fns1" name="lambda"/>
- <OMBVAR>
- <OMV name="x"/>
- </OMBVAR>
- <OMA>
- <OMATTR>
- <OMATP>
- <OMS cd="typmml" name="type"/>
- <OMS cd="typmml" name="fn_type"/>
- </OMATP>
- <OMV name="f"/>
- </OMATTR>
- <OMV name="x"/>
- </OMA>
- </OMBIND>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <lambda>
- <bvar>
- <ci> x </ci>
- </bvar>
- <apply><sin/>
- <ci> x </ci>
- </apply>
- </lambda>
- </math>
- Intermediate representation:
- (lambda nil (bvar x 1) (sin nil x))
- <OMOBJ>
- <OMBIND>
- <OMS cd="fns1" name="lambda"/>
- <OMBVAR>
- <OMV name="x"/>
- </OMBVAR>
- <OMA>
- <OMS cd="transc1" name="sin">
- <OMV name="x"/>
- </OMA>
- </OMBIND>
- </OMOBJ>
-
- mml2om();
- <math>
- <apply><limit/>
- <bvar>
- <ci> x </ci>
- </bvar>
- <lowlimit>
- <cn> 0 </cn>
- </lowlimit>
- <apply><sin/>
- <ci> x </ci>
- </apply>
- </apply>
- </math>
- Intermediate representation:
- (limit nil (bvar x 1) (lowlimit 0) (sin nil x))
- <OMOBJ>
- <OMA>
- <OMS cd="limit1" name="limit"/>
- <OMI> 0 </OMI>
- <OMS cd="limit1" name="null"/>
- <OMBIND>
- <OMS cd="fns1" name="lambda"/>
- <OMBVAR>
- <OMV name="x"/>
- </OMBVAR>
- <OMA>
- <OMS cd="transc1" name="sin">
- <OMV name="x"/>
- </OMA>
- </OMBIND>
- </OMA>
- </OMOBJ>
-
- mml2om();
-
- <math>
- <apply><limit/>
- <bvar>
- <ci> x </ci>
- </bvar>
- <condition>
- <apply>
- <tendsto type="above"/>
- <ci> x </ci>
- <ci> a </ci>
- </apply>
- </condition>
- <apply><sin/>
- <ci> x </ci>
- </apply>
- </apply>
- </math>
- Intermediate representation:
- (limit nil (bvar x 1) (condition (tendsto ((type above)) x a)) (sin nil x))
- <OMOBJ>
- <OMA>
- <OMS cd="limit1" name="limit"/>
- <OMV name="a"/>
- <OMS cd="limit1" name="above"/>
- <OMBIND>
- <OMS cd="fns1" name="lambda"/>
- <OMBVAR>
- <OMV name="x"/>
- </OMBVAR>
- <OMA>
- <OMS cd="transc1" name="sin">
- <OMV name="x"/>
- </OMA>
- </OMBIND>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <apply><not/>
- <apply><exists/>
- <bvar>
- <ci> x </ci>
- </bvar>
- <bvar>
- <ci> y </ci>
- </bvar>
- <bvar>
- <ci> z </ci>
- </bvar>
- <bvar>
- <ci> n </ci>
- </bvar>
- <apply><and/>
- <apply><gt/>
- <ci> n </ci>
- <cn type="integer"> 2 </cn>
- </apply>
- <apply><eq/>
- <apply><plus/>
- <apply><power/>
- <ci> x </ci>
- <ci> n </ci>
- </apply>
- <apply><power/>
- <ci> y </ci>
- <ci> n </ci>
- </apply>
- </apply>
- <apply><power/>
- <ci> z </ci>
- <ci> n </ci>
- </apply>
- </apply>
- </apply>
- </apply>
- </apply>
- </math>
- Intermediate representation:
- (not nil (exists nil (bvar x 1) (bvar y 1) (bvar z 1) (bvar n 1) nil (and nil (
- gt nil n 2) (eq nil (plus nil (power nil x n) (power nil y n)) (power nil z n)))
- ))
- <OMOBJ>
- <OMA>
- <OMS cd="logic1" name="not">
- <OMBIND>
- <OMS cd="quant1" name="exists"/>
- <OMBVAR>
- <OMV name="x"/>
- <OMV name="y"/>
- <OMV name="z"/>
- <OMV name="n"/>
- </OMBVAR>
- <OMA>
- <OMS cd="logic1" name="and">
- <OMA>
- <OMS cd="relation1" name="gt">
- <OMV name="n"/>
- <OMI> 2 </OMI>
- </OMA>
- <OMA>
- <OMS cd="relation1" name="eq">
- <OMA>
- <OMS cd="arith1" name="plus">
- <OMA>
- <OMS cd="arith1" name="power">
- <OMV name="x"/>
- <OMV name="n"/>
- </OMA>
- <OMA>
- <OMS cd="arith1" name="power">
- <OMV name="y"/>
- <OMV name="n"/>
- </OMA>
- </OMA>
- <OMA>
- <OMS cd="arith1" name="power">
- <OMV name="z"/>
- <OMV name="n"/>
- </OMA>
- </OMA>
- </OMA>
- </OMBIND>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <matrix>
- <matrixrow>
- <cn> 0 </cn> <cn> 1 </cn> <cn> 0 </cn>
- </matrixrow>
- <matrixrow>
- <cn> 0 </cn> <cn> 0 </cn> <cn> 1 </cn>
- </matrixrow>
- <matrixrow>
- <cn> 1 </cn> <cn> 0 </cn> <cn> 0 </cn>
- </matrixrow>
- </matrix>
- </math>
- Intermediate representation:
- (matrix nil matrixrow ((0 1 0) (0 0 1) (1 0 0)))
- <OMOBJ>
- <OMA>
- <OMS cd="linalg1" name="matrix"/>
- <OMA>
- <OMS cd="linalg1" name="matrixrow"/>
- <OMI> 0 </OMI>
- <OMI> 1 </OMI>
- <OMI> 0 </OMI>
- </OMA>
- <OMA>
- <OMS cd="linalg1" name="matrixrow"/>
- <OMI> 0 </OMI>
- <OMI> 0 </OMI>
- <OMI> 1 </OMI>
- </OMA>
- <OMA>
- <OMS cd="linalg1" name="matrixrow"/>
- <OMI> 1 </OMI>
- <OMI> 0 </OMI>
- <OMI> 0 </OMI>
- </OMA>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <apply><int/>
- <bvar>
- <ci>x</ci>
- </bvar>
- <apply><power/>
- <ci>x</ci>
- <cn type="integer">2</cn>
- </apply>
- </apply>
- </math>
- Intermediate representation:
- (int nil (bvar x 1) nil (power nil x 2))
- <OMOBJ>
- <OMA>
- <OMS cd="calculus1" name="int"/>
- <OMBIND>
- <OMS cd="fns1" name="lambda"/>
- <OMBVAR>
- <OMV name="x"/>
- </OMBVAR>
- <OMA>
- <OMS cd="arith1" name="power">
- <OMV name="x"/>
- <OMI> 2 </OMI>
- </OMA>
- </OMBIND>
- </OMA>
- </OMOBJ>
-
- mml2om();
- <math>
- <apply><int/>
- <bvar>
- <ci> x </ci>
- </bvar>
- <apply><sin/>
- <ci> x </ci>
- </apply>
- </apply>
- </math>
- Intermediate representation:
- (int nil (bvar x 1) nil (sin nil x))
- <OMOBJ>
- <OMA>
- <OMS cd="calculus1" name="int"/>
- <OMBIND>
- <OMS cd="fns1" name="lambda"/>
- <OMBVAR>
- <OMV name="x"/>
- </OMBVAR>
- <OMA>
- <OMS cd="transc1" name="sin">
- <OMV name="x"/>
- </OMA>
- </OMBIND>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <apply><sum/>
- <bvar>
- <ci> x </ci>
- </bvar>
- <lowlimit>
- <ci> a </ci>
- </lowlimit>
- <uplimit>
- <ci> b </ci>
- </uplimit>
- <apply><fn><ci> f </ci></fn>
- <ci> x </ci>
- </apply>
- </apply>
- </math>
- Intermediate representation:
- (sum nil (bvar x 1) (lowupperlimit a b) (f nil x))
- <OMOBJ>
- <OMA>
- <OMS cd="arith1" name="sum"/>
- <OMA>
- <OMS cd="interval1" name="integer_interval"/>
- <OMV name="a"/>
- <OMV name="b"/>
- </OMA>
- <OMBIND>
- <OMS cd="fns1" name="lambda"/>
- <OMBVAR>
- <OMV name="x"/>
- </OMBVAR>
- <OMA>
- <OMATTR>
- <OMATP>
- <OMS cd="typmml" name="type"/>
- <OMS cd="typmml" name="fn_type"/>
- </OMATP>
- <OMV name="f"/>
- </OMATTR>
- <OMV name="x"/>
- </OMA>
- </OMBIND>
- </OMA>
- </OMOBJ>
-
- mml2om();
- <math>
- <apply><diff/>
- <bvar>
- <ci> x </ci>
- </bvar>
- <apply><fn><ci>f</ci></fn>
- <ci> x </ci>
- </apply>
- </apply>
- </math>
- Intermediate representation:
- (diff nil (bvar x 1) (f nil x))
- <OMOBJ>
- <OMA>
- <OMS cd="calculus1" name="diff"/>
- <OMBIND>
- <OMS cd="fns1" name="lambda"/>
- <OMBVAR>
- <OMV name="x"/>
- </OMBVAR>
- <OMA>
- <OMATTR>
- <OMATP>
- <OMS cd="typmml" name="type"/>
- <OMS cd="typmml" name="fn_type"/>
- </OMATP>
- <OMV name="f"/>
- </OMATTR>
- <OMV name="x"/>
- </OMA>
- </OMBIND>
- </OMA>
- </OMOBJ>
-
- mml2om();
- <math>
- <apply><diff/>
- <bvar>
- <ci> x </ci>
- <degree>
- <cn> 2 </cn>
- </degree>
- </bvar>
- <apply><fn><ci>f</ci></fn>
- <ci> x </ci>
- </apply>
- </apply>
- </math>
- Intermediate representation:
- (diff nil (bvar x 1) (diff nil (bvar x 1) (f nil x)))
- <OMOBJ>
- <OMA>
- <OMS cd="calculus1" name="diff"/>
- <OMBIND>
- <OMS cd="fns1" name="lambda"/>
- <OMBVAR>
- <OMV name="x"/>
- </OMBVAR>
- <OMA>
- <OMS cd="calculus1" name="diff"/>
- <OMBIND>
- <OMS cd="fns1" name="lambda"/>
- <OMBVAR>
- <OMV name="x"/>
- </OMBVAR>
- <OMA>
- <OMATTR>
- <OMATP>
- <OMS cd="typmml" name="type"/>
- <OMS cd="typmml" name="fn_type"/>
- </OMATP>
- <OMV name="f"/>
- </OMATTR>
- <OMV name="x"/>
- </OMA>
- </OMBIND>
- </OMA>
- </OMBIND>
- </OMA>
- </OMOBJ>
-
- mml2om();
- <math>
- <apply><diff/>
- <bvar>
- <ci> x </ci>
- <degree>
- <cn> 3 </cn>
- </degree>
- </bvar>
- <apply><fn><ci>f</ci></fn>
- <ci> x </ci>
- </apply>
- </apply>
- </math>
- Intermediate representation:
- (diff nil (bvar x 1) (diff nil (bvar x 1) (diff nil (bvar x 1) (f nil x))))
- <OMOBJ>
- <OMA>
- <OMS cd="calculus1" name="diff"/>
- <OMBIND>
- <OMS cd="fns1" name="lambda"/>
- <OMBVAR>
- <OMV name="x"/>
- </OMBVAR>
- <OMA>
- <OMS cd="calculus1" name="diff"/>
- <OMBIND>
- <OMS cd="fns1" name="lambda"/>
- <OMBVAR>
- <OMV name="x"/>
- </OMBVAR>
- <OMA>
- <OMS cd="calculus1" name="diff"/>
- <OMBIND>
- <OMS cd="fns1" name="lambda"/>
- <OMBVAR>
- <OMV name="x"/>
- </OMBVAR>
- <OMA>
- <OMATTR>
- <OMATP>
- <OMS cd="typmml" name="type"/>
- <OMS cd="typmml" name="fn_type"/>
- </OMATP>
- <OMV name="f"/>
- </OMATTR>
- <OMV name="x"/>
- </OMA>
- </OMBIND>
- </OMA>
- </OMBIND>
- </OMA>
- </OMBIND>
- </OMA>
- </OMOBJ>
-
- mml2om();
- <math>
- <set type=normal>
- <ci> b </ci>
- <ci> a </ci>
- <ci> c </ci>
- </set>
- </math>
- Intermediate representation:
- (set ((type normal)) b a c)
- <OMOBJ>
- <OMA>
- <OMS cd="set1" name="set"/>
- <OMV name="b"/>
- <OMV name="a"/>
- <OMV name="c"/>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <list>
- <ci> b </ci>
- <ci> a </ci>
- <ci> c </ci>
- </list>
- </math>
- Intermediate representation:
- (list nil b a c)
- <OMOBJ>
- <OMA>
- <OMS cd="list1" name="list"/>
- <OMV name="b"/>
- <OMV name="a"/>
- <OMV name="c"/>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <list order="lexicographic">
- <ci> b </ci>
- <ci> a </ci>
- <ci> c </ci>
- </list>
- </math>
- Intermediate representation:
- (list ((order lexicographic)) b a c)
- <OMOBJ>
- <OMA>
- <OMS cd="list1" name="list"/>
- <OMV name="b"/>
- <OMV name="a"/>
- <OMV name="c"/>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <apply><union definitionurl="www.nag.co.uk"/>
- <ci type="set"> A </ci>
- <ci type="set"> B </ci>
- </apply>
- </math>
- Intermediate representation:
- (union ((definitionurl (w w w !. n a g !. c o !. u k))) (ci ((type set)) a) (ci
- ((type set)) b))
- <OMOBJ>
- <OMA>
- <OMS cd="set1" name="union">
- <OMATTR>
- <OMATP>
- <OMS cd="typmml" name="type">
- <OMS cd="typmml" name="(set set_type)set_type">
- </OMATP>
- <OMV name="a"/>
- </OMATTR>
- <OMATTR>
- <OMATP>
- <OMS cd="typmml" name="type">
- <OMS cd="typmml" name="(set set_type)set_type">
- </OMATP>
- <OMV name="b"/>
- </OMATTR>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <apply><union/>
- <set type="normal">
- <ci> b </ci>
- <cn> 2 </cn>
- <ci> c </ci>
- </set>
- <set>
- <ci> b </ci>
- <ci> r </ci>
- <cn> 2 </cn>
- <cn> 4 </cn>
- <ci> c </ci>
- </set>
- </apply>
- </math>
- Intermediate representation:
- (union nil (set ((type normal)) b 2 c) (set nil b r 2 4 c))
- <OMOBJ>
- <OMA>
- <OMS cd="set1" name="union">
- <OMA>
- <OMS cd="set1" name="set"/>
- <OMV name="b"/>
- <OMI> 2 </OMI>
- <OMV name="c"/>
- </OMA>
- <OMA>
- <OMS cd="set1" name="set"/>
- <OMV name="b"/>
- <OMV name="r"/>
- <OMI> 2 </OMI>
- <OMI> 4 </OMI>
- <OMV name="c"/>
- </OMA>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <apply><intersect definitionurl="www.mit.edu"/>
- <ci type="set"> A </ci>
- <ci type="set"> B </ci>
- </apply>
- </math>
- Intermediate representation:
- (intersect ((definitionurl (w w w !. m i t !. e d u))) (ci ((type set)) a) (ci (
- (type set)) b))
- <OMOBJ>
- <OMA>
- <OMS cd="set1" name="intersect">
- <OMATTR>
- <OMATP>
- <OMS cd="typmml" name="type">
- <OMS cd="typmml" name="(set set_type)set_type">
- </OMATP>
- <OMV name="a"/>
- </OMATTR>
- <OMATTR>
- <OMATP>
- <OMS cd="typmml" name="type">
- <OMS cd="typmml" name="(set set_type)set_type">
- </OMATP>
- <OMV name="b"/>
- </OMATTR>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <apply><intersect/>
- <set>
- <ci> b </ci>
- <cn> 2 </cn>
- <ci> c </ci>
- </set>
- <set>
- <ci> b </ci>
- <ci> r </ci>
- <cn> 2 </cn>
- <cn> 4 </cn>
- <ci> c </ci>
- </set>
- </apply>
- </math>
- Intermediate representation:
- (intersect nil (set nil b 2 c) (set nil b r 2 4 c))
- <OMOBJ>
- <OMA>
- <OMS cd="set1" name="intersect">
- <OMA>
- <OMS cd="set1" name="set"/>
- <OMV name="b"/>
- <OMI> 2 </OMI>
- <OMV name="c"/>
- </OMA>
- <OMA>
- <OMS cd="set1" name="set"/>
- <OMV name="b"/>
- <OMV name="r"/>
- <OMI> 2 </OMI>
- <OMI> 4 </OMI>
- <OMV name="c"/>
- </OMA>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <reln><in definitionurl="www.www.www"/>
- <ci> a </ci>
- <ci type="set"> A </ci>
- </reln>
- </math>
- Intermediate representation:
- (in ((definitionurl (w w w !. w w w !. w w w))) a (ci ((type set)) a))
- <OMOBJ>
- <OMA>
- <OMS cd="set1" name="in">
- <OMV name="a"/>
- <OMATTR>
- <OMATP>
- <OMS cd="typmml" name="type">
- <OMS cd="typmml" name="(set set_type)set_type">
- </OMATP>
- <OMV name="a"/>
- </OMATTR>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <reln><notin definitionurl="www.www.www"/>
- <ci> a </ci>
- <ci> A </ci>
- </reln>
- </math>
- Intermediate representation:
- (notin ((definitionurl (w w w !. w w w !. w w w))) a a)
- <OMOBJ>
- <OMA>
- <OMS cd="set1" name="notin">
- <OMV name="a"/>
- <OMV name="a"/>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <reln><prsubset definitionurl="www.www.www"/>
- <ci> A </ci>
- <ci> B </ci>
- </reln>
- </math>
- Intermediate representation:
- (prsubset ((definitionurl (w w w !. w w w !. w w w))) a b)
- <OMOBJ>
- <OMA>
- <OMS cd="set1" name="prsubset">
- <OMV name="a"/>
- <OMV name="b"/>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <reln><notsubset definitionurl="www.www.www"/>
- <ci> A </ci>
- <ci> B </ci>
- </reln>
- </math>
- Intermediate representation:
- (notsubset ((definitionurl (w w w !. w w w !. w w w))) a b)
- <OMOBJ>
- <OMA>
- <OMS cd="set1" name="notsubset">
- <OMV name="a"/>
- <OMV name="b"/>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <reln><notprsubset definitionurl="www.www.www"/>
- <ci> A </ci>
- <ci> B </ci>
- </reln>
- </math>
- Intermediate representation:
- (notprsubset ((definitionurl (w w w !. w w w !. w w w))) a b)
- <OMOBJ>
- <OMA>
- <OMS cd="set1" name="notprsubset">
- <OMV name="a"/>
- <OMV name="b"/>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <apply><setdiff definitionurl="www.www.www"/>
- <ci> A </ci>
- <ci> B </ci>
- </apply>
- </math>
- Intermediate representation:
- (setdiff ((definitionurl (w w w !. w w w !. w w w))) a b)
- <OMOBJ>
- <OMA>
- <OMS cd="set1" name="setdiff">
- <OMV name="a"/>
- <OMV name="b"/>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <apply><sum/>
- <bvar>
- <ci> x </ci>
- </bvar>
- <lowlimit>
- <ci> a </ci>
- </lowlimit>
- <uplimit>
- <ci> b </ci>
- </uplimit>
- <apply><fn><ci> f </ci></fn>
- <ci> x </ci>
- </apply>
- </apply>
- </math>
- Intermediate representation:
- (sum nil (bvar x 1) (lowupperlimit a b) (f nil x))
- <OMOBJ>
- <OMA>
- <OMS cd="arith1" name="sum"/>
- <OMA>
- <OMS cd="interval1" name="integer_interval"/>
- <OMV name="a"/>
- <OMV name="b"/>
- </OMA>
- <OMBIND>
- <OMS cd="fns1" name="lambda"/>
- <OMBVAR>
- <OMV name="x"/>
- </OMBVAR>
- <OMA>
- <OMATTR>
- <OMATP>
- <OMS cd="typmml" name="type"/>
- <OMS cd="typmml" name="fn_type"/>
- </OMATP>
- <OMV name="f"/>
- </OMATTR>
- <OMV name="x"/>
- </OMA>
- </OMBIND>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <apply><product/>
- <bvar>
- <ci> x </ci>
- </bvar>
- <lowlimit>
- <ci> a </ci>
- </lowlimit>
- <uplimit>
- <ci> b </ci>
- </uplimit>
- <apply><fn><ci> f </ci></fn>
- <ci> x </ci>
- </apply>
- </apply>
- </math>
- Intermediate representation:
- (product nil (bvar x 1) (lowupperlimit a b) (f nil x))
- <OMOBJ>
- <OMA>
- <OMS cd="arith1" name="product"/>
- <OMA>
- <OMS cd="interval1" name="integer_interval"/>
- <OMV name="a"/>
- <OMV name="b"/>
- </OMA>
- <OMBIND>
- <OMS cd="fns1" name="lambda"/>
- <OMBVAR>
- <OMV name="x"/>
- </OMBVAR>
- <OMA>
- <OMATTR>
- <OMATP>
- <OMS cd="typmml" name="type"/>
- <OMS cd="typmml" name="fn_type"/>
- </OMATP>
- <OMV name="f"/>
- </OMATTR>
- <OMV name="x"/>
- </OMA>
- </OMBIND>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <apply><limit/>
- <bvar>
- <ci> V </ci>
- </bvar>
- <condition>
- <apply>
- <tendsto type=above/>
- <ci> V </ci>
- <cn> 0 </cn>
- </apply>
- </condition>
- <apply><divide/>
- <apply><int/>
- <bvar>
- <ci> S</ci>
- </bvar>
- <ci> a </ci>
- </apply>
- <ci> V </ci>
- </apply>
- </apply>
- </math>
- Intermediate representation:
- (limit nil (bvar v 1) (condition (tendsto ((type above)) v 0)) (divide nil (int
- nil (bvar s 1) nil a) v))
- <OMOBJ>
- <OMA>
- <OMS cd="limit1" name="limit"/>
- <OMI> 0 </OMI>
- <OMS cd="limit1" name="above"/>
- <OMBIND>
- <OMS cd="fns1" name="lambda"/>
- <OMBVAR>
- <OMV name="v"/>
- </OMBVAR>
- <OMA>
- <OMS cd="arith1" name="divide">
- <OMA>
- <OMS cd="calculus1" name="int"/>
- <OMBIND>
- <OMS cd="fns1" name="lambda"/>
- <OMBVAR>
- <OMV name="s"/>
- </OMBVAR>
- <OMV name="a"/>
- </OMBIND>
- </OMA>
- <OMV name="v"/>
- </OMA>
- </OMBIND>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <apply><limit/>
- <bvar>
- <ci> x </ci>
- </bvar>
- <lowlimit>
- <cn> 0 </cn>
- </lowlimit>
- <apply><sin/>
- <ci> x </ci>
- </apply>
- </apply>
- </math>
- Intermediate representation:
- (limit nil (bvar x 1) (lowlimit 0) (sin nil x))
- <OMOBJ>
- <OMA>
- <OMS cd="limit1" name="limit"/>
- <OMI> 0 </OMI>
- <OMS cd="limit1" name="null"/>
- <OMBIND>
- <OMS cd="fns1" name="lambda"/>
- <OMBVAR>
- <OMV name="x"/>
- </OMBVAR>
- <OMA>
- <OMS cd="transc1" name="sin">
- <OMV name="x"/>
- </OMA>
- </OMBIND>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <apply><limit/>
- <bvar>
- <ci> x </ci>
- </bvar>
- <condition>
- <reln>
- <tendsto type="above"/>
- <ci> x </ci>
- <ci> a </ci>
- </reln>
- </condition>
- <apply><sin/>
- <ci> x </ci>
- </apply>
- </apply>
- </math>
- Intermediate representation:
- (limit nil (bvar x 1) (condition (tendsto ((type above)) x a)) (sin nil x))
- <OMOBJ>
- <OMA>
- <OMS cd="limit1" name="limit"/>
- <OMV name="a"/>
- <OMS cd="limit1" name="above"/>
- <OMBIND>
- <OMS cd="fns1" name="lambda"/>
- <OMBVAR>
- <OMV name="x"/>
- </OMBVAR>
- <OMA>
- <OMS cd="transc1" name="sin">
- <OMV name="x"/>
- </OMA>
- </OMBIND>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <apply><sin/>
- <apply><plus/>
- <apply><cos/>
- <ci> x </ci>
- </apply>
- <apply><power/>
- <ci> x </ci>
- <cn> 3 </cn>
- </apply>
- </apply>
- </apply>
- </math>
- Intermediate representation:
- (sin nil (plus nil (cos nil x) (power nil x 3)))
- <OMOBJ>
- <OMA>
- <OMS cd="transc1" name="sin">
- <OMA>
- <OMS cd="arith1" name="plus">
- <OMA>
- <OMS cd="transc1" name="cos">
- <OMV name="x"/>
- </OMA>
- <OMA>
- <OMS cd="arith1" name="power">
- <OMV name="x"/>
- <OMI> 3 </OMI>
- </OMA>
- </OMA>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <apply><mean/>
- <ci> b </ci>
- <ci> r </ci>
- <cn> 2 </cn>
- <cn> 4 </cn>
- <ci> c </ci>
- </apply>
- </math>
- Intermediate representation:
- (mean nil b r 2 4 c)
- <OMOBJ>
- <OMA>
- <OMS cd="stats1" name="mean">
- <OMV name="b"/>
- <OMV name="r"/>
- <OMI> 2 </OMI>
- <OMI> 4 </OMI>
- <OMV name="c"/>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <apply><sdev/>
- <ci> b </ci>
- <ci> r </ci>
- <cn> 2 </cn>
- <cn> 4 </cn>
- <ci> c </ci>
- </apply>
- </math>
- Intermediate representation:
- (sdev nil b r 2 4 c)
- <OMOBJ>
- <OMA>
- <OMS cd="stats1" name="sdev">
- <OMV name="b"/>
- <OMV name="r"/>
- <OMI> 2 </OMI>
- <OMI> 4 </OMI>
- <OMV name="c"/>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <apply><var/>
- <ci> b </ci>
- <ci> r </ci>
- <cn> 2 </cn>
- <cn> 4 </cn>
- <ci> c </ci>
- </apply>
- </math>
- Intermediate representation:
- (variance nil b r 2 4 c)
- <OMOBJ>
- <OMA>
- <OMS cd="stats1" name="variance">
- <OMV name="b"/>
- <OMV name="r"/>
- <OMI> 2 </OMI>
- <OMI> 4 </OMI>
- <OMV name="c"/>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <vector>
- <cn> 1 </cn>
- <cn> 2 </cn>
- <cn> 3 </cn>
- <ci> x </ci>
- </vector>
- </math>
- Intermediate representation:
- (vectorml nil 1 2 3 x)
- <OMOBJ>
- <OMA>
- <OMS cd="linalg1" name="vector"/>
- <OMI> 1 </OMI>
- <OMI> 2 </OMI>
- <OMI> 3 </OMI>
- <OMV name="x"/>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <matrix>
- <matrixrow>
- <cn> 0 </cn> <cn> 1 </cn> <cn> 0 </cn>
- </matrixrow>
- <matrixrow>
- <cn> 0 </cn> <cn> 0 </cn> <cn> 1 </cn>
- </matrixrow>
- <matrixrow>
- <cn> 1 </cn> <cn> 0 </cn> <cn> 0 </cn>
- </matrixrow>
- </matrix>
- </math>
- Intermediate representation:
- (matrix nil matrixrow ((0 1 0) (0 0 1) (1 0 0)))
- <OMOBJ>
- <OMA>
- <OMS cd="linalg1" name="matrix"/>
- <OMA>
- <OMS cd="linalg1" name="matrixrow"/>
- <OMI> 0 </OMI>
- <OMI> 1 </OMI>
- <OMI> 0 </OMI>
- </OMA>
- <OMA>
- <OMS cd="linalg1" name="matrixrow"/>
- <OMI> 0 </OMI>
- <OMI> 0 </OMI>
- <OMI> 1 </OMI>
- </OMA>
- <OMA>
- <OMS cd="linalg1" name="matrixrow"/>
- <OMI> 1 </OMI>
- <OMI> 0 </OMI>
- <OMI> 0 </OMI>
- </OMA>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <apply><determinant/>
- <matrix>
- <matrixrow>
- <cn> 3 </cn> <cn> 1 </cn> <cn> 5 </cn>
- </matrixrow>
- <matrixrow>
- <cn> 7 </cn> <cn> 0 </cn> <cn> 2 </cn>
- </matrixrow>
- <matrixrow>
- <cn> 1 </cn> <cn> 7 </cn> <cn> 8 </cn>
- </matrixrow>
- </matrix>
- </apply>
- </math>
- Intermediate representation:
- (determinant nil (matrix nil matrixrow ((3 1 5) (7 0 2) (1 7 8))))
- <OMOBJ>
- <OMA>
- <OMS cd="linalg3" name="determinant">
- <OMA>
- <OMS cd="linalg1" name="matrix"/>
- <OMA>
- <OMS cd="linalg1" name="matrixrow"/>
- <OMI> 3 </OMI>
- <OMI> 1 </OMI>
- <OMI> 5 </OMI>
- </OMA>
- <OMA>
- <OMS cd="linalg1" name="matrixrow"/>
- <OMI> 7 </OMI>
- <OMI> 0 </OMI>
- <OMI> 2 </OMI>
- </OMA>
- <OMA>
- <OMS cd="linalg1" name="matrixrow"/>
- <OMI> 1 </OMI>
- <OMI> 7 </OMI>
- <OMI> 8 </OMI>
- </OMA>
- </OMA>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <apply><transpose/>
- <matrix>
- <matrixrow>
- <cn> 3 </cn> <cn> 1 </cn> <cn> 5 </cn>
- </matrixrow>
- <matrixrow>
- <cn> 7 </cn> <cn> 0 </cn> <cn> 2 </cn>
- </matrixrow>
- <matrixrow>
- <cn> 1 </cn> <cn> 7 </cn> <cn> 8 </cn>
- </matrixrow>
- </matrix>
- </apply>
- </math>
- Intermediate representation:
- (transpose nil (matrix nil matrixrow ((3 1 5) (7 0 2) (1 7 8))))
- <OMOBJ>
- <OMA>
- <OMS cd="linalg3" name="transpose">
- <OMA>
- <OMS cd="linalg1" name="matrix"/>
- <OMA>
- <OMS cd="linalg1" name="matrixrow"/>
- <OMI> 3 </OMI>
- <OMI> 1 </OMI>
- <OMI> 5 </OMI>
- </OMA>
- <OMA>
- <OMS cd="linalg1" name="matrixrow"/>
- <OMI> 7 </OMI>
- <OMI> 0 </OMI>
- <OMI> 2 </OMI>
- </OMA>
- <OMA>
- <OMS cd="linalg1" name="matrixrow"/>
- <OMI> 1 </OMI>
- <OMI> 7 </OMI>
- <OMI> 8 </OMI>
- </OMA>
- </OMA>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <apply><selector/>
- <matrix>
- <matrixrow>
- <cn> 1 </cn> <cn> 2 </cn>
- </matrixrow>
- <matrixrow>
- <cn> 3 </cn> <cn> 4 </cn>
- </matrixrow>
- </matrix>
- <cn> 1 </cn>
- </apply>
- </math>
- Intermediate representation:
- (selector nil (matrix nil matrixrow ((1 2) (3 4))) 1 nil)
- <OMOBJ>
- <OMA>
- <OMS cd="linalg3" name="matrix_selector"/>
- <OMI> 1 </OMI>
- <OMA>
- <OMS cd="linalg1" name="matrix"/>
- <OMA>
- <OMS cd="linalg1" name="matrixrow"/>
- <OMI> 1 </OMI>
- <OMI> 2 </OMI>
- </OMA>
- <OMA>
- <OMS cd="linalg1" name="matrixrow"/>
- <OMI> 3 </OMI>
- <OMI> 4 </OMI>
- </OMA>
- </OMA>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <apply><select/>
- <matrix>
- <matrixrow>
- <cn> 1 </cn> <cn> 2 </cn>
- </matrixrow>
- <matrixrow>
- <cn> 3 </cn> <cn> 4 </cn>
- </matrixrow>
- </matrix>
- <cn> 2 </cn>
- <cn> 2 </cn>
- </apply>
- </math>
- Intermediate representation:
- (selector nil (matrix nil matrixrow ((1 2) (3 4))) 2 2)
- <OMOBJ>
- <OMA>
- <OMS cd="linalg3" name="matrix_selector"/>
- <OMI> 2 </OMI>
- <OMI> 2 </OMI>
- <OMA>
- <OMS cd="linalg1" name="matrix"/>
- <OMA>
- <OMS cd="linalg1" name="matrixrow"/>
- <OMI> 1 </OMI>
- <OMI> 2 </OMI>
- </OMA>
- <OMA>
- <OMS cd="linalg1" name="matrixrow"/>
- <OMI> 3 </OMI>
- <OMI> 4 </OMI>
- </OMA>
- </OMA>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <apply><determinant/>
- <matrix>
- <matrixrow>
- <ci>a</ci>
- <cn type="integer">1</cn>
- </matrixrow>
- <matrixrow>
- <cn type="integer">2</cn>
- <ci>s</ci>
- </matrixrow>
- </matrix>
- </apply>
- </math>
- Intermediate representation:
- (determinant nil (matrix nil matrixrow ((a 1) (2 s))))
- <OMOBJ>
- <OMA>
- <OMS cd="linalg3" name="determinant">
- <OMA>
- <OMS cd="linalg1" name="matrix"/>
- <OMA>
- <OMS cd="linalg1" name="matrixrow"/>
- <OMV name="a"/>
- <OMI> 1 </OMI>
- </OMA>
- <OMA>
- <OMS cd="linalg1" name="matrixrow"/>
- <OMI> 2 </OMI>
- <OMV name="s"/>
- </OMA>
- </OMA>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <apply><determinant/>
- <apply><transpose/>
- <matrix>
- <matrixrow>
- <cn type="integer">1</cn>
- <cn type="integer">2</cn>
- <cn type="integer">3</cn>
- <cn type="integer">4</cn>
- </matrixrow>
- <matrixrow>
- <cn type="integer">1</cn>
- <cn type="integer">2</cn>
- <cn type="integer">1</cn>
- <cn type="integer">2</cn>
- </matrixrow>
- <matrixrow>
- <cn type="integer">2</cn>
- <cn type="integer">3</cn>
- <cn type="integer">2</cn>
- <cn type="integer">1</cn>
- </matrixrow>
- <matrixrow>
- <cn type="integer">2</cn>
- <cn type="integer">1</cn>
- <cn type="integer">1</cn>
- <cn type="integer">1</cn>
- </matrixrow>
- </matrix>
- </apply>
- </apply>
- </math>
- Intermediate representation:
- (determinant nil (transpose nil (matrix nil matrixrow ((1 2 3 4) (1 2 1 2) (2 3
- 2 1) (2 1 1 1)))))
- <OMOBJ>
- <OMA>
- <OMS cd="linalg3" name="determinant">
- <OMA>
- <OMS cd="linalg3" name="transpose">
- <OMA>
- <OMS cd="linalg1" name="matrix"/>
- <OMA>
- <OMS cd="linalg1" name="matrixrow"/>
- <OMI> 1 </OMI>
- <OMI> 2 </OMI>
- <OMI> 3 </OMI>
- <OMI> 4 </OMI>
- </OMA>
- <OMA>
- <OMS cd="linalg1" name="matrixrow"/>
- <OMI> 1 </OMI>
- <OMI> 2 </OMI>
- <OMI> 1 </OMI>
- <OMI> 2 </OMI>
- </OMA>
- <OMA>
- <OMS cd="linalg1" name="matrixrow"/>
- <OMI> 2 </OMI>
- <OMI> 3 </OMI>
- <OMI> 2 </OMI>
- <OMI> 1 </OMI>
- </OMA>
- <OMA>
- <OMS cd="linalg1" name="matrixrow"/>
- <OMI> 2 </OMI>
- <OMI> 1 </OMI>
- <OMI> 1 </OMI>
- <OMI> 1 </OMI>
- </OMA>
- </OMA>
- </OMA>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <apply><plus/>
- <apply><times/>
- <cn type="integer">2</cn>
- <apply><cos/>
- <ci>x</ci>
- </apply>
- <ci>x</ci>
- </apply>
- <apply><minus/>
- <apply><times/>
- <apply><sin/>
- <ci>x</ci>
- </apply>
- <apply><power/>
- <ci>x</ci>
- <cn type="integer">2</cn>
- </apply>
- </apply>
- </apply>
- </apply>
- </math>
- Intermediate representation:
- (plus nil (times nil 2 (cos nil x) x) (minus nil (times nil (sin nil x) (power
- nil x 2))))
- <OMOBJ>
- <OMA>
- <OMS cd="arith1" name="plus">
- <OMA>
- <OMS cd="arith1" name="times">
- <OMI> 2 </OMI>
- <OMA>
- <OMS cd="transc1" name="cos">
- <OMV name="x"/>
- </OMA>
- <OMV name="x"/>
- </OMA>
- <OMA>
- <OMS cd="arith1" name="minus">
- <OMA>
- <OMS cd="arith1" name="times">
- <OMA>
- <OMS cd="transc1" name="sin">
- <OMV name="x"/>
- </OMA>
- <OMA>
- <OMS cd="arith1" name="power">
- <OMV name="x"/>
- <OMI> 2 </OMI>
- </OMA>
- </OMA>
- </OMA>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <list>
- <reln><eq/>
- <ci>x</ci>
- <apply><plus/>
- <cn type="constant">ⅈ</cn>
- <apply><minus/>
- <cn type="integer">1</cn>
- </apply>
- </apply>
- </reln>
- <reln><eq/>
- <ci>x</ci>
- <apply><plus/>
- <apply><minus/>
- <cn type="constant">ⅈ</cn>
- </apply>
- <apply><minus/>
- <cn type="integer">1</cn>
- </apply>
- </apply>
- </reln>
- </list>
- </math>
- Intermediate representation:
- (list nil (eq nil x (plus nil !&imaginaryi!; (minus nil 1))) (eq nil x (plus nil
- (minus nil !&imaginaryi!;) (minus nil 1))))
- <OMOBJ>
- <OMA>
- <OMS cd="list1" name="list"/>
- <OMA>
- <OMS cd="relation1" name="eq">
- <OMV name="x"/>
- <OMA>
- <OMS cd="arith1" name="plus">
- <OMS cd="nums1" name="i"/>
- <OMA>
- <OMS cd="arith1" name="minus">
- <OMI> 1 </OMI>
- </OMA>
- </OMA>
- </OMA>
- <OMA>
- <OMS cd="relation1" name="eq">
- <OMV name="x"/>
- <OMA>
- <OMS cd="arith1" name="plus">
- <OMA>
- <OMS cd="arith1" name="minus">
- <OMS cd="nums1" name="i"/>
- </OMA>
- <OMA>
- <OMS cd="arith1" name="minus">
- <OMI> 1 </OMI>
- </OMA>
- </OMA>
- </OMA>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <apply><plus/>
- <apply><minus/>
- <apply><times/>
- <apply><cos/>
- <apply><times/>
- <ci>x</ci>
- <ci>y</ci>
- </apply>
- </apply>
- <ci>x</ci>
- <ci>y</ci>
- </apply>
- </apply>
- <apply><times/>
- <apply><power/>
- <cn type="integer">2</cn>
- <apply><times/>
- <ci>x</ci>
- <ci>y</ci>
- </apply>
- </apply>
- <apply><power/>
- <apply><log/>
- <cn type="integer">2</cn>
- </apply>
- <cn type="integer">2</cn>
- </apply>
- <ci>x</ci>
- <ci>y</ci>
- </apply>
- <apply><times/>
- <apply><power/>
- <cn type="integer">2</cn>
- <apply><times/>
- <ci>x</ci>
- <ci>y</ci>
- </apply>
- </apply>
- <apply><log/>
- <cn type="integer">2</cn>
- </apply>
- </apply>
- <apply><minus/>
- <apply><sin/>
- <apply><times/>
- <ci>x</ci>
- <ci>y</ci>
- </apply>
- </apply>
- </apply>
- <cn type="integer">1</cn>
- </apply>
- </math>
- Intermediate representation:
- (plus nil (minus nil (times nil (cos nil (times nil x y)) x y)) (times nil (
- power nil 2 (times nil x y)) (power nil (log nil nil 2) 2) x y) (times nil (
- power nil 2 (times nil x y)) (log nil nil 2)) (minus nil (sin nil (times nil x y
- ))) 1)
- <OMOBJ>
- <OMA>
- <OMS cd="arith1" name="plus">
- <OMA>
- <OMS cd="arith1" name="minus">
- <OMA>
- <OMS cd="arith1" name="times">
- <OMA>
- <OMS cd="transc1" name="cos">
- <OMA>
- <OMS cd="arith1" name="times">
- <OMV name="x"/>
- <OMV name="y"/>
- </OMA>
- </OMA>
- <OMV name="x"/>
- <OMV name="y"/>
- </OMA>
- </OMA>
- <OMA>
- <OMS cd="arith1" name="times">
- <OMA>
- <OMS cd="arith1" name="power">
- <OMI> 2 </OMI>
- <OMA>
- <OMS cd="arith1" name="times">
- <OMV name="x"/>
- <OMV name="y"/>
- </OMA>
- </OMA>
- <OMA>
- <OMS cd="arith1" name="power">
- <OMA>
- <OMS cd="transc1" name="log">
- <OMI> 2 </OMI>
- </OMA>
- <OMI> 2 </OMI>
- </OMA>
- <OMV name="x"/>
- <OMV name="y"/>
- </OMA>
- <OMA>
- <OMS cd="arith1" name="times">
- <OMA>
- <OMS cd="arith1" name="power">
- <OMI> 2 </OMI>
- <OMA>
- <OMS cd="arith1" name="times">
- <OMV name="x"/>
- <OMV name="y"/>
- </OMA>
- </OMA>
- <OMA>
- <OMS cd="transc1" name="log">
- <OMI> 2 </OMI>
- </OMA>
- </OMA>
- <OMA>
- <OMS cd="arith1" name="minus">
- <OMA>
- <OMS cd="transc1" name="sin">
- <OMA>
- <OMS cd="arith1" name="times">
- <OMV name="x"/>
- <OMV name="y"/>
- </OMA>
- </OMA>
- </OMA>
- <OMI> 1 </OMI>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <reln><eq/>
- <cn>2</cn>
- <cn>2</cn>
- <cn>2</cn>
- </reln>
- </math>
- Intermediate representation:
- (eq nil 2 2 2)
- <OMOBJ>
- <OMA>
- <OMS cd="relation1" name="eq">
- <OMI> 2 </OMI>
- <OMI> 2 </OMI>
- <OMI> 2 </OMI>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <reln><eq/>
- <cn>2</cn>
- <ci>A</ci>
- <ci>u</ci>
- </reln>
- </math>
- Intermediate representation:
- (eq nil 2 a u)
- <OMOBJ>
- <OMA>
- <OMS cd="relation1" name="eq">
- <OMI> 2 </OMI>
- <OMV name="a"/>
- <OMV name="u"/>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <reln><neq/>
- <cn>2</cn>
- <cn>2</cn>
- </reln>
- </math>
- Intermediate representation:
- (neq nil 2 2)
- <OMOBJ>
- <OMA>
- <OMS cd="relation1" name="neq">
- <OMI> 2 </OMI>
- <OMI> 2 </OMI>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <reln><neq/>
- <cn>2</cn>
- <ci>A</ci>
- </reln>
- </math>
- Intermediate representation:
- (neq nil 2 a)
- <OMOBJ>
- <OMA>
- <OMS cd="relation1" name="neq">
- <OMI> 2 </OMI>
- <OMV name="a"/>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <reln><lt/>
- <cn>2</cn>
- <cn>2</cn>
- <cn>2</cn>
- </reln>
- </math>
- Intermediate representation:
- (lt nil 2 2 2)
- <OMOBJ>
- <OMA>
- <OMS cd="relation1" name="lt">
- <OMI> 2 </OMI>
- <OMI> 2 </OMI>
- <OMI> 2 </OMI>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <reln><lt/>
- <cn>2</cn>
- <ci>A</ci>
- <ci>u</ci>
- </reln>
- </math>
- Intermediate representation:
- (lt nil 2 a u)
- <OMOBJ>
- <OMA>
- <OMS cd="relation1" name="lt">
- <OMI> 2 </OMI>
- <OMV name="a"/>
- <OMV name="u"/>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <reln><gt/>
- <cn>2</cn>
- <cn>2</cn>
- <cn>2</cn>
- </reln>
- </math>
- Intermediate representation:
- (gt nil 2 2 2)
- <OMOBJ>
- <OMA>
- <OMS cd="relation1" name="gt">
- <OMI> 2 </OMI>
- <OMI> 2 </OMI>
- <OMI> 2 </OMI>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <reln><gt/>
- <cn>2</cn>
- <ci>A</ci>
- <ci>u</ci>
- </reln>
- </math>
- Intermediate representation:
- (gt nil 2 a u)
- <OMOBJ>
- <OMA>
- <OMS cd="relation1" name="gt">
- <OMI> 2 </OMI>
- <OMV name="a"/>
- <OMV name="u"/>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <reln><geq/>
- <cn>2</cn>
- <cn>2</cn>
- <cn>2</cn>
- </reln>
- </math>
- Intermediate representation:
- (geq nil 2 2 2)
- <OMOBJ>
- <OMA>
- <OMS cd="relation1" name="geq">
- <OMI> 2 </OMI>
- <OMI> 2 </OMI>
- <OMI> 2 </OMI>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <reln><geq/>
- <cn>2</cn>
- <ci>A</ci>
- <ci>u</ci>
- </reln>
- </math>
- Intermediate representation:
- (geq nil 2 a u)
- <OMOBJ>
- <OMA>
- <OMS cd="relation1" name="geq">
- <OMI> 2 </OMI>
- <OMV name="a"/>
- <OMV name="u"/>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <reln><leq/>
- <cn>2</cn>
- <cn>2</cn>
- <cn>2</cn>
- </reln>
- </math>
- Intermediate representation:
- (leq nil 2 2 2)
- <OMOBJ>
- <OMA>
- <OMS cd="relation1" name="leq">
- <OMI> 2 </OMI>
- <OMI> 2 </OMI>
- <OMI> 2 </OMI>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <reln><leq/>
- <cn>2</cn>
- <ci>A</ci>
- <ci>u</ci>
- </reln>
- </math>
- Intermediate representation:
- (leq nil 2 a u)
- <OMOBJ>
- <OMA>
- <OMS cd="relation1" name="leq">
- <OMI> 2 </OMI>
- <OMV name="a"/>
- <OMV name="u"/>
- </OMA>
- </OMOBJ>
- %The following examples work perfectly when read
- %in by mml2om() and prove that the tags employed
- %work correctly. The ir output can then be used
- %to see if the mathml produced works:
- mml2om();
- <math>
- <apply><int/>
- <bvar>
- <ci>x</ci>
- </bvar>
- <lowlimit>
- <cn type="integer">0</cn>
- </lowlimit>
- <uplimit>
- <cn type="integer">1</cn>
- </uplimit>
- <apply><power/>
- <ci>x</ci>
- <cn type="integer">2</cn>
- </apply>
- </apply>
- </math>
- Intermediate representation:
- (int nil (bvar x 1) (lowupperlimit 0 1) (power nil x 2))
- <OMOBJ>
- <OMA>
- <OMS cd="calculus1" name="defint"/>
- <OMA>
- <OMS cd="interval1" name="integer_interval"/>
- <OMI> 0 </OMI>
- <OMI> 1 </OMI>
- </OMA>
- <OMBIND>
- <OMS cd="fns1" name="lambda"/>
- <OMBVAR>
- <OMV name="x"/>
- </OMBVAR>
- <OMA>
- <OMS cd="arith1" name="power">
- <OMV name="x"/>
- <OMI> 2 </OMI>
- </OMA>
- </OMBIND>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <apply><int/>
- <bvar>
- <ci>x</ci>
- </bvar>
- <lowlimit>
- <cn type="integer">1</cn>
- </lowlimit>
- <uplimit>
- <cn type="constant">∞</cn>
- </uplimit>
- <ci>x</ci>
- </apply>
- </math>
- Intermediate representation:
- (int nil (bvar x 1) (lowupperlimit 1 !&infin!;) x)
- <OMOBJ>
- <OMA>
- <OMS cd="calculus1" name="defint"/>
- <OMA>
- <OMS cd="interval1" name="integer_interval"/>
- <OMI> 1 </OMI>
- <OMS cd="nums1" name="infinity"/>
- </OMA>
- <OMBIND>
- <OMS cd="fns1" name="lambda"/>
- <OMBVAR>
- <OMV name="x"/>
- </OMBVAR>
- <OMV name="x"/>
- </OMBIND>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <apply><int/>
- <bvar>
- <ci> x </ci>
- </bvar>
- <interval>
- <ci> a </ci>
- <ci> b </ci>
- </interval>
- <apply><cos/>
- <ci> x </ci>
- </apply>
- </apply>
- </math>
- Intermediate representation:
- (int nil (bvar x 1) (interval nil a b) (cos nil x))
- <OMOBJ>
- <OMA>
- <OMS cd="calculus1" name="defint"/>
- <OMA>
- <OMS cd="interval1" name="interval"/>
- <OMV name="a"/>
- <OMV name="b"/>
- </OMA>
- <OMBIND>
- <OMS cd="fns1" name="lambda"/>
- <OMBVAR>
- <OMV name="x"/>
- </OMBVAR>
- <OMA>
- <OMS cd="transc1" name="cos">
- <OMV name="x"/>
- </OMA>
- </OMBIND>
- </OMA>
- </OMOBJ>
- %this example is MathML1.0 and when passed
- %through function mml2om() it translates it to
- %MathML2.0
- mml2om();
- <math>
- <apply><diff/>
- <bvar>
- <ci> x </ci>
- <degree>
- <cn> 2 </cn>
- </degree>
- </bvar>
- <apply><fn><ci>f</ci></fn>
- <ci> x </ci>
- </apply>
- </apply>
- </math>
- Intermediate representation:
- (diff nil (bvar x 1) (diff nil (bvar x 1) (f nil x)))
- <OMOBJ>
- <OMA>
- <OMS cd="calculus1" name="diff"/>
- <OMBIND>
- <OMS cd="fns1" name="lambda"/>
- <OMBVAR>
- <OMV name="x"/>
- </OMBVAR>
- <OMA>
- <OMS cd="calculus1" name="diff"/>
- <OMBIND>
- <OMS cd="fns1" name="lambda"/>
- <OMBVAR>
- <OMV name="x"/>
- </OMBVAR>
- <OMA>
- <OMATTR>
- <OMATP>
- <OMS cd="typmml" name="type"/>
- <OMS cd="typmml" name="fn_type"/>
- </OMATP>
- <OMV name="f"/>
- </OMATTR>
- <OMV name="x"/>
- </OMA>
- </OMBIND>
- </OMA>
- </OMBIND>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <list>
- <apply><plus/>
- <ci> x </ci>
- <ci> y </ci>
- </apply>
- <cn> 3 </cn>
- <cn> 7 </cn>
- </list>
- </math>
- Intermediate representation:
- (list nil (plus nil x y) 3 7)
- <OMOBJ>
- <OMA>
- <OMS cd="list1" name="list"/>
- <OMA>
- <OMS cd="arith1" name="plus">
- <OMV name="x"/>
- <OMV name="y"/>
- </OMA>
- <OMI> 3 </OMI>
- <OMI> 7 </OMI>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <interval closure="open-closed">
- <ci> a </ci>
- <ci> b </ci>
- </interval>
- </math>
- Intermediate representation:
- (interval ((closure open!-closed)) a b)
- <OMOBJ>
- <OMA>
- <OMS cd="interval1" name="interval_oc"/>
- <OMV name="a"/>
- <OMV name="b"/>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <interval>
- <ci> a </ci>
- <ci> b </ci>
- </interval>
- </math>
- Intermediate representation:
- (interval nil a b)
- <OMOBJ>
- <OMA>
- <OMS cd="interval1" name="interval"/>
- <OMV name="a"/>
- <OMV name="b"/>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <list>
- <list>
- <reln><eq/>
- <ci>x</ci>
- <apply>
- <csymbol definitionURL="..." encoding="...">
- <ci>root_of</ci>
- </csymbol>
- <apply><plus/>
- <apply><minus/>
- <apply><power/>
- <ci>y</ci>
- <ci>x_</ci>
- </apply>
- </apply>
- <apply><minus/>
- <apply><times/>
- <apply><int/>
- <bvar>
- <ci>x_</ci>
- </bvar>
- <apply><power/>
- <ci>x_</ci>
- <ci>x_</ci>
- </apply>
- </apply>
- <ci>y</ci>
- </apply>
- </apply>
- <ci>x_</ci>
- <ci>y</ci>
- </apply>
- <ci>x_</ci>
- <ci>tag_1</ci>
- </apply>
- </reln>
- <reln><eq/>
- <ci>a</ci>
- <apply><plus/>
- <ci>x</ci>
- <ci>y</ci>
- </apply>
- </reln>
- </list>
- </list>
- </math>
- Intermediate representation:
- (list nil (list nil (eq nil x (root_of nil (plus nil (minus nil (power nil y x_)
- ) (minus nil (times nil (int nil (bvar x_ 1) nil (power nil x_ x_)) y)) x_ y) x_
- tag_1)) (eq nil a (plus nil x y))))
- <OMOBJ>
- <OMA>
- <OMS cd="list1" name="list"/>
- <OMA>
- <OMS cd="list1" name="list"/>
- <OMA>
- <OMS cd="relation1" name="eq">
- <OMV name="x"/>
- <OMA>
- <OMATTR>
- <OMATP>
- <OMS cd="typmml" name="type"/>
- <OMS cd="typmml" name="fn_type"/>
- </OMATP>
- <OMV name="root_of"/>
- </OMATTR>
- <OMA>
- <OMS cd="arith1" name="plus">
- <OMA>
- <OMS cd="arith1" name="minus">
- <OMA>
- <OMS cd="arith1" name="power">
- <OMV name="y"/>
- <OMV name="x_"/>
- </OMA>
- </OMA>
- <OMA>
- <OMS cd="arith1" name="minus">
- <OMA>
- <OMS cd="arith1" name="times">
- <OMA>
- <OMS cd="calculus1" name="int"/>
- <OMBIND>
- <OMS cd="fns1" name="lambda"/>
- <OMBVAR>
- <OMV name="x_"/>
- </OMBVAR>
- <OMA>
- <OMS cd="arith1" name="power">
- <OMV name="x_"/>
- <OMV name="x_"/>
- </OMA>
- </OMBIND>
- </OMA>
- <OMV name="y"/>
- </OMA>
- </OMA>
- <OMV name="x_"/>
- <OMV name="y"/>
- </OMA>
- <OMV name="x_"/>
- <OMV name="tag_1"/>
- </OMA>
- </OMA>
- <OMA>
- <OMS cd="relation1" name="eq">
- <OMV name="a"/>
- <OMA>
- <OMS cd="arith1" name="plus">
- <OMV name="x"/>
- <OMV name="y"/>
- </OMA>
- </OMA>
- </OMA>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <list>
- <list>
- <reln><eq/>
- <ci>x</ci>
- <apply>
- <csymbol definitionURL="..." encoding="...">
- <ci>root_of</ci>
- </csymbol>
- <apply><plus/>
- <apply><times/>
- <apply><exp/>
- <apply><plus/>
- <cn type="constant">ⅈ</cn>
- <ci>x_</ci>
- </apply>
- </apply>
- <ci>y</ci>
- </apply>
- <apply><exp/>
- <apply><plus/>
- <cn type="constant">ⅈ</cn>
- <ci>x_</ci>
- </apply>
- </apply>
- <apply><power/>
- <ci>x_</ci>
- <apply><plus/>
- <ci>y</ci>
- <cn type="integer">1</cn>
- </apply>
- </apply>
- <apply><times/>
- <apply><int/>
- <bvar>
- <ci>x_</ci>
- </bvar>
- <apply><power/>
- <ci>x_</ci>
- <ci>x_</ci>
- </apply>
- </apply>
- <apply><power/>
- <ci>y</ci>
- <cn type="integer">2</cn>
- </apply>
- </apply>
- <apply><times/>
- <apply><int/>
- <bvar>
- <ci>x_</ci>
- </bvar>
- <apply><power/>
- <ci>x_</ci>
- <ci>x_</ci>
- </apply>
- </apply>
- <ci>y</ci>
- </apply>
- </apply>
- <ci>x_</ci>
- <ci>tag_2</ci>
- </apply>
- </reln>
- <reln><eq/>
- <ci>z</ci>
- <ci>y</ci>
- </reln>
- </list>
- </list>
- </math>
- Intermediate representation:
- (list nil (list nil (eq nil x (root_of nil (plus nil (times nil (exp nil (plus
- nil !&imaginaryi!; x_)) y) (exp nil (plus nil !&imaginaryi!; x_)) (power nil x_
- (plus nil y 1)) (times nil (int nil (bvar x_ 1) nil (power nil x_ x_)) (power
- nil y 2)) (times nil (int nil (bvar x_ 1) nil (power nil x_ x_)) y)) x_ tag_2))
- (eq nil z y)))
- <OMOBJ>
- <OMA>
- <OMS cd="list1" name="list"/>
- <OMA>
- <OMS cd="list1" name="list"/>
- <OMA>
- <OMS cd="relation1" name="eq">
- <OMV name="x"/>
- <OMA>
- <OMATTR>
- <OMATP>
- <OMS cd="typmml" name="type"/>
- <OMS cd="typmml" name="fn_type"/>
- </OMATP>
- <OMV name="root_of"/>
- </OMATTR>
- <OMA>
- <OMS cd="arith1" name="plus">
- <OMA>
- <OMS cd="arith1" name="times">
- <OMA>
- <OMS cd="transc1" name="exp">
- <OMA>
- <OMS cd="arith1" name="plus">
- <OMS cd="nums1" name="i"/>
- <OMV name="x_"/>
- </OMA>
- </OMA>
- <OMV name="y"/>
- </OMA>
- <OMA>
- <OMS cd="transc1" name="exp">
- <OMA>
- <OMS cd="arith1" name="plus">
- <OMS cd="nums1" name="i"/>
- <OMV name="x_"/>
- </OMA>
- </OMA>
- <OMA>
- <OMS cd="arith1" name="power">
- <OMV name="x_"/>
- <OMA>
- <OMS cd="arith1" name="plus">
- <OMV name="y"/>
- <OMI> 1 </OMI>
- </OMA>
- </OMA>
- <OMA>
- <OMS cd="arith1" name="times">
- <OMA>
- <OMS cd="calculus1" name="int"/>
- <OMBIND>
- <OMS cd="fns1" name="lambda"/>
- <OMBVAR>
- <OMV name="x_"/>
- </OMBVAR>
- <OMA>
- <OMS cd="arith1" name="power">
- <OMV name="x_"/>
- <OMV name="x_"/>
- </OMA>
- </OMBIND>
- </OMA>
- <OMA>
- <OMS cd="arith1" name="power">
- <OMV name="y"/>
- <OMI> 2 </OMI>
- </OMA>
- </OMA>
- <OMA>
- <OMS cd="arith1" name="times">
- <OMA>
- <OMS cd="calculus1" name="int"/>
- <OMBIND>
- <OMS cd="fns1" name="lambda"/>
- <OMBVAR>
- <OMV name="x_"/>
- </OMBVAR>
- <OMA>
- <OMS cd="arith1" name="power">
- <OMV name="x_"/>
- <OMV name="x_"/>
- </OMA>
- </OMBIND>
- </OMA>
- <OMV name="y"/>
- </OMA>
- </OMA>
- <OMV name="x_"/>
- <OMV name="tag_2"/>
- </OMA>
- </OMA>
- <OMA>
- <OMS cd="relation1" name="eq">
- <OMV name="z"/>
- <OMV name="y"/>
- </OMA>
- </OMA>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <apply><curl/>
- <vector>
- <ci> b </ci>
- <cn> 2 </cn>
- <ci> c </ci>
- </vector>
- </apply>
- </math>
- Intermediate representation:
- (curl nil (vectorml nil b 2 c))
- <OMOBJ>
- <OMA>
- <OMS cd="veccalc1" name="curl">
- <OMA>
- <OMS cd="linalg1" name="vector"/>
- <OMV name="b"/>
- <OMI> 2 </OMI>
- <OMV name="c"/>
- </OMA>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <apply><divergence/>
- <vector>
- <ci> b </ci>
- <cn> 2 </cn>
- <ci> c </ci>
- </vector>
- </apply>
- </math>
- Intermediate representation:
- (divergence nil (vectorml nil b 2 c))
- <OMOBJ>
- <OMA>
- <OMS cd="veccalc1" name="divergence">
- <OMA>
- <OMS cd="linalg1" name="vector"/>
- <OMV name="b"/>
- <OMI> 2 </OMI>
- <OMV name="c"/>
- </OMA>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <apply><laplacian/>
- <vector>
- <ci> b </ci>
- <cn> 2 </cn>
- <ci> c </ci>
- </vector>
- </apply>
- </math>
- Intermediate representation:
- (laplacian nil (vectorml nil b 2 c))
- <OMOBJ>
- <OMA>
- <OMS cd="veccalc1" name="laplacian">
- <OMA>
- <OMS cd="linalg1" name="vector"/>
- <OMV name="b"/>
- <OMI> 2 </OMI>
- <OMV name="c"/>
- </OMA>
- </OMA>
- </OMOBJ>
- mml2om();
- <math>
- <apply><forall/>
- <bvar>
- <ci> a </ci>
- </bvar>
- <apply><eq/>
- <apply><inverse/>
- <apply><inverse/>
- <ci> a </ci>
- </apply>
- </apply>
- <ci> a </ci>
- </apply>
- </apply>
- </math>
- Intermediate representation:
- (forall nil (bvar a 1) nil (eq nil (inverse nil (inverse nil a)) a))
- <OMOBJ>
- <OMBIND>
- <OMS cd="quant1" name="forall"/>
- <OMBVAR>
- <OMV name="a"/>
- </OMBVAR>
- <OMA>
- <OMS cd="relation1" name="eq">
- <OMA>
- <OMS cd="fns1" name="inverse">
- <OMA>
- <OMS cd="fns1" name="inverse">
- <OMV name="a"/>
- </OMA>
- </OMA>
- <OMV name="a"/>
- </OMA>
- </OMBIND>
- </OMOBJ>
- %end;
- %in "$reduce/packages/mathml/examples.om";
- % Description: This file contains a long list of examples demonstrating the abilities of
- % the translator. Most of these examples come straight from the CDs. They
- % were used during the development of the interface and should all be correctly
- % translated into MathML.
- %
- % Version 17 April 2000
- %
- % Author: Luis Alvarez Sobreviela
- %
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="arith1" name="plus"/>
- <OMV name=f/>
- <OMV name=d/>
- <OMA>
- <OMS cd="arith1" name="plus"/>
- <OMI>1</OMI>
- <OMF dec=1e10/>
- </OMA>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (plus nil f d (plus nil 1 10000000000.0))
- <math>
- <apply><plus/>
- <ci> f </ci>
- <ci> d </ci>
- <apply><plus/>
- <cn type="integer"> 1 </cn>
- <cn type="real"> 10000000000.0 </cn>
- </apply>
- </apply>
- </math>
- om2mml();
- <OMOBJ>
- <OMBIND>
- <OMS cd=fns1 name=lambda/>
- <OMBVAR>
- <OMV name=x/>
- </OMBVAR>
- <OMA>
- <OMS cd="transc1" name=sin/>
- <OMV name=x/>
- </OMA>
- </OMBIND>
- </OMOBJ>
- Intermediate representation:
- (lambda nil (bvar x 1) (sin nil x))
- <math>
- <lambda>
- <bvar>
- <ci> x </ci>
- </bvar>
- <apply><sin/>
- <ci> x </ci>
- </apply>
- </lambda>
- </math>
- om2mml();
- <OMOBJ>
- <OMBIND>
- <OMS cd=fns1 name=lambda/>
- <OMBVAR>
- <OMV name=x/>
- <OMV name=y/>
- </OMBVAR>
- <OMA>
- <OMS cd="arith1" name=plus/>
- <OMV name=x/>
- <OMA>
- <OMS cd="transc1" name=sin/>
- <OMV name=y/>
- </OMA>
- </OMA>
- </OMBIND>
- </OMOBJ>
- Intermediate representation:
- (lambda nil (bvar x 1) (bvar y 1) (plus nil x (sin nil y)))
- <math>
- <lambda>
- <bvar>
- <ci> x </ci>
- </bvar>
- <bvar>
- <ci> y </ci>
- </bvar>
- <apply><plus/>
- <ci> x </ci>
- <apply><sin/>
- <ci> y </ci>
- </apply>
- </apply>
- </lambda>
- </math>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="arith1" name=plus/>
- <OMV name=x/>
- <OMA>
- <OMS cd="transc1" name=sin/>
- <OMV name=x/>
- </OMA>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (plus nil x (sin nil x))
- <math>
- <apply><plus/>
- <ci> x </ci>
- <apply><sin/>
- <ci> x </ci>
- </apply>
- </apply>
- </math>
- om2mml();
- <OMOBJ>
- <OMBIND>
- <OMS cd="quant1" name="forall"/>
- <OMBVAR>
- <OMV name="x"/>
- </OMBVAR>
- <OMA>
- <OMS cd="relation1" name="leq"/>
- <OMA>
- <OMS cd="arith1" name="abs"/>
- <OMA>
- <OMS cd="transc1" name="sin"/>
- <OMV name="x"/>
- </OMA>
- </OMA>
- <OMF dec="1.0"/>
- </OMA>
- </OMBIND>
- </OMOBJ>
- Intermediate representation:
- (forall nil (bvar x 1) (leq nil (abs nil (sin nil x)) 1.0))
- <math>
- <apply><forall/>
- <bvar>
- <ci> x </ci>
- </bvar>
- <apply><leq/>
- <apply><abs/>
- <apply><sin/>
- <ci> x </ci>
- </apply>
- </apply>
- <cn type="real"> 1.0 </cn>
- </apply>
- </apply>
- </math>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="logic1" name="not"/>
- <OMBIND>
- <OMS cd="quant1" name="exists"/>
- <OMBVAR>
- <OMV name="x"/>
- <OMV name="y"/>
- <OMV name="z"/>
- <OMV name="n"/>
- </OMBVAR>
- <OMA>
- <OMS cd="logic1" name="and"/>
- <OMA>
- <OMS cd="relation1" name="gt"/>
- <OMV name="n"/>
- <OMI> 2 </OMI>
- </OMA>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="arith1" name="plus"/>
- <OMA>
- <OMS cd="arith1" name="power"/>
- <OMV name="x"/>
- <OMV name="n"/>
- </OMA>
- <OMA>
- <OMS cd="arith1" name="power"/>
- <OMV name="y"/>
- <OMV name="n"/>
- </OMA>
- </OMA>
- <OMA>
- <OMS cd="arith1" name="power"/>
- <OMV name="z"/>
- <OMV name="n"/>
- </OMA>
- </OMA>
- </OMA>
- </OMBIND>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (not nil (exists nil (bvar x 1) (bvar y 1) (bvar z 1) (bvar n 1) (and nil (gt
- nil n 2) (eq nil (plus nil (power nil x n) (power nil y n)) (power nil z n)))))
- <math>
- <apply><not/>
- <apply><exists/>
- <bvar>
- <ci> x </ci>
- </bvar>
- <bvar>
- <ci> y </ci>
- </bvar>
- <bvar>
- <ci> z </ci>
- </bvar>
- <bvar>
- <ci> n </ci>
- </bvar>
- <apply><and/>
- <apply><gt/>
- <ci> n </ci>
- <cn type="integer"> 2 </cn>
- </apply>
- <apply><eq/>
- <apply><plus/>
- <apply><power/>
- <ci> x </ci>
- <ci> n </ci>
- </apply>
- <apply><power/>
- <ci> y </ci>
- <ci> n </ci>
- </apply>
- </apply>
- <apply><power/>
- <ci> z </ci>
- <ci> n </ci>
- </apply>
- </apply>
- </apply>
- </apply>
- </apply>
- </math>
- % The following two examples show how the translator
- % can deal with matrices represented either in columns
- % or rows. The translator then converts matrices
- % represented in columns into ones represented in
- % rows. Mapping to MathML is then possible.
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="linalg2" name="matrix"/>
- <OMA>
- <OMS cd="linalg2" name="matrixcolumn"/>
- <OMI> 1 </OMI>
- <OMI> 2 </OMI>
- </OMA>
- <OMA>
- <OMS cd="linalg2" name="matrixcolumn"/>
- <OMI> 3 </OMI>
- <OMI> 4 </OMI>
- </OMA>
- <OMA>
- <OMS cd="linalg2" name="matrixcolumn"/>
- <OMI> 5 </OMI>
- <OMI> 6 </OMI>
- </OMA>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (matrix nil matrixcolumn ((1 2) (3 4) (5 6)))
- <math>
- <matrix>
- <matrixrow>
- <cn type="integer"> 1 </cn>
- <cn type="integer"> 3 </cn>
- <cn type="integer"> 5 </cn>
- </matrixrow>
- <matrixrow>
- <cn type="integer"> 2 </cn>
- <cn type="integer"> 4 </cn>
- <cn type="integer"> 6 </cn>
- </matrixrow>
- </matrix>
- </math>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="linalg2" name="matrix"/>
- <OMA>
- <OMS cd="linalg2" name="matrixrow"/>
- <OMI> 1 </OMI>
- <OMI> 0 </OMI>
- </OMA>
- <OMA>
- <OMS cd="linalg2" name="matrixrow"/>
- <OMI> 0 </OMI>
- <OMI> 1 </OMI>
- </OMA>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (matrix nil matrixrow ((1 0) (0 1)))
- <math>
- <matrix>
- <matrixrow>
- <cn type="integer"> 1 </cn>
- <cn type="integer"> 0 </cn>
- </matrixrow>
- <matrixrow>
- <cn type="integer"> 0 </cn>
- <cn type="integer"> 1 </cn>
- </matrixrow>
- </matrix>
- </math>
- om2mml();
- <OMOBJ>
- <OMBIND>
- <OMS cd="quant1" name="forall"/>
- <OMBVAR>
- <OMV name="M"/>
- </OMBVAR>
- <OMA>
- <OMS cd="logic1" name="and"/>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="arith1" name="times"/>
- <OMA>
- <OMS cd="linalg3" name="identity"/>
- <OMA>
- <OMS cd="linalg3" name="rowcount"/>
- <OMV name="M"/>
- </OMA>
- </OMA>
- <OMV name="M"/>
- </OMA>
- <OMV name="M"/>
- </OMA>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="arith1" name="times"/>
- <OMV name="M"/>
- <OMA>
- <OMS cd="linalg3" name="identity"/>
- <OMA>
- <OMS cd="linalg3" name="columncount"/>
- <OMV name="M"/>
- </OMA>
- </OMA>
- </OMA>
- <OMV name="M"/>
- </OMA>
- </OMA>
- </OMBIND>
- </OMOBJ>
- Intermediate representation:
- (forall nil (bvar m 1) (and nil (eq nil (times nil (semantic (identity (o m s
- c d = " l i n a l g 3 " n a m e = " i d e n t i t y " /)) (semantic (rowcount
- (o m s c d = " l i n a l g 3 " n a m e = " r o w c o u n t " /)) m)) m) m) (
- eq nil (times nil m (semantic (identity (o m s c d = " l i n a l g 3 " n a m
- e = " i d e n t i t y " /)) (semantic (columncount (o m s c d = " l i n a l g
- 3 " n a m e = " c o l u m n c o u n t " /)) m))) m)))
- <math>
- <apply><forall/>
- <bvar>
- <ci> m </ci>
- </bvar>
- <apply><and/>
- <apply><eq/>
- <apply><times/>
- <apply>
- <fn>
- <semantic>
- <ci><mo>identity</mo></ci>
- <annotation-xml encoding="OpenMath">
- <oms cd="linalg3" name="identity"/>
- </annotation-xml>
- </semantic>
- </fn>
- <apply>
- <fn>
- <semantic>
- <ci><mo>rowcount</mo></ci>
- <annotation-xml encoding="OpenMath">
- <oms cd="linalg3" name="rowcount"/>
- </annotation-xml>
- </semantic>
- </fn>
- <ci> m </ci>
- </apply>
- </apply>
- <ci> m </ci>
- </apply>
- <ci> m </ci>
- </apply>
- <apply><eq/>
- <apply><times/>
- <ci> m </ci>
- <apply>
- <fn>
- <semantic>
- <ci><mo>identity</mo></ci>
- <annotation-xml encoding="OpenMath">
- <oms cd="linalg3" name="identity"/>
- </annotation-xml>
- </semantic>
- </fn>
- <apply>
- <fn>
- <semantic>
- <ci><mo>columncount</mo></ci>
- <annotation-xml encoding="OpenMath">
- <oms cd="linalg3" name="columncount"/>
- </annotation-xml>
- </semantic>
- </fn>
- <ci> m </ci>
- </apply>
- </apply>
- </apply>
- <ci> m </ci>
- </apply>
- </apply>
- </apply>
- </math>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="limit1" name="limit"/>
- <OMF dec="0.0"/>
- <OMS cd="limit1" name="above"/>
- <OMBIND>
- <OMS cd="fns1" name="lambda"/>
- <OMBVAR>
- <OMV name="x"/>
- </OMBVAR>
- <OMA>
- <OMS cd="transc1" name="sin"/>
- <OMV name="x"/>
- </OMA>
- </OMBIND>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (limit nil (bvar x 1) (condition (tendsto ((type above)) x 0.0)) (sin nil x))
- <math>
- <apply><limit/>
- <bvar>
- <ci> x </ci>
- </bvar>
- <condition>
- <apply><tendsto type="above"/>
- <ci> x </ci>
- <cn type="real"> 0.0 </cn>
- </apply>
- </condition>
- <apply><sin/>
- <ci> x </ci>
- </apply>
- </apply>
- </math>
-
- % This following example will show that the translator only
- % identifies the limit symbol of the limit1 CD
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="fakeCD" name="limit"/>
- <OMF dec="0.0"/>
- <OMS cd="limit1" name="above"/>
- <OMBIND>
- <OMS cd="fns1" name="lambda"/>
- <OMBVAR>
- <OMV name="x"/>
- </OMBVAR>
- <OMA>
- <OMS cd="transc1" name="sin"/>
- <OMV name="x"/>
- </OMA>
- </OMBIND>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (semantic (limit (o m s c d = " f a k e c d " n a m e = " l i m i t " /))
- nil (bvar x 1) (condition (tendsto ((type above)) x 0.0)) (sin nil x))
- <math>
- <apply>
- <fn>
- <semantic>
- <ci><mo>limit</mo></ci>
- <annotation-xml encoding="OpenMath">
- <oms cd="fakecd" name="limit"/>
- </annotation-xml>
- </semantic>
- </fn>
- <bvar>
- <ci> x </ci>
- </bvar>
- <condition>
- <apply><tendsto type="above"/>
- <ci> x </ci>
- <cn type="real"> 0.0 </cn>
- </apply>
- </condition>
- <apply><sin/>
- <ci> x </ci>
- </apply>
- </apply>
- </math>
-
- % The following two examples show how the translator
- % recognizes whether a symbol has a mathml equivalent
- % depending on the CD it comes from.
- % They both use symbol 'notsubset' but from different
- % CDs. Only one of them can be mapped to MathML
- % and the program distinguishes it by checking if
- % the CD given is the correct one on its table
- % om_mml!*.
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="multiset1" name="notsubset"/>
- <OMA>
- <OMS cd="multiset1" name="set"/>
- <OMI> 2 </OMI>
- <OMI> 3 </OMI>
- <OMI> 3 </OMI>
- </OMA>
- <OMA>
- <OMS cd="multiset1" name="set"/>
- <OMI> 1 </OMI>
- <OMI> 2 </OMI>
- <OMI> 3 </OMI>
- </OMA>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (notsubset nil (set nil 2 3 3) (set nil 1 2 3))
- <math>
- <apply><notsubset/>
- <set>
- <cn type="integer"> 2 </cn>
- <cn type="integer"> 3 </cn>
- <cn type="integer"> 3 </cn>
- </set>
- <set>
- <cn type="integer"> 1 </cn>
- <cn type="integer"> 2 </cn>
- <cn type="integer"> 3 </cn>
- </set>
- </apply>
- </math>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="set1" name="notsubset"/>
- <OMA>
- <OMS cd="multiset1" name="set"/>
- <OMI> 2 </OMI>
- <OMI> 3 </OMI>
- <OMI> 3 </OMI>
- </OMA>
- <OMA>
- <OMS cd="multiset1" name="set"/>
- <OMI> 1 </OMI>
- <OMI> 2 </OMI>
- <OMI> 3 </OMI>
- </OMA>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (notsubset nil (set nil 2 3 3) (set nil 1 2 3))
- <math>
- <apply><notsubset/>
- <set>
- <cn type="integer"> 2 </cn>
- <cn type="integer"> 3 </cn>
- <cn type="integer"> 3 </cn>
- </set>
- <set>
- <cn type="integer"> 1 </cn>
- <cn type="integer"> 2 </cn>
- <cn type="integer"> 3 </cn>
- </set>
- </apply>
- </math>
- om2mml();
- <OMOBJ>
- <OMBIND>
- <OMS cd="quant1" name="forall"/>
- <OMBVAR>
- <OMV name="a"/>
- <OMV name="b"/>
- </OMBVAR>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="arith1" name="plus"/>
- <OMV name="a"/>
- <OMV name="b"/>
- </OMA>
- <OMA>
- <OMS cd="arith1" name="plus"/>
- <OMV name="b"/>
- <OMV name="a"/>
- </OMA>
- </OMA>
- </OMBIND>
- </OMOBJ>
- Intermediate representation:
- (forall nil (bvar a 1) (bvar b 1) (eq nil (plus nil a b) (plus nil b a)))
- <math>
- <apply><forall/>
- <bvar>
- <ci> a </ci>
- </bvar>
- <bvar>
- <ci> b </ci>
- </bvar>
- <apply><eq/>
- <apply><plus/>
- <ci> a </ci>
- <ci> b </ci>
- </apply>
- <apply><plus/>
- <ci> b </ci>
- <ci> a </ci>
- </apply>
- </apply>
- </apply>
- </math>
- % Example of a symbol which has a MathML equivalent
- % but under another name.
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="arith1" name="unary_minus"/>
- <OMI> 1 </OMI>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (minus nil 1)
- <math>
- <apply><minus/>
- <cn type="integer"> 1 </cn>
- </apply>
- </math>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="logic1" name="not"/>
- <OMS cd="logic1" name="false"/>
- </OMA>
- <OMS cd="logic1" name="true"/>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (eq nil (not nil &false;) &true;)
- <math>
- <apply><eq/>
- <apply><not/>
- <cn type="constant"> &false; </cn>
- </apply>
- <cn type="constant"> &true; </cn>
- </apply>
- </math>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="arith1" name="times"/>
- <OMA>
- <OMS cd="fns1" name="identity"/>
- <OMA>
- <OMS cd="linalg3" name="rowcount"/>
- <OMV name="M"/>
- </OMA>
- </OMA>
- <OMV name="M"/>
- </OMA>
- <OMV name="M"/>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (eq nil (times nil (semantic (identity (o m s c d = " f n s 1 " n a m e = "
- i d e n t i t y " /)) (semantic (rowcount (o m s c d = " l i n a l g 3 " n a
- m e = " r o w c o u n t " /)) m)) m) m)
- <math>
- <apply><eq/>
- <apply><times/>
- <apply>
- <fn>
- <semantic>
- <ci><mo>identity</mo></ci>
- <annotation-xml encoding="OpenMath">
- <oms cd="fns1" name="identity"/>
- </annotation-xml>
- </semantic>
- </fn>
- <apply>
- <fn>
- <semantic>
- <ci><mo>rowcount</mo></ci>
- <annotation-xml encoding="OpenMath">
- <oms cd="linalg3" name="rowcount"/>
- </annotation-xml>
- </semantic>
- </fn>
- <ci> m </ci>
- </apply>
- </apply>
- <ci> m </ci>
- </apply>
- <ci> m </ci>
- </apply>
- </math>
-
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="linalg1" name="scalarproduct"/>
- <OMA>
- <OMS cd="linalg1" name="vector"/>
- <OMI> 3 </OMI>
- <OMI> 6 </OMI>
- <OMI> 9 </OMI>
- </OMA>
- <OMA>
- <OMS cd="linalg1" name="vector"/>
- <OMI> 3 </OMI>
- <OMI> 6 </OMI>
- <OMI> 9 </OMI>
- </OMA>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (scalarproduct nil (vectorml nil 3 6 9) (vectorml nil 3 6 9))
- <math>
- <apply><scalarproduct/>
- <vector>
- <cn type="integer"> 3 </cn>
- <cn type="integer"> 6 </cn>
- <cn type="integer"> 9 </cn>
- </vector>
- <vector>
- <cn type="integer"> 3 </cn>
- <cn type="integer"> 6 </cn>
- <cn type="integer"> 9 </cn>
- </vector>
- </apply>
- </math>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="linalg1" name="outerproduct"/>
- <OMA>
- <OMS cd="linalg1" name="vector"/>
- <OMI> 3 </OMI>
- <OMI> 6 </OMI>
- <OMI> 9 </OMI>
- </OMA>
- <OMA>
- <OMS cd="linalg1" name="vector"/>
- <OMI> 3 </OMI>
- <OMI> 6 </OMI>
- <OMI> 9 </OMI>
- </OMA>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (outerproduct nil (vectorml nil 3 6 9) (vectorml nil 3 6 9))
- <math>
- <apply><outerproduct/>
- <vector>
- <cn type="integer"> 3 </cn>
- <cn type="integer"> 6 </cn>
- <cn type="integer"> 9 </cn>
- </vector>
- <vector>
- <cn type="integer"> 3 </cn>
- <cn type="integer"> 6 </cn>
- <cn type="integer"> 9 </cn>
- </vector>
- </apply>
- </math>
- om2mml();
- <OMOBJ>
- <OMBIND>
- <OMS cd="quant1" name="forall"/>
- <OMBVAR>
- <OMV name="a"/>
- </OMBVAR>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="arith1" name="plus"/>
- <OMV name="a"/>
- <OMS cd="alg1" name="zero"/>
- </OMA>
- <OMV name="a"/>
- </OMA>
- </OMBIND>
- </OMOBJ>
- Intermediate representation:
- (forall nil (bvar a 1) (eq nil (plus nil a 0) a))
- <math>
- <apply><forall/>
- <bvar>
- <ci> a </ci>
- </bvar>
- <apply><eq/>
- <apply><plus/>
- <ci> a </ci>
- <cn type="integer"> 0 </cn>
- </apply>
- <ci> a </ci>
- </apply>
- </apply>
- </math>
- om2mml();
- <OMOBJ>
- <OMBIND>
- <OMS cd="quant1" name="forall"/>
- <OMBVAR>
- <OMV name="a"/>
- </OMBVAR>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="arith1" name="times"/>
- <OMS cd="alg1" name="one"/>
- <OMV name="a"/>
- </OMA>
- <OMV name="a"/>
- </OMA>
- </OMBIND>
- </OMOBJ>
- Intermediate representation:
- (forall nil (bvar a 1) (eq nil (times nil 1 a) a))
- <math>
- <apply><forall/>
- <bvar>
- <ci> a </ci>
- </bvar>
- <apply><eq/>
- <apply><times/>
- <cn type="integer"> 1 </cn>
- <ci> a </ci>
- </apply>
- <ci> a </ci>
- </apply>
- </apply>
- </math>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="bigfloat1" name="bigfloat"/>
- <OMV name="m"/>
- <OMV name="r"/>
- <OMV name="e"/>
- </OMA>
- <OMA>
- <OMS cd="arith1" name="times"/>
- <OMV name="m"/>
- <OMA>
- <OMS cd="arith1" name="power"/>
- <OMV name="r"/>
- <OMV name="e"/>
- </OMA>
- </OMA>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (eq nil (semantic (bigfloat (o m s c d = " b i g f l o a t 1 " n a m e = " b
- i g f l o a t " /)) m r e) (times nil m (power nil r e)))
- <math>
- <apply><eq/>
- <apply>
- <fn>
- <semantic>
- <ci><mo>bigfloat</mo></ci>
- <annotation-xml encoding="OpenMath">
- <oms cd="bigfloat1" name="bigfloat"/>
- </annotation-xml>
- </semantic>
- </fn>
- <ci> m </ci>
- <ci> r </ci>
- <ci> e </ci>
- </apply>
- <apply><times/>
- <ci> m </ci>
- <apply><power/>
- <ci> r </ci>
- <ci> e </ci>
- </apply>
- </apply>
- </apply>
- </math>
- % The integral symbols defint and int are ambigious as defined
- % in the CDs. They do not specify their variable of integration
- % explicitly. The following shows that when the function
- % to integrate is defined as a lambda expression, then the
- % bound variable is easily determined. However, in other
- % cases, it is not possible to determine the bound variable.
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="calculus1" name="int"/>
- <OMBIND>
- <OMS cd="fns1" name="lambda"/>
- <OMBVAR>
- <OMV name="x"/>
- </OMBVAR>
- <OMA>
- <OMS cd="transc1" name="sin"/>
- <OMV name="x"/>
- </OMA>
- </OMBIND>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (int nil (bvar x 1) (sin nil x))
- <math>
- <apply><int/>
- <bvar>
- <ci> x </ci>
- </bvar>
- <apply><sin/>
- <ci> x </ci>
- </apply>
- </apply>
- </math>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="calculus1" name="int"/>
- <OMA>
- <OMS cd="arith1" name="plus"/>
- <OMV name="x"/>
- <OMV name="y"/>
- </OMA>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (int nil (bvar x 1) (plus nil x y))
- <math>
- <apply><int/>
- <bvar>
- <ci> x </ci>
- </bvar>
- <apply><plus/>
- <ci> x </ci>
- <ci> y </ci>
- </apply>
- </apply>
- </math>
- % Some calculus
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="calculus1" name="diff"/>
- <OMBIND>
- <OMS cd="fns1" name="lambda"/>
- <OMBVAR>
- <OMV name="x"/>
- </OMBVAR>
- <OMA>
- <OMS cd="arith1" name="plus"/>
- <OMV name="x"/>
- <OMF dec="1.0"/>
- </OMA>
- </OMBIND>
- </OMA>
- <OMF dec="1.0"/>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (eq nil (diff nil (bvar x 1) (plus nil x 1.0)) 1.0)
- <math>
- <apply><eq/>
- <apply><diff/>
- <bvar>
- <ci> x </ci>
- </bvar>
- <apply><plus/>
- <ci> x </ci>
- <cn type="real"> 1.0 </cn>
- </apply>
- </apply>
- <cn type="real"> 1.0 </cn>
- </apply>
- </math>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="calculus1" name="partialdiff"/>
- <OMA>
- <OMS cd="list1" name="list"/>
- <OMI> 1 </OMI>
- <OMI> 3 </OMI>
- </OMA>
- <OMBIND>
- <OMS cd="fns1" name="lambda"/>
- <OMBVAR>
- <OMV name="x"/>
- <OMV name="y"/>
- <OMV name="z"/>
- </OMBVAR>
- <OMA>
- <OMS cd="arith2" name="times"/>
- <OMV name="x"/>
- <OMV name="y"/>
- <OMV name="z"/>
- </OMA>
- </OMBIND>
- </OMA>
- <OMV name="y"/>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (eq nil (partialdiff nil (bvar z 1) (bvar x 1) (times nil x y z)) y)
- <math>
- <apply><eq/>
- <apply><partialdiff/>
- <bvar>
- <ci> z </ci>
- </bvar>
- <bvar>
- <ci> x </ci>
- </bvar>
- <apply><times/>
- <ci> x </ci>
- <ci> y </ci>
- <ci> z </ci>
- </apply>
- </apply>
- <ci> y </ci>
- </apply>
- </math>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="integer1" name="factorial"/>
- <OMV name="n"/>
- </OMA>
- <OMA>
- <OMS cd="arith1" name="product"/>
- <OMA>
- <OMS cd="interval1" name="integer_interval"/>
- <OMI> 1 </OMI>
- <OMV name="n"/>
- </OMA>
- <OMBIND>
- <OMS cd="fns1" name="lambda"/>
- <OMBVAR>
- <OMV name="i"/>
- </OMBVAR>
- <OMV name="i"/>
- </OMBIND>
- </OMA>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (eq nil (factorial nil n) (product nil (bvar i 1) (lowupperlimit nil 1 n) i))
- <math>
- <apply><eq/>
- <apply><factorial/>
- <ci> n </ci>
- </apply>
- <apply><product/>
- <bvar>
- <ci> i </ci>
- </bvar>
- <lowlimit>
- <cn type="integer"> 1 </cn>
- </lowlimit>
- <uplimit>
- <ci> n </ci>
- </uplimit>
- <ci> i </ci>
- </apply>
- </apply>
- </math>
-
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="logic1" name="not"/>
- <OMBIND>
- <OMS cd="quant1" name="exists"/>
- <OMBVAR>
- <OMV name="c"/>
- </OMBVAR>
- <OMA>
- <OMS cd="logic1" name="and"/>
- <OMA>
- <OMS cd="set1" name="in"/>
- <OMA>
- <OMS cd="arith1" name="divide"/>
- <OMV name="a"/>
- <OMV name="c"/>
- </OMA>
- <OMS cd="setname1" name="Z"/>
- </OMA>
- <OMA>
- <OMS cd="set1" name="in"/>
- <OMA>
- <OMS cd="arith1" name="divide"/>
- <OMV name="b"/>
- <OMV name="c"/>
- </OMA>
- <OMS cd="setname1" name="Z"/>
- </OMA>
- <OMA>
- <OMS cd="relation1" name="gt"/>
- <OMV name="c"/>
- <OMA>
- <OMS cd="integer1" name="gcd"/>
- <OMV name="a"/>
- <OMV name="b"/>
- </OMA>
- </OMA>
- </OMA>
- </OMBIND>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (not nil (exists nil (bvar c 1) (and nil (in nil (divide nil a c) (semantic (z (
- o m s c d = " s e t n a m e 1 " n a m e = " z " /)))) (in nil (divide nil b
- c) (semantic (z (o m s c d = " s e t n a m e 1 " n a m e = " z " /)))) (gt
- nil c (gcd nil a b)))))
- <math>
- <apply><not/>
- <apply><exists/>
- <bvar>
- <ci> c </ci>
- </bvar>
- <apply><and/>
- <apply><in/>
- <apply><divide/>
- <ci> a </ci>
- <ci> c </ci>
- </apply>
- <semantic>
- <ci><mo>z</mo></ci>
- <annotation-xml encoding="OpenMath">
- <oms cd="setname1" name="z"/>
- </annotation-xml>
- </semantic>
- </apply>
- <apply><in/>
- <apply><divide/>
- <ci> b </ci>
- <ci> c </ci>
- </apply>
- <semantic>
- <ci><mo>z</mo></ci>
- <annotation-xml encoding="OpenMath">
- <oms cd="setname1" name="z"/>
- </annotation-xml>
- </semantic>
- </apply>
- <apply><gt/>
- <ci> c </ci>
- <apply><gcd/>
- <ci> a </ci>
- <ci> b </ci>
- </apply>
- </apply>
- </apply>
- </apply>
- </apply>
- </math>
- om2mml();
- <OMOBJ>
- <OMBIND>
- <OMS cd="quant1" name="forall"/>
- <OMBVAR>
- <OMV name="x"/>
- </OMBVAR>
- <OMA>
- <OMS cd="logic1" name="implies"/>
- <OMS cd="logic1" name="false"/>
- <OMV name="x"/>
- </OMA>
- </OMBIND>
- </OMOBJ>
- Intermediate representation:
- (forall nil (bvar x 1) (implies nil &false; x))
- <math>
- <apply><forall/>
- <bvar>
- <ci> x </ci>
- </bvar>
- <apply><implies/>
- <cn type="constant"> &false; </cn>
- <ci> x </ci>
- </apply>
- </apply>
- </math>
-
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="minmax1" name="max"/>
- <OMI> 1 </OMI>
- <OMI> 9 </OMI>
- <OMI> 5 </OMI>
- </OMA>
- <OMI> 9 </OMI>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (eq nil (max nil 1 9 5) 9)
- <math>
- <apply><eq/>
- <apply><max/>
- <cn type="integer"> 1 </cn>
- <cn type="integer"> 9 </cn>
- <cn type="integer"> 5 </cn>
- </apply>
- <cn type="integer"> 9 </cn>
- </apply>
- </math>
- % The following examples belong to the multiset CD
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="logic1" name="implies"/>
- <OMA>
- <OMS cd="logic1" name="and"/>
- <OMA>
- <OMS cd="multiset1" name="in"/>
- <OMV name="a"/>
- <OMV name="A"/>
- </OMA>
- <OMA>
- <OMS cd="multiset1" name="in"/>
- <OMV name="a"/>
- <OMV name="B"/>
- </OMA>
- </OMA>
- <OMA>
- <OMS cd="multiset1" name="in"/>
- <OMV name="a"/>
- <OMA>
- <OMS cd="multiset1" name="intersect"/>
- <OMV name="A"/>
- <OMV name="B"/>
- </OMA>
- </OMA>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (implies nil (and nil (in nil a a) (in nil a b)) (in nil a (intersect nil a b)))
- <math>
- <apply><implies/>
- <apply><and/>
- <apply><in/>
- <ci> a </ci>
- <ci> a </ci>
- </apply>
- <apply><in/>
- <ci> a </ci>
- <ci> b </ci>
- </apply>
- </apply>
- <apply><in/>
- <ci> a </ci>
- <apply><intersect/>
- <ci> a </ci>
- <ci> b </ci>
- </apply>
- </apply>
- </apply>
- </math>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="multiset1" name="multiset"/>
- <OMI> 4 </OMI>
- <OMI> 1 </OMI>
- <OMI> 0 </OMI>
- <OMI> 1 </OMI>
- <OMI> 4 </OMI>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (set ((type multiset)) 4 1 0 1 4)
- <math>
- <set type="multiset">
- <cn type="integer"> 4 </cn>
- <cn type="integer"> 1 </cn>
- <cn type="integer"> 0 </cn>
- <cn type="integer"> 1 </cn>
- <cn type="integer"> 4 </cn>
- </set>
- </math>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="logic1" name="and"/>
- <OMA>
- <OMS cd="multiset1" name="subset"/>
- <OMA>
- <OMS cd="multiset1" name="intersect"/>
- <OMV name="A"/>
- <OMV name="B"/>
- </OMA>
- <OMV name="A"/>
- </OMA>
- <OMA>
- <OMS cd="multiset1" name="subset"/>
- <OMA>
- <OMS cd="multiset1" name="intersect"/>
- <OMV name="A"/>
- <OMV name="B"/>
- </OMA>
- <OMV name="B"/>
- </OMA>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (and nil (subset nil (intersect nil a b) a) (subset nil (intersect nil a b) b))
- <math>
- <apply><and/>
- <apply><subset/>
- <apply><intersect/>
- <ci> a </ci>
- <ci> b </ci>
- </apply>
- <ci> a </ci>
- </apply>
- <apply><subset/>
- <apply><intersect/>
- <ci> a </ci>
- <ci> b </ci>
- </apply>
- <ci> b </ci>
- </apply>
- </apply>
- </math>
-
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="logic1" name="and"/>
- <OMA>
- <OMS cd="multiset1" name="subset"/>
- <OMV name="A"/>
- <OMA>
- <OMS cd="multiset1" name="union"/>
- <OMV name="A"/>
- <OMV name="B"/>
- </OMA>
- </OMA>
- <OMA>
- <OMS cd="multiset1" name="subset"/>
- <OMV name="B"/>
- <OMA>
- <OMS cd="multiset1" name="union"/>
- <OMV name="A"/>
- <OMV name="B"/>
- </OMA>
- </OMA>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (and nil (subset nil a (union nil a b)) (subset nil b (union nil a b)))
- <math>
- <apply><and/>
- <apply><subset/>
- <ci> a </ci>
- <apply><union/>
- <ci> a </ci>
- <ci> b </ci>
- </apply>
- </apply>
- <apply><subset/>
- <ci> b </ci>
- <apply><union/>
- <ci> a </ci>
- <ci> b </ci>
- </apply>
- </apply>
- </apply>
- </math>
- om2mml();
- <OMOBJ>
- <OMBIND>
- <OMS cd="quant1" name="forall"/>
- <OMBVAR>
- <OMV name="A"/>
- <OMV name="B"/>
- <OMV name="C"/>
- </OMBVAR>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="multiset1" name="union"/>
- <OMV name="A"/>
- <OMA>
- <OMS cd="multiset1" name="intersect"/>
- <OMV name="B"/>
- <OMV name="C"/>
- </OMA>
- </OMA>
- <OMA>
- <OMS cd="multiset1" name="intersect"/>
- <OMA>
- <OMS cd="multiset1" name="union"/>
- <OMV name="A"/>
- <OMV name="B"/>
- </OMA>
- <OMA>
- <OMS cd="multiset1" name="union"/>
- <OMV name="A"/>
- <OMV name="C"/>
- </OMA>
- </OMA>
- </OMA>
- </OMBIND>
- </OMOBJ>
- Intermediate representation:
- (forall nil (bvar a 1) (bvar b 1) (bvar c 1) (eq nil (union nil a (intersect nil
- b c)) (intersect nil (union nil a b) (union nil a c))))
- <math>
- <apply><forall/>
- <bvar>
- <ci> a </ci>
- </bvar>
- <bvar>
- <ci> b </ci>
- </bvar>
- <bvar>
- <ci> c </ci>
- </bvar>
- <apply><eq/>
- <apply><union/>
- <ci> a </ci>
- <apply><intersect/>
- <ci> b </ci>
- <ci> c </ci>
- </apply>
- </apply>
- <apply><intersect/>
- <apply><union/>
- <ci> a </ci>
- <ci> b </ci>
- </apply>
- <apply><union/>
- <ci> a </ci>
- <ci> c </ci>
- </apply>
- </apply>
- </apply>
- </apply>
- </math>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="multiset1" name="subset"/>
- <OMA>
- <OMS cd="multiset1" name="setdiff"/>
- <OMV name="A"/>
- <OMV name="B"/>
- </OMA>
- <OMV name="A"/>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (subset nil (setdiff nil a b) a)
- <math>
- <apply><subset/>
- <apply><setdiff/>
- <ci> a </ci>
- <ci> b </ci>
- </apply>
- <ci> a </ci>
- </apply>
- </math>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="logic1" name="implies"/>
- <OMA>
- <OMS cd="logic1" name="and"/>
- <OMA>
- <OMS cd="multiset1" name="subset"/>
- <OMV name="B"/>
- <OMV name="A"/>
- </OMA>
- <OMA>
- <OMS cd="multiset1" name="subset"/>
- <OMV name="C"/>
- <OMV name="B"/>
- </OMA>
- </OMA>
- <OMA>
- <OMS cd="multiset1" name="subset"/>
- <OMV name="C"/>
- <OMV name="A"/>
- </OMA>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (implies nil (and nil (subset nil b a) (subset nil c b)) (subset nil c a))
- <math>
- <apply><implies/>
- <apply><and/>
- <apply><subset/>
- <ci> b </ci>
- <ci> a </ci>
- </apply>
- <apply><subset/>
- <ci> c </ci>
- <ci> b </ci>
- </apply>
- </apply>
- <apply><subset/>
- <ci> c </ci>
- <ci> a </ci>
- </apply>
- </apply>
- </math>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="multiset1" name="notin"/>
- <OMI> 4 </OMI>
- <OMA>
- <OMS cd="multiset1" name="multiset"/>
- <OMI> 1 </OMI>
- <OMI> 1 </OMI>
- <OMI> 2 </OMI>
- <OMI> 3 </OMI>
- </OMA>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (notin nil 4 (set ((type multiset)) 1 1 2 3))
- <math>
- <apply><notin/>
- <cn type="integer"> 4 </cn>
- <set type="multiset">
- <cn type="integer"> 1 </cn>
- <cn type="integer"> 1 </cn>
- <cn type="integer"> 2 </cn>
- <cn type="integer"> 3 </cn>
- </set>
- </apply>
- </math>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="multiset1" name="prsubset"/>
- <OMA>
- <OMS cd="multiset1" name="multiset"/>
- <OMI> 2 </OMI>
- <OMI> 3 </OMI>
- </OMA>
- <OMA>
- <OMS cd="multiset1" name="multiset"/>
- <OMI> 2 </OMI>
- <OMI> 2 </OMI>
- <OMI> 3 </OMI>
- </OMA>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (prsubset nil (set ((type multiset)) 2 3) (set ((type multiset)) 2 2 3))
- <math>
- <apply><prsubset/>
- <set type="multiset">
- <cn type="integer"> 2 </cn>
- <cn type="integer"> 3 </cn>
- </set>
- <set type="multiset">
- <cn type="integer"> 2 </cn>
- <cn type="integer"> 2 </cn>
- <cn type="integer"> 3 </cn>
- </set>
- </apply>
- </math>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="multiset1" name="notsubset"/>
- <OMA>
- <OMS cd="multiset1" name="multiset"/>
- <OMI> 2 </OMI>
- <OMI> 3 </OMI>
- <OMI> 3 </OMI>
- </OMA>
- <OMA>
- <OMS cd="multiset1" name="multiset"/>
- <OMI> 1 </OMI>
- <OMI> 2 </OMI>
- <OMI> 3 </OMI>
- </OMA>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (notsubset nil (set ((type multiset)) 2 3 3) (set ((type multiset)) 1 2 3))
- <math>
- <apply><notsubset/>
- <set type="multiset">
- <cn type="integer"> 2 </cn>
- <cn type="integer"> 3 </cn>
- <cn type="integer"> 3 </cn>
- </set>
- <set type="multiset">
- <cn type="integer"> 1 </cn>
- <cn type="integer"> 2 </cn>
- <cn type="integer"> 3 </cn>
- </set>
- </apply>
- </math>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="multiset1" name="notprsubset"/>
- <OMA>
- <OMS cd="multiset1" name="multiset"/>
- <OMI> 1 </OMI>
- <OMI> 2 </OMI>
- <OMI> 1 </OMI>
- </OMA>
- <OMA>
- <OMS cd="multiset1" name="multiset"/>
- <OMI> 1 </OMI>
- <OMI> 2 </OMI>
- <OMI> 1 </OMI>
- </OMA>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (notprsubset nil (set ((type multiset)) 1 2 1) (set ((type multiset)) 1 2 1))
- <math>
- <apply><notprsubset/>
- <set type="multiset">
- <cn type="integer"> 1 </cn>
- <cn type="integer"> 2 </cn>
- <cn type="integer"> 1 </cn>
- </set>
- <set type="multiset">
- <cn type="integer"> 1 </cn>
- <cn type="integer"> 2 </cn>
- <cn type="integer"> 1 </cn>
- </set>
- </apply>
- </math>
- % Examples from CD nums1
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMI> 8 </OMI>
- <OMA>
- <OMS cd="nums1" name="based_integer"/>
- <OMI> 8 </OMI>
- <OMSTR> 10 </OMSTR>
- </OMA>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (eq nil 8 (based_integer nil 8 (string 10)))
- <math>
- <apply><eq/>
- <cn type="integer"> 8 </cn>
- <cn type="integer" base="8"> 10 </cn>
- </apply>
- </math>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="nums1" name="rational"/>
- <OMI> 1 </OMI>
- <OMI> 2 </OMI>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (rational nil 1 2)
- <math>
- <cn type="rational">1<sep/>2</cn>
- </math>
- om2mml();
- <OMOBJ>
- <OMBIND>
- <OMS cd="quant1" name="forall"/>
- <OMBVAR>
- <OMV name="x"/>
- <OMV name="y"/>
- </OMBVAR>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="nums1" name="complex_cartesian"/>
- <OMV name="x"/>
- <OMV name="y"/>
- </OMA>
- <OMA>
- <OMS cd="arith1" name="plus"/>
- <OMV name="x"/>
- <OMA>
- <OMS cd="arith1" name="times"/>
- <OMS cd="nums1" name="i"/>
- <OMV name="y"/>
- </OMA>
- </OMA>
- </OMA>
- </OMBIND>
- </OMOBJ>
- Intermediate representation:
- (forall nil (bvar x 1) (bvar y 1) (eq nil (plus nil x (times nil y &imaginaryi;)
- ) (plus nil x (times nil &imaginaryi; y))))
- <math>
- <apply><forall/>
- <bvar>
- <ci> x </ci>
- </bvar>
- <bvar>
- <ci> y </ci>
- </bvar>
- <apply><eq/>
- <apply><plus/>
- <ci> x </ci>
- <apply><times/>
- <ci> y </ci>
- <cn type="constant"> &imaginaryi; </cn>
- </apply>
- </apply>
- <apply><plus/>
- <ci> x </ci>
- <apply><times/>
- <cn type="constant"> &imaginaryi; </cn>
- <ci> y </ci>
- </apply>
- </apply>
- </apply>
- </apply>
- </math>
- om2mml();
- <OMOBJ>
- <OMBIND>
- <OMS cd="quant1" name="forall"/>
- <OMBVAR>
- <OMV name="x"/>
- <OMV name="y"/>
- <OMV name="r"/>
- <OMV name="a"/>
- </OMBVAR>
- <OMA>
- <OMS cd="logic1" name="implies"/>
- <OMA>
- <OMS cd="logic1" name="and"/>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="arith1" name="times"/>
- <OMV name="r"/>
- <OMA>
- <OMS cd="transc1" name="sin"/>
- <OMV name="a"/>
- </OMA>
- </OMA>
- <OMV name="y"/>
- </OMA>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="arith1" name="times"/>
- <OMV name="r"/>
- <OMA>
- <OMS cd="transc1" name="cos"/>
- <OMV name="a"/>
- </OMA>
- </OMA>
- <OMV name="x"/>
- </OMA>
- </OMA>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="nums1" name="complex_polar"/>
- <OMV name="r"/>
- <OMV name="a"/>
- </OMA>
- <OMA>
- <OMS cd="nums1" name="complex_cartesian"/>
- <OMV name="x"/>
- <OMV name="y"/>
- </OMA>
- </OMA>
- </OMA>
- </OMBIND>
- </OMOBJ>
- Intermediate representation:
- (forall nil (bvar x 1) (bvar y 1) (bvar r 1) (bvar a 1) (implies nil (and nil (
- eq nil (times nil r (sin nil a)) y) (eq nil (times nil r (cos nil a)) x)) (eq
- nil (times nil r (exp nil (times nil a &imaginaryi;))) (plus nil x (times nil y
- &imaginaryi;)))))
- <math>
- <apply><forall/>
- <bvar>
- <ci> x </ci>
- </bvar>
- <bvar>
- <ci> y </ci>
- </bvar>
- <bvar>
- <ci> r </ci>
- </bvar>
- <bvar>
- <ci> a </ci>
- </bvar>
- <apply><implies/>
- <apply><and/>
- <apply><eq/>
- <apply><times/>
- <ci> r </ci>
- <apply><sin/>
- <ci> a </ci>
- </apply>
- </apply>
- <ci> y </ci>
- </apply>
- <apply><eq/>
- <apply><times/>
- <ci> r </ci>
- <apply><cos/>
- <ci> a </ci>
- </apply>
- </apply>
- <ci> x </ci>
- </apply>
- </apply>
- <apply><eq/>
- <apply><times/>
- <ci> r </ci>
- <apply><exp/>
- <apply><times/>
- <ci> a </ci>
- <cn type="constant"> &imaginaryi; </cn>
- </apply>
- </apply>
- </apply>
- <apply><plus/>
- <ci> x </ci>
- <apply><times/>
- <ci> y </ci>
- <cn type="constant"> &imaginaryi; </cn>
- </apply>
- </apply>
- </apply>
- </apply>
- </apply>
- </math>
- om2mml();
- <OMOBJ>
- <OMBIND>
- <OMS cd="quant1" name="forall"/>
- <OMBVAR>
- <OMV name="x"/>
- </OMBVAR>
- <OMA>
- <OMS cd="logic1" name="implies"/>
- <OMA>
- <OMS cd="logic1" name="and"/>
- <OMA>
- <OMS cd="set1" name="in"/>
- <OMV name="a"/>
- <OMS cd="setname1" name="R"/>
- </OMA>
- <OMA>
- <OMS cd="set1" name="in"/>
- <OMV name="k"/>
- <OMS cd="setname1" name="Z"/>
- </OMA>
- </OMA>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="nums1" name="complex_polar"/>
- <OMV name="x"/>
- <OMV name="a"/>
- </OMA>
- <OMA>
- <OMS cd="nums1" name="complex_polar"/>
- <OMV name="x"/>
- <OMA>
- <OMS cd="arith1" name="plus"/>
- <OMV name="a"/>
- <OMA>
- <OMS cd="arith1" name="times"/>
- <OMI> 2 </OMI>
- <OMS cd="nums1" name="pi"/>
- <OMV name="k"/>
- </OMA>
- </OMA>
- </OMA>
- </OMA>
- </OMA>
- </OMBIND>
- </OMOBJ>
- Intermediate representation:
- (forall nil (bvar x 1) (implies nil (and nil (in nil a (semantic (r (o m s c d
- = " s e t n a m e 1 " n a m e = " r " /)))) (in nil k (semantic (z (o m s c
- d = " s e t n a m e 1 " n a m e = " z " /))))) (eq nil (times nil x (exp nil (
- times nil a &imaginaryi;))) (times nil x (exp nil (times nil (plus nil a (times
- nil 2 π k)) &imaginaryi;))))))
- <math>
- <apply><forall/>
- <bvar>
- <ci> x </ci>
- </bvar>
- <apply><implies/>
- <apply><and/>
- <apply><in/>
- <ci> a </ci>
- <semantic>
- <ci><mo>r</mo></ci>
- <annotation-xml encoding="OpenMath">
- <oms cd="setname1" name="r"/>
- </annotation-xml>
- </semantic>
- </apply>
- <apply><in/>
- <ci> k </ci>
- <semantic>
- <ci><mo>z</mo></ci>
- <annotation-xml encoding="OpenMath">
- <oms cd="setname1" name="z"/>
- </annotation-xml>
- </semantic>
- </apply>
- </apply>
- <apply><eq/>
- <apply><times/>
- <ci> x </ci>
- <apply><exp/>
- <apply><times/>
- <ci> a </ci>
- <cn type="constant"> &imaginaryi; </cn>
- </apply>
- </apply>
- </apply>
- <apply><times/>
- <ci> x </ci>
- <apply><exp/>
- <apply><times/>
- <apply><plus/>
- <ci> a </ci>
- <apply><times/>
- <cn type="integer"> 2 </cn>
- <cn type="constant"> π </cn>
- <ci> k </ci>
- </apply>
- </apply>
- <cn type="constant"> &imaginaryi; </cn>
- </apply>
- </apply>
- </apply>
- </apply>
- </apply>
- </apply>
- </math>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMS cd="nums1" name="e"/>
- <OMA>
- <OMS cd="arith1" name="sum"/>
- <OMA>
- <OMS cd="interval1" name="integer_interval"/>
- <OMS cd="alg1" name="zero"/>
- <OMS cd="nums1" name="infinity"/>
- </OMA>
- <OMBIND>
- <OMS cd="fns1" name="lambda"/>
- <OMBVAR>
- <OMV name="j"/>
- </OMBVAR>
- <OMA>
- <OMS cd="arith1" name="divide"/>
- <OMS cd="alg1" name="one"/>
- <OMA>
- <OMS cd="integer1" name="factorial"/>
- <OMV name="j"/>
- </OMA>
- </OMA>
- </OMBIND>
- </OMA>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (eq nil ⅇ (sum nil (bvar j 1) (lowupperlimit nil 0 ∞) (divide
- nil 1 (factorial nil j))))
- <math>
- <apply><eq/>
- <cn type="constant"> ⅇ </cn>
- <apply><sum/>
- <bvar>
- <ci> j </ci>
- </bvar>
- <lowlimit>
- <cn type="integer"> 0 </cn>
- </lowlimit>
- <uplimit>
- <cn type="constant"> ∞ </cn>
- </uplimit>
- <apply><divide/>
- <cn type="integer"> 1 </cn>
- <apply><factorial/>
- <ci> j </ci>
- </apply>
- </apply>
- </apply>
- </apply>
- </math>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="arith1" name="power"/>
- <OMS cd="nums1" name="i"/>
- <OMI> 2 </OMI>
- </OMA>
- <OMA>
- <OMS cd="arith1" name="minus"/>
- <OMS cd="alg1" name="one"/>
- </OMA>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (eq nil (power nil &imaginaryi; 2) (minus nil 1))
- <math>
- <apply><eq/>
- <apply><power/>
- <cn type="constant"> &imaginaryi; </cn>
- <cn type="integer"> 2 </cn>
- </apply>
- <apply><minus/>
- <cn type="integer"> 1 </cn>
- </apply>
- </apply>
- </math>
- om2mml();
- <OMOBJ>
- <OMBIND>
- <OMS cd="quant1" name="forall"/>
- <OMBVAR>
- <OMV name="x"/>
- <OMV name="y"/>
- </OMBVAR>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMV name="y"/>
- <OMA>
- <OMS name="imaginary" cd="nums1"/>
- <OMA>
- <OMS name="complex_cartesian" cd="nums1"/>
- <OMV name="x"/>
- <OMV name="y"/>
- </OMA>
- </OMA>
- </OMA>
- </OMBIND>
- </OMOBJ>
- Intermediate representation:
- (forall nil (bvar x 1) (bvar y 1) (eq nil y (imaginary nil (plus nil x (times
- nil y &imaginaryi;)))))
- <math>
- <apply><forall/>
- <bvar>
- <ci> x </ci>
- </bvar>
- <bvar>
- <ci> y </ci>
- </bvar>
- <apply><eq/>
- <ci> y </ci>
- <apply><imaginary/>
- <apply><plus/>
- <ci> x </ci>
- <apply><times/>
- <ci> y </ci>
- <cn type="constant"> &imaginaryi; </cn>
- </apply>
- </apply>
- </apply>
- </apply>
- </apply>
- </math>
- om2mml();
- <OMOBJ>
- <OMBIND>
- <OMS cd="quant1" name="forall"/>
- <OMBVAR>
- <OMV name="x"/>
- <OMV name="y"/>
- </OMBVAR>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMV name="x"/>
- <OMA>
- <OMS name="real" cd="nums1"/>
- <OMA>
- <OMS name="complex_cartesian" cd="nums1"/>
- <OMV name="x"/>
- <OMV name="y"/>
- </OMA>
- </OMA>
- </OMA>
- </OMBIND>
- </OMOBJ>
- Intermediate representation:
- (forall nil (bvar x 1) (bvar y 1) (eq nil x (real nil (plus nil x (times nil y
- &imaginaryi;)))))
- <math>
- <apply><forall/>
- <bvar>
- <ci> x </ci>
- </bvar>
- <bvar>
- <ci> y </ci>
- </bvar>
- <apply><eq/>
- <ci> x </ci>
- <apply><real/>
- <apply><plus/>
- <ci> x </ci>
- <apply><times/>
- <ci> y </ci>
- <cn type="constant"> &imaginaryi; </cn>
- </apply>
- </apply>
- </apply>
- </apply>
- </apply>
- </math>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="logic1" name="implies"/>
- <OMA>
- <OMS cd="set1" name="in"/>
- <OMV name="a"/>
- <OMS cd="setname1" name="R"/>
- </OMA>
- <OMA>
- <OMS cd="relation1" name="lt"/>
- <OMV name="x"/>
- <OMS cd="nums1" name="infinity"/>
- </OMA>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (implies nil (in nil a (semantic (r (o m s c d = " s e t n a m e 1 " n a m e
- = " r " /)))) (lt nil x ∞))
- <math>
- <apply><implies/>
- <apply><in/>
- <ci> a </ci>
- <semantic>
- <ci><mo>r</mo></ci>
- <annotation-xml encoding="OpenMath">
- <oms cd="setname1" name="r"/>
- </annotation-xml>
- </semantic>
- </apply>
- <apply><lt/>
- <ci> x </ci>
- <cn type="constant"> ∞ </cn>
- </apply>
- </apply>
- </math>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="relation1" name="neq"/>
- <OMS cd="nums1" name="NaN"/>
- <OMS cd="nums1" name="NaN"/>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (neq nil ¬anumber; ¬anumber;)
- <math>
- <apply><neq/>
- <ci> ¬anumber; </ci>
- <ci> ¬anumber; </ci>
- </apply>
- </math>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMS cd="nums1" name="pi"/>
- <OMA>
- <OMS cd="arith1" name="sum"/>
- <OMA>
- <OMS cd="interval1" name="integer_interval"/>
- <OMS cd="alg1" name="zero"/>
- <OMS cd="nums1" name="infinity"/>
- </OMA>
- <OMBIND>
- <OMS cd="fns1" name="lambda"/>
- <OMBVAR>
- <OMV name="j"/>
- </OMBVAR>
- <OMA>
- <OMS cd="arith1" name="minus"/>
- <OMA>
- <OMS cd="arith1" name="divide"/>
- <OMS cd="alg1" name="one"/>
- <OMA>
- <OMS cd="arith1" name="plus"/>
- <OMA>
- <OMS cd="arith1" name="times"/>
- <OMI> 4 </OMI>
- <OMV name="j"/>
- </OMA>
- <OMS cd="alg1" name="one"/>
- </OMA>
- </OMA>
- <OMA>
- <OMS cd="arith1" name="divide"/>
- <OMS cd="alg1" name="one"/>
- <OMA>
- <OMS cd="arith1" name="plus"/>
- <OMA>
- <OMS cd="arith1" name="times"/>
- <OMI> 4 </OMI>
- <OMV name="j"/>
- </OMA>
- <OMS cd="alg1" name="one"/>
- </OMA>
- </OMA>
- </OMA>
- </OMBIND>
- </OMA>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (eq nil π (sum nil (bvar j 1) (lowupperlimit nil 0 ∞) (minus nil (
- divide nil 1 (plus nil (times nil 4 j) 1)) (divide nil 1 (plus nil (times nil 4
- j) 1)))))
- <math>
- <apply><eq/>
- <cn type="constant"> π </cn>
- <apply><sum/>
- <bvar>
- <ci> j </ci>
- </bvar>
- <lowlimit>
- <cn type="integer"> 0 </cn>
- </lowlimit>
- <uplimit>
- <cn type="constant"> ∞ </cn>
- </uplimit>
- <apply><minus/>
- <apply><divide/>
- <cn type="integer"> 1 </cn>
- <apply><plus/>
- <apply><times/>
- <cn type="integer"> 4 </cn>
- <ci> j </ci>
- </apply>
- <cn type="integer"> 1 </cn>
- </apply>
- </apply>
- <apply><divide/>
- <cn type="integer"> 1 </cn>
- <apply><plus/>
- <apply><times/>
- <cn type="integer"> 4 </cn>
- <ci> j </ci>
- </apply>
- <cn type="integer"> 1 </cn>
- </apply>
- </apply>
- </apply>
- </apply>
- </apply>
- </math>
- om2mml();
- <OMOBJ>
- <OMBIND>
- <OMS cd="quant1" name="forall"/>
- <OMBVAR>
- <OMV name="x"/>
- </OMBVAR>
- <OMA>
- <OMS cd="logic1" name="and"/>
- <OMA>
- <OMS cd="relation1" name="lt"/>
- <OMA>
- <OMS cd="arith1" name="minus"/>
- <OMA>
- <OMS cd="rounding1" name="ceiling"/>
- <OMV name="x"/>
- </OMA>
- <OMS cd="alg1" name="one"/>
- </OMA>
- <OMV name="x"/>
- </OMA>
- <OMA>
- <OMS cd="relation1" name="leq"/>
- <OMV name="x"/>
- <OMA>
- <OMS cd="rounding1" name="ceiling"/>
- <OMV name="x"/>
- </OMA>
- </OMA>
- </OMA>
- </OMBIND>
- </OMOBJ>
- Intermediate representation:
- (forall nil (bvar x 1) (and nil (lt nil (minus nil (semantic (ceiling (o m s c
- d = " r o u n d i n g 1 " n a m e = " c e i l i n g " /)) x) 1) x) (leq nil x
- (semantic (ceiling (o m s c d = " r o u n d i n g 1 " n a m e = " c e i l i
- n g " /)) x))))
- <math>
- <apply><forall/>
- <bvar>
- <ci> x </ci>
- </bvar>
- <apply><and/>
- <apply><lt/>
- <apply><minus/>
- <apply>
- <fn>
- <semantic>
- <ci><mo>ceiling</mo></ci>
- <annotation-xml encoding="OpenMath">
- <oms cd="rounding1" name="ceiling"/>
- </annotation-xml>
- </semantic>
- </fn>
- <ci> x </ci>
- </apply>
- <cn type="integer"> 1 </cn>
- </apply>
- <ci> x </ci>
- </apply>
- <apply><leq/>
- <ci> x </ci>
- <apply>
- <fn>
- <semantic>
- <ci><mo>ceiling</mo></ci>
- <annotation-xml encoding="OpenMath">
- <oms cd="rounding1" name="ceiling"/>
- </annotation-xml>
- </semantic>
- </fn>
- <ci> x </ci>
- </apply>
- </apply>
- </apply>
- </apply>
- </math>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="stats1" name="mean"/>
- <OMI> 1 </OMI> <OMI> 2 </OMI> <OMI> 3 </OMI>
- </OMA>
- <OMI> 3 </OMI>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (eq nil (mean nil 1 2 3) 3)
- <math>
- <apply><eq/>
- <apply><mean/>
- <cn type="integer"> 1 </cn>
- <cn type="integer"> 2 </cn>
- <cn type="integer"> 3 </cn>
- </apply>
- <cn type="integer"> 3 </cn>
- </apply>
- </math>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="stats1" name="sdev"/>
- <OMF dec="3.1"/>
- <OMF dec="2.2"/>
- <OMF dec="1.8"/>
- <OMF dec="1.1"/>
- <OMF dec="3.3"/>
- <OMF dec="2.4"/>
- <OMF dec="5.5"/>
- <OMF dec="2.3"/>
- <OMF dec="1.7"/>
- <OMF dec="1.8"/>
- <OMF dec="3.4"/>
- <OMF dec="4.0"/>
- <OMF dec="3.3"/>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (sdev nil 3.1 2.2 1.8 1.1 3.3 2.4 5.5 2.3 1.7 1.8 3.4 4.0 3.3)
- <math>
- <apply><sdev/>
- <cn type="real"> 3.1 </cn>
- <cn type="real"> 2.2 </cn>
- <cn type="real"> 1.8 </cn>
- <cn type="real"> 1.1 </cn>
- <cn type="real"> 3.3 </cn>
- <cn type="real"> 2.4 </cn>
- <cn type="real"> 5.5 </cn>
- <cn type="real"> 2.3 </cn>
- <cn type="real"> 1.7 </cn>
- <cn type="real"> 1.8 </cn>
- <cn type="real"> 3.4 </cn>
- <cn type="real"> 4.0 </cn>
- <cn type="real"> 3.3 </cn>
- </apply>
- </math>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="logic1" name="implies"/>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="arith1" name="power"/>
- <OMV name="a"/>
- <OMV name="b"/>
- </OMA>
- <OMV name="c"/>
- </OMA>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="transc1" name="log"/>
- <OMV name="a"/>
- <OMV name="c"/>
- </OMA>
- <OMV name="b"/>
- </OMA>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (implies nil (eq nil (power nil a b) c) (eq nil (log nil a c) b))
- <math>
- <apply><implies/>
- <apply><eq/>
- <apply><power/>
- <ci> a </ci>
- <ci> b </ci>
- </apply>
- <ci> c </ci>
- </apply>
- <apply><eq/>
- <apply><log/>
- <logbase>
- <ci> a </ci>
- </logbase>
- <ci> c </ci>
- <apply>
- <ci> b </ci>
- </apply>
- </apply>
- </math>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS name="and" cd="logic1"/>
- <OMA>
- <OMS name="lt" cd="relation1"/>
- <OMA>
- <OMS name="unary_minus" cd="arith1"/>
- <OMS name="pi" cd="nums1"/>
- </OMA>
- <OMA>
- <OMS name="imaginary" cd="nums1"/>
- <OMA>
- <OMS name="ln" cd="transc1"/>
- <OMV name="x"/>
- </OMA>
- </OMA>
- </OMA>
- <OMA>
- <OMS name="leq" cd="relation1"/>
- <OMA>
- <OMS name="imaginary" cd="nums1"/>
- <OMA>
- <OMS name="ln" cd="transc1"/>
- <OMV name="x"/>
- </OMA>
- </OMA>
- <OMS name="pi" cd="nums1"/>
- </OMA>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (and nil (lt nil (minus nil π) (imaginary nil (ln nil x))) (leq nil (
- imaginary nil (ln nil x)) π))
- <math>
- <apply><and/>
- <apply><lt/>
- <apply><minus/>
- <cn type="constant"> π </cn>
- </apply>
- <apply><imaginary/>
- <apply><ln/>
- <ci> x </ci>
- </apply>
- </apply>
- </apply>
- <apply><leq/>
- <apply><imaginary/>
- <apply><ln/>
- <ci> x </ci>
- </apply>
- </apply>
- <cn type="constant"> π </cn>
- </apply>
- </apply>
- </math>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="veccalc1" name="curl"/>
- <OMV name="F"/>
- </OMA>
- <OMA>
- <OMS cd="arith1" name="plus"/>
- <OMA>
- <OMS cd="linalg1" name="vectorproduct"/>
- <OMA>
- <OMS cd="linalg1" name="vector"/>
- <OMI> 1 </OMI>
- <OMI> 0 </OMI>
- <OMI> 0 </OMI>
- </OMA>
- <OMA>
- <OMS cd="calculus1" name="partialdiff"/>
- <OMA>
- <OMS cd="list1" name="list"/>
- <OMI> 1 </OMI>
- </OMA>
- <OMV name="F"/>
- </OMA>
- </OMA>
- <OMA>
- <OMS cd="linalg1" name="vectorproduct"/>
- <OMA>
- <OMS cd="linalg1" name="vector"/>
- <OMI> 0 </OMI>
- <OMI> 1 </OMI>
- <OMI> 0 </OMI>
- </OMA>
- <OMA>
- <OMS cd="calculus1" name="partialdiff"/>
- <OMA>
- <OMS cd="list1" name="list"/>
- <OMI> 2 </OMI>
- </OMA>
- <OMV name="F"/>
- </OMA>
- </OMA>
- <OMA>
- <OMS cd="linalg1" name="vectorproduct"/>
- <OMA>
- <OMS cd="linalg1" name="vector"/>
- <OMI> 0 </OMI>
- <OMI> 0 </OMI>
- <OMI> 1 </OMI>
- </OMA>
- <OMA>
- <OMS cd="calculus1" name="partialdiff"/>
- <OMA>
- <OMS cd="list1" name="list"/>
- <OMI> 3 </OMI>
- </OMA>
- <OMV name="F"/>
- </OMA>
- </OMA>
- </OMA>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (eq nil (curl nil f) (plus nil (vectorproduct nil (vectorml nil 1 0 0) (
- partialdiff nil f)) (vectorproduct nil (vectorml nil 0 1 0) (partialdiff nil f))
- (vectorproduct nil (vectorml nil 0 0 1) (partialdiff nil f))))
- <math>
- <apply><eq/>
- <apply><curl/>
- <ci> f </ci>
- </apply>
- <apply><plus/>
- <apply><vectorproduct/>
- <vector>
- <cn type="integer"> 1 </cn>
- <cn type="integer"> 0 </cn>
- <cn type="integer"> 0 </cn>
- </vector>
- <apply><partialdiff/>
- <ci> f </ci>
- </apply>
- </apply>
- <apply><vectorproduct/>
- <vector>
- <cn type="integer"> 0 </cn>
- <cn type="integer"> 1 </cn>
- <cn type="integer"> 0 </cn>
- </vector>
- <apply><partialdiff/>
- <ci> f </ci>
- </apply>
- </apply>
- <apply><vectorproduct/>
- <vector>
- <cn type="integer"> 0 </cn>
- <cn type="integer"> 0 </cn>
- <cn type="integer"> 1 </cn>
- </vector>
- <apply><partialdiff/>
- <ci> f </ci>
- </apply>
- </apply>
- </apply>
- </apply>
- </math>
- om2mml();
- <OMOBJ>
- <OMBIND>
- <OMS cd="quant1" name="forall"/>
- <OMBVAR>
- <OMV name="x"/>
- </OMBVAR>
- <OMA>
- <OMS cd="logic1" name="and"/>
- <OMA>
- <OMS cd="relation1" name="lt"/>
- <OMA>
- <OMS name="unary_minus" cd="arith1"/>
- <OMS cd="nums1" name="pi"/>
- </OMA>
- <OMA>
- <OMS name="arg" cd="arith2"/>
- <OMV name="x"/>
- </OMA>
- </OMA>
- <OMA>
- <OMS cd="relation1" name="leq"/>
- <OMA>
- <OMS name="arg" cd="arith2"/>
- <OMV name="x"/>
- </OMA>
- <OMS cd="nums1" name="pi"/>
- </OMA>
- </OMA>
- </OMBIND>
- </OMOBJ>
- Intermediate representation:
- (forall nil (bvar x 1) (and nil (lt nil (minus nil π) (arg nil x)) (leq nil (
- arg nil x) π)))
- <math>
- <apply><forall/>
- <bvar>
- <ci> x </ci>
- </bvar>
- <apply><and/>
- <apply><lt/>
- <apply><minus/>
- <cn type="constant"> π </cn>
- </apply>
- <apply><arg/>
- <ci> x </ci>
- </apply>
- </apply>
- <apply><leq/>
- <apply><arg/>
- <ci> x </ci>
- </apply>
- <cn type="constant"> π </cn>
- </apply>
- </apply>
- </apply>
- </math>
- om2mml();
- <OMOBJ>
- <OMBIND>
- <OMS cd="quant1" name="forall"/>
- <OMBVAR>
- <OMV name="a"/>
- </OMBVAR>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="arith2" name="inverse"/>
- <OMA>
- <OMS cd="arith2" name="inverse"/>
- <OMV name="a"/>
- </OMA>
- </OMA>
- <OMV name="a"/>
- </OMA>
- </OMBIND>
- </OMOBJ>
- Intermediate representation:
- (forall nil (bvar a 1) (eq nil (inverse nil (inverse nil a)) a))
- <math>
- <apply><forall/>
- <bvar>
- <ci> a </ci>
- </bvar>
- <apply><eq/>
- <apply><inverse/>
- <apply><inverse/>
- <ci> a </ci>
- </apply>
- </apply>
- <ci> a </ci>
- </apply>
- </apply>
- </math>
- % An example of elements which do not have a MathML
- % equivalent. This example comes from the fns1 CD
- om2mml();
- <OMOBJ>
- <OMBIND>
- <OMS cd="quant1" name="forall"/>
- <OMBVAR>
- <OMV name="n"/>
- </OMBVAR>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="fns2" name="apply_to_list"/>
- <OMA>
- <OMS cd="arith1" name="plus"/>
- <OMA>
- <OMS cd="list1" name="make_list"/>
- <OMI> 1 </OMI>
- <OMV name="n"/>
- <OMS cd="fns1" name="identity"/>
- </OMA>
- </OMA>
- </OMA>
- <OMA>
- <OMS cd="arith1" name="divide"/>
- <OMA>
- <OMS cd="arith1" name="times"/>
- <OMV name="n"/>
- <OMA>
- <OMS cd="arith1" name="plus"/>
- <OMV name="n"/>
- <OMI> 1 </OMI>
- </OMA>
- </OMA>
- <OMI> 2 </OMI>
- </OMA>
- </OMA>
- </OMBIND>
- </OMOBJ>
- Intermediate representation:
- (forall nil (bvar n 1) (eq nil (semantic (apply_to_list (o m s c d = " f n s 2
- " n a m e = " a p p l y _ t o _ l i s t " /)) (plus nil (semantic (make_list (
- o m s c d = " l i s t 1 " n a m e = " m a k e _ l i s t " /)) 1 n (semantic
- (identity (o m s c d = " f n s 1 " n a m e = " i d e n t i t y " /)))))) (
- divide nil (times nil n (plus nil n 1)) 2)))
- <math>
- <apply><forall/>
- <bvar>
- <ci> n </ci>
- </bvar>
- <apply><eq/>
- <apply>
- <fn>
- <semantic>
- <ci><mo>apply_to_list</mo></ci>
- <annotation-xml encoding="OpenMath">
- <oms cd="fns2" name="apply_to_list"/>
- </annotation-xml>
- </semantic>
- </fn>
- <apply><plus/>
- <apply>
- <fn>
- <semantic>
- <ci><mo>make_list</mo></ci>
- <annotation-xml encoding="OpenMath">
- <oms cd="list1" name="make_list"/>
- </annotation-xml>
- </semantic>
- </fn>
- <cn type="integer"> 1 </cn>
- <ci> n </ci>
- <semantic>
- <ci><mo>identity</mo></ci>
- <annotation-xml encoding="OpenMath">
- <oms cd="fns1" name="identity"/>
- </annotation-xml>
- </semantic>
- </apply>
- </apply>
- </apply>
- <apply><divide/>
- <apply><times/>
- <ci> n </ci>
- <apply><plus/>
- <ci> n </ci>
- <cn type="integer"> 1 </cn>
- </apply>
- </apply>
- <cn type="integer"> 2 </cn>
- </apply>
- </apply>
- </apply>
- </math>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="linalg3" name="determinant"/>
- <OMA>
- <OMS cd="linalg3" name="identity"/>
- <OMV name="n"/>
- </OMA>
- </OMA>
- <OMS cd="alg1" name="one"/>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (eq nil (determinant nil (semantic (identity (o m s c d = " l i n a l g 3 "
- n a m e = " i d e n t i t y " /)) n)) 1)
- <math>
- <apply><eq/>
- <apply><determinant/>
- <apply>
- <fn>
- <semantic>
- <ci><mo>identity</mo></ci>
- <annotation-xml encoding="OpenMath">
- <oms cd="linalg3" name="identity"/>
- </annotation-xml>
- </semantic>
- </fn>
- <ci> n </ci>
- </apply>
- </apply>
- <cn type="integer"> 1 </cn>
- </apply>
- </math>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="linalg3" name="transpose"/>
- <OMA>
- <OMS cd="linalg1" name="matrix"/>
- <OMA>
- <OMS cd="linalg1" name="matrixrow"/>
- <OMI> 0 </OMI>
- <OMI> 1 </OMI>
- </OMA>
- <OMA>
- <OMS cd="linalg1" name="matrixrow"/>
- <OMI> 2 </OMI>
- <OMI> 3 </OMI>
- </OMA>
- </OMA>
- </OMA>
- <OMA>
- <OMS cd="linalg1" name="matrix"/>
- <OMA>
- <OMS cd="linalg1" name="matrixrow"/>
- <OMI> 0 </OMI>
- <OMI> 2 </OMI>
- </OMA>
- <OMA>
- <OMS cd="linalg1" name="matrixrow"/>
- <OMI> 1 </OMI>
- <OMI> 3 </OMI>
- </OMA>
- </OMA>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (eq nil (transpose nil (matrix nil matrixrow ((0 1) (2 3)))) (matrix nil
- matrixrow ((0 2) (1 3))))
- <math>
- <apply><eq/>
- <apply><transpose/>
- <matrix>
- <matrixrow>
- <cn type="integer"> 0 </cn>
- <cn type="integer"> 1 </cn>
- </matrixrow>
- <matrixrow>
- <cn type="integer"> 2 </cn>
- <cn type="integer"> 3 </cn>
- </matrixrow>
- </matrix>
- </apply>
- <matrix>
- <matrixrow>
- <cn type="integer"> 0 </cn>
- <cn type="integer"> 2 </cn>
- </matrixrow>
- <matrixrow>
- <cn type="integer"> 1 </cn>
- <cn type="integer"> 3 </cn>
- </matrixrow>
- </matrix>
- </apply>
- </math>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="logic2" name="equivalent"/>
- <OMA>
- <OMS cd="logic2" name="equivalent"/>
- <OMV name="A"/>
- <OMV name="B"/>
- </OMA>
- <OMA>
- <OMS cd="logic1" name="and"/>
- <OMA>
- <OMS cd="logic1" name="implies"/>
- <OMV name="A"/>
- <OMV name="B"/>
- </OMA>
- <OMA>
- <OMS cd="logic1" name="implies"/>
- <OMV name="B"/>
- <OMV name="A"/>
- </OMA>
- </OMA>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (equivalent nil (equivalent nil a b) (and nil (implies nil a b) (implies nil b a
- )))
- <math>
- <apply><equivalent/>
- <apply><equivalent/>
- <ci> a </ci>
- <ci> b </ci>
- </apply>
- <apply><and/>
- <apply><implies/>
- <ci> a </ci>
- <ci> b </ci>
- </apply>
- <apply><implies/>
- <ci> b </ci>
- <ci> a </ci>
- </apply>
- </apply>
- </apply>
- </math>
- om2mml();
- <OMOBJ>
- <OMATTR>
- <OMATP>
- <OMS cd="typmml" name="type"/>
- <OMS cd="typmml" name="complex_polar_type"/>
- </OMATP>
- <OMV name="z"/>
- </OMATTR>
- </OMOBJ>
- Intermediate representation:
- (ci ((type complex_polar)) z)
- <math>
- <ci type="complex_polar">z</ci>
- </math>
- % Examples of assigning types to variables.
- om2mml();
- <OMOBJ>
- <OMATTR>
- <OMATP>
- <OMS cd="typmml" name="type"/>
- <OMS cd="typmml" name="integer_type"/>
- </OMATP>
- <OMV name="z"/>
- </OMATTR>
- </OMOBJ>
- Intermediate representation:
- (ci ((type integer)) z)
- <math>
- <ci type="integer">z</ci>
- </math>
- om2mml();
- <OMOBJ>
- <OMATTR>
- <OMATP>
- <OMS cd="typmml" name="type"/>
- <OMS cd="typmml" name="real_type"/>
- </OMATP>
- <OMV name="z"/>
- </OMATTR>
- </OMOBJ>
- Intermediate representation:
- (ci ((type real)) z)
- <math>
- <ci type="real">z</ci>
- </math>
- om2mml();
- <OMOBJ>
- <OMATTR>
- <OMATP>
- <OMS cd="typmml" name="type"/>
- <OMS cd="typmml" name="rational_type"/>
- </OMATP>
- <OMV name="z"/>
- </OMATTR>
- </OMOBJ>
- Intermediate representation:
- (ci ((type rational)) z)
- <math>
- <ci type="rational">z</ci>
- </math>
- % These examples show the use of attributions within OpenMath
- % expressions.
- om2mml();
- <OMOBJ>
- <OMA>
- <OMATTR>
- <OMATP>
- <OMS cd="typmml" name="type"/>
- <OMS cd="typmml" name="fn_type"/>
- </OMATP>
- <OMV name="f"/>
- </OMATTR>
- <OMI>1</OMI>
- <OMI>2</OMI>
- <OMI>3</OMI>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (f nil 1 2 3)
- <math>
- <apply>
- <csymbol>
- <ci>f</ci>
- </csymbol>
- <cn type="integer"> 1 </cn>
- <cn type="integer"> 2 </cn>
- <cn type="integer"> 3 </cn>
- </apply>
- </math>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="arith1" name=times/>
- <OMATTR>
- <OMATP>
- <OMS cd="typmml" name="type"/>
- <OMS cd="typmml" name="matrix_type"/>
- </OMATP>
- <OMV name=A/>
- </OMATTR>
- <OMA>
- <OMS cd="transc1" name=sin/>
- <OMV name=x/>
- </OMA>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (times nil (ci ((type matrix)) a) (sin nil x))
- <math>
- <apply><times/>
- <ci type="matrix">a</ci>
- <apply><sin/>
- <ci> x </ci>
- </apply>
- </apply>
- </math>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="linalg3" name="vector_selector"/>
- <OMI>2</OMI>
- <OMA>
- <OMS cd="linalg1" name="vector"/>
- <OMI> 3 </OMI>
- <OMI> 6 </OMI>
- <OMI> 9 </OMI>
- </OMA>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (selector nil (vectorml nil 3 6 9) 2)
- <math>
- <apply><selector/>
- <vector>
- <cn type="integer"> 3 </cn>
- <cn type="integer"> 6 </cn>
- <cn type="integer"> 9 </cn>
- </vector>
- <cn type="integer"> 2 </cn>
- </apply>
- </math>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="linalg3" name="vector_selector"/>
- <OMI>2</OMI>
- <OMA>
- <OMS cd="linalg1" name="matrixrow"/>
- <OMI> 0 </OMI>
- <OMI> 1 </OMI>
- <OMI> 0 </OMI>
- </OMA>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (selector nil (semantic (matrixrow (o m s c d = " l i n a l g 1 " n a m e =
- " m a t r i x r o w " /)) 0 1 0) 2)
- <math>
- <apply><selector/>
- <apply>
- <fn>
- <semantic>
- <ci><mo>matrixrow</mo></ci>
- <annotation-xml encoding="OpenMath">
- <oms cd="linalg1" name="matrixrow"/>
- </annotation-xml>
- </semantic>
- </fn>
- <cn type="integer"> 0 </cn>
- <cn type="integer"> 1 </cn>
- <cn type="integer"> 0 </cn>
- </apply>
- <cn type="integer"> 2 </cn>
- </apply>
- </math>
- om2mml();
- <OMOBJ>
- <OMBIND>
- <OMS cd="quant1" name="forall"/>
- <OMBVAR>
- <OMV name="M"/>
- </OMBVAR>
- <OMA>
- <OMS cd="logic1" name="and"/>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="arith1" name="times"/>
- <OMA>
- <OMS cd="linalg3" name="zero"/>
- <OMA>
- <OMS cd="linalg3" name="rowcount"/>
- <OMV name="M"/>
- </OMA>
- <OMA>
- <OMS cd="linalg3" name="rowcount"/>
- <OMV name="M"/>
- </OMA>
- </OMA>
- <OMV name="M"/>
- </OMA>
- <OMA>
- <OMS cd="linalg3" name="zero"/>
- <OMA>
- <OMS cd="linalg3" name="rowcount"/>
- <OMV name="M"/>
- </OMA>
- <OMA>
- <OMS cd="linalg3" name="columncount"/>
- <OMV name="M"/>
- </OMA>
- </OMA>
- </OMA>
- <OMA>
- <OMS cd="relation1" name="eq"/>
- <OMA>
- <OMS cd="arith1" name="times"/>
- <OMV name="M"/>
- <OMA>
- <OMS cd="linalg3" name="zero"/>
- <OMA>
- <OMS cd="linalg3" name="columncount"/>
- <OMV name="M"/>
- </OMA>
- <OMA>
- <OMS cd="linalg3" name="columncount"/>
- <OMV name="M"/>
- </OMA>
- </OMA>
- </OMA>
- <OMA>
- <OMS cd="linalg3" name="zero"/>
- <OMA>
- <OMS cd="linalg3" name="rowcount"/>
- <OMV name="M"/>
- </OMA>
- <OMA>
- <OMS cd="linalg3" name="columncount"/>
- <OMV name="M"/>
- </OMA>
- </OMA>
- </OMA>
- </OMA>
- </OMBIND>
- </OMOBJ>
- Intermediate representation:
- (forall nil (bvar m 1) (and nil (eq nil (times nil (semantic (zero (o m s c d
- = " l i n a l g 3 " n a m e = " z e r o " /)) (semantic (rowcount (o m s c d
- = " l i n a l g 3 " n a m e = " r o w c o u n t " /)) m) (semantic (rowcount (
- o m s c d = " l i n a l g 3 " n a m e = " r o w c o u n t " /)) m)) m) (
- semantic (zero (o m s c d = " l i n a l g 3 " n a m e = " z e r o " /)) (
- semantic (rowcount (o m s c d = " l i n a l g 3 " n a m e = " r o w c o u n
- t " /)) m) (semantic (columncount (o m s c d = " l i n a l g 3 " n a m e = "
- c o l u m n c o u n t " /)) m))) (eq nil (times nil m (semantic (zero (o m s c
- d = " l i n a l g 3 " n a m e = " z e r o " /)) (semantic (columncount (o m s
- c d = " l i n a l g 3 " n a m e = " c o l u m n c o u n t " /)) m) (semantic
- (columncount (o m s c d = " l i n a l g 3 " n a m e = " c o l u m n c o u n
- t " /)) m))) (semantic (zero (o m s c d = " l i n a l g 3 " n a m e = " z e
- r o " /)) (semantic (rowcount (o m s c d = " l i n a l g 3 " n a m e = " r o
- w c o u n t " /)) m) (semantic (columncount (o m s c d = " l i n a l g 3 " n
- a m e = " c o l u m n c o u n t " /)) m)))))
- <math>
- <apply><forall/>
- <bvar>
- <ci> m </ci>
- </bvar>
- <apply><and/>
- <apply><eq/>
- <apply><times/>
- <apply>
- <fn>
- <semantic>
- <ci><mo>zero</mo></ci>
- <annotation-xml encoding="OpenMath">
- <oms cd="linalg3" name="zero"/>
- </annotation-xml>
- </semantic>
- </fn>
- <apply>
- <fn>
- <semantic>
- <ci><mo>rowcount</mo></ci>
- <annotation-xml encoding="OpenMath">
- <oms cd="linalg3" name="rowcount"/>
- </annotation-xml>
- </semantic>
- </fn>
- <ci> m </ci>
- </apply>
- <apply>
- <fn>
- <semantic>
- <ci><mo>rowcount</mo></ci>
- <annotation-xml encoding="OpenMath">
- <oms cd="linalg3" name="rowcount"/>
- </annotation-xml>
- </semantic>
- </fn>
- <ci> m </ci>
- </apply>
- </apply>
- <ci> m </ci>
- </apply>
- <apply>
- <fn>
- <semantic>
- <ci><mo>zero</mo></ci>
- <annotation-xml encoding="OpenMath">
- <oms cd="linalg3" name="zero"/>
- </annotation-xml>
- </semantic>
- </fn>
- <apply>
- <fn>
- <semantic>
- <ci><mo>rowcount</mo></ci>
- <annotation-xml encoding="OpenMath">
- <oms cd="linalg3" name="rowcount"/>
- </annotation-xml>
- </semantic>
- </fn>
- <ci> m </ci>
- </apply>
- <apply>
- <fn>
- <semantic>
- <ci><mo>columncount</mo></ci>
- <annotation-xml encoding="OpenMath">
- <oms cd="linalg3" name="columncount"/>
- </annotation-xml>
- </semantic>
- </fn>
- <ci> m </ci>
- </apply>
- </apply>
- </apply>
- <apply><eq/>
- <apply><times/>
- <ci> m </ci>
- <apply>
- <fn>
- <semantic>
- <ci><mo>zero</mo></ci>
- <annotation-xml encoding="OpenMath">
- <oms cd="linalg3" name="zero"/>
- </annotation-xml>
- </semantic>
- </fn>
- <apply>
- <fn>
- <semantic>
- <ci><mo>columncount</mo></ci>
- <annotation-xml encoding="OpenMath">
- <oms cd="linalg3" name="columncount"/>
- </annotation-xml>
- </semantic>
- </fn>
- <ci> m </ci>
- </apply>
- <apply>
- <fn>
- <semantic>
- <ci><mo>columncount</mo></ci>
- <annotation-xml encoding="OpenMath">
- <oms cd="linalg3" name="columncount"/>
- </annotation-xml>
- </semantic>
- </fn>
- <ci> m </ci>
- </apply>
- </apply>
- </apply>
- <apply>
- <fn>
- <semantic>
- <ci><mo>zero</mo></ci>
- <annotation-xml encoding="OpenMath">
- <oms cd="linalg3" name="zero"/>
- </annotation-xml>
- </semantic>
- </fn>
- <apply>
- <fn>
- <semantic>
- <ci><mo>rowcount</mo></ci>
- <annotation-xml encoding="OpenMath">
- <oms cd="linalg3" name="rowcount"/>
- </annotation-xml>
- </semantic>
- </fn>
- <ci> m </ci>
- </apply>
- <apply>
- <fn>
- <semantic>
- <ci><mo>columncount</mo></ci>
- <annotation-xml encoding="OpenMath">
- <oms cd="linalg3" name="columncount"/>
- </annotation-xml>
- </semantic>
- </fn>
- <ci> m </ci>
- </apply>
- </apply>
- </apply>
- </apply>
- </apply>
- </math>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="linalg3" name="vector_selector"/>
- <OMI> 1 </OMI>
- <OMATTR>
- <OMATP>
- <OMS cd="typmml" name="type"/>
- <OMS cd="typmml" name="vector_type"/>
- </OMATP>
- <OMV name=A/>
- </OMATTR>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (selector nil (ci ((type vectorml)) a) 1)
- <math>
- <apply><selector/>
- <ci type="vector">a</ci>
- <cn type="integer"> 1 </cn>
- </apply>
- </math>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="linalg3" name="matrix_selector"/>
- <OMI> 1 </OMI>
- <OMI> 1 </OMI>
- <OMATTR>
- <OMATP>
- <OMS cd="typmml" name="type"/>
- <OMS cd="typmml" name="matrix_type"/>
- </OMATP>
- <OMV name=A/>
- </OMATTR>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (selector nil (ci ((type matrix)) a) 1 1)
- <math>
- <apply><selector/>
- <ci type="matrix">a</ci>
- <cn type="integer"> 1 </cn>
- <cn type="integer"> 1 </cn>
- </apply>
- </math>
- % The following two examples were produced by REDUCE in MathML with the
- % MathML interface, then translated to OpenMath. It is now possible to
- % translate them back to MathML.
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="list1" name="list"/>
- <OMA>
- <OMS cd="list1" name="list"/>
- <OMA>
- <OMS cd="relation1" name="eq">
- <OMV name="x"/>
- <OMA>
- <OMATTR>
- <OMATP>
- <OMS cd="typmml" name="type"/>
- <OMS cd="typmml" name="fn_type"/>
- </OMATP>
- <OMV name="root_of"/>
- </OMATTR>
- <OMA>
- <OMS cd="arith1" name="plus">
- <OMA>
- <OMS cd="arith1" name="minus">
- <OMA>
- <OMS cd="arith1" name="power">
- <OMV name="y"/>
- <OMV name="x_"/>
- </OMA>
- </OMA>
- <OMA>
- <OMS cd="arith1" name="minus">
- <OMA>
- <OMS cd="arith1" name="times">
- <OMA>
- <OMS cd="calculus1" name="int"/>
- <OMBIND>
- <OMS cd="fns1" name="lambda"/>
- <OMBVAR>
- <OMV name="x_"/>
- </OMBVAR>
- <OMA>
- <OMS cd="arith1" name="power">
- <OMV name="x_"/>
- <OMV name="x_"/>
- </OMA>
- </OMBIND>
- </OMA>
- <OMV name="y"/>
- </OMA>
- </OMA>
- <OMV name="x_"/>
- <OMV name="y"/>
- </OMA>
- <OMV name="x_"/>
- <OMV name="tag_1"/>
- </OMA>
- </OMA>
- <OMA>
- <OMS cd="relation1" name="eq">
- <OMV name="a"/>
- <OMA>
- <OMS cd="arith1" name="plus">
- <OMV name="x"/>
- <OMV name="y"/>
- </OMA>
- </OMA>
- </OMA>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (list nil (list nil (eq nil x (root_of nil (plus nil (minus nil (power nil y x_)
- ) (minus nil (times nil (int nil (bvar x_ 1) (power nil x_ x_)) y)) x_ y) x_
- tag_1)) (eq nil a (plus nil x y))))
- <math>
- <list>
- <list>
- <apply><eq/>
- <ci> x </ci>
- <apply>
- <csymbol>
- <ci>root_of</ci>
- </csymbol>
- <apply><plus/>
- <apply><minus/>
- <apply><power/>
- <ci> y </ci>
- <ci> x_ </ci>
- </apply>
- </apply>
- <apply><minus/>
- <apply><times/>
- <apply><int/>
- <bvar>
- <ci> x_ </ci>
- </bvar>
- <apply><power/>
- <ci> x_ </ci>
- <ci> x_ </ci>
- </apply>
- </apply>
- <ci> y </ci>
- </apply>
- </apply>
- <ci> x_ </ci>
- <ci> y </ci>
- </apply>
- <ci> x_ </ci>
- <ci> tag_1 </ci>
- </apply>
- </apply>
- <apply><eq/>
- <ci> a </ci>
- <apply><plus/>
- <ci> x </ci>
- <ci> y </ci>
- </apply>
- </apply>
- </list>
- </list>
- </math>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS cd="list1" name="list"/>
- <OMA>
- <OMS cd="list1" name="list"/>
- <OMA>
- <OMS cd="relation1" name="eq">
- <OMV name="x"/>
- <OMA>
- <OMATTR>
- <OMATP>
- <OMS cd="typmml" name="type"/>
- <OMS cd="typmml" name="fn_type"/>
- </OMATP>
- <OMV name="root_of"/>
- </OMATTR>
- <OMA>
- <OMS cd="arith1" name="plus">
- <OMA>
- <OMS cd="arith1" name="times">
- <OMA>
- <OMS cd="transc1" name="exp">
- <OMA>
- <OMS cd="arith1" name="plus">
- <OMS cd="nums1" name="i"/>
- <OMV name="x_"/>
- </OMA>
- </OMA>
- <OMV name="y"/>
- </OMA>
- <OMA>
- <OMS cd="transc1" name="exp">
- <OMA>
- <OMS cd="arith1" name="plus">
- <OMS cd="nums1" name="i"/>
- <OMV name="x_"/>
- </OMA>
- </OMA>
- <OMA>
- <OMS cd="arith1" name="power">
- <OMV name="x_"/>
- <OMA>
- <OMS cd="arith1" name="plus">
- <OMV name="y"/>
- <OMI> 1 </OMI>
- </OMA>
- </OMA>
- <OMA>
- <OMS cd="arith1" name="times">
- <OMA>
- <OMS cd="calculus1" name="int"/>
- <OMBIND>
- <OMS cd="fns1" name="lambda"/>
- <OMBVAR>
- <OMV name="x_"/>
- </OMBVAR>
- <OMA>
- <OMS cd="arith1" name="power">
- <OMV name="x_"/>
- <OMV name="x_"/>
- </OMA>
- </OMBIND>
- </OMA>
- <OMA>
- <OMS cd="arith1" name="power">
- <OMV name="y"/>
- <OMI> 2 </OMI>
- </OMA>
- </OMA>
- <OMA>
- <OMS cd="arith1" name="times">
- <OMA>
- <OMS cd="calculus1" name="int"/>
- <OMBIND>
- <OMS cd="fns1" name="lambda"/>
- <OMBVAR>
- <OMV name="x_"/>
- </OMBVAR>
- <OMA>
- <OMS cd="arith1" name="power">
- <OMV name="x_"/>
- <OMV name="x_"/>
- </OMA>
- </OMBIND>
- </OMA>
- <OMV name="y"/>
- </OMA>
- </OMA>
- <OMV name="x_"/>
- <OMV name="tag_2"/>
- </OMA>
- </OMA>
- <OMA>
- <OMS cd="relation1" name="eq">
- <OMV name="z"/>
- <OMV name="y"/>
- </OMA>
- </OMA>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (list nil (list nil (eq nil x (root_of nil (plus nil (times nil (exp nil (plus
- nil &imaginaryi; x_)) y) (exp nil (plus nil &imaginaryi; x_)) (power nil x_ (
- plus nil y 1)) (times nil (int nil (bvar x_ 1) (power nil x_ x_)) (power nil y 2
- )) (times nil (int nil (bvar x_ 1) (power nil x_ x_)) y)) x_ tag_2)) (eq nil z y
- )))
- <math>
- <list>
- <list>
- <apply><eq/>
- <ci> x </ci>
- <apply>
- <csymbol>
- <ci>root_of</ci>
- </csymbol>
- <apply><plus/>
- <apply><times/>
- <apply><exp/>
- <apply><plus/>
- <cn type="constant"> &imaginaryi; </cn>
- <ci> x_ </ci>
- </apply>
- </apply>
- <ci> y </ci>
- </apply>
- <apply><exp/>
- <apply><plus/>
- <cn type="constant"> &imaginaryi; </cn>
- <ci> x_ </ci>
- </apply>
- </apply>
- <apply><power/>
- <ci> x_ </ci>
- <apply><plus/>
- <ci> y </ci>
- <cn type="integer"> 1 </cn>
- </apply>
- </apply>
- <apply><times/>
- <apply><int/>
- <bvar>
- <ci> x_ </ci>
- </bvar>
- <apply><power/>
- <ci> x_ </ci>
- <ci> x_ </ci>
- </apply>
- </apply>
- <apply><power/>
- <ci> y </ci>
- <cn type="integer"> 2 </cn>
- </apply>
- </apply>
- <apply><times/>
- <apply><int/>
- <bvar>
- <ci> x_ </ci>
- </bvar>
- <apply><power/>
- <ci> x_ </ci>
- <ci> x_ </ci>
- </apply>
- </apply>
- <ci> y </ci>
- </apply>
- </apply>
- <ci> x_ </ci>
- <ci> tag_2 </ci>
- </apply>
- </apply>
- <apply><eq/>
- <ci> z </ci>
- <ci> y </ci>
- </apply>
- </list>
- </list>
- </math>
- om2mml();
- <OMOBJ>
- <OMATTR>
- <OMATP>
- <OMS cd="cc" name="type"/>
- <OMS cd="omtypes" name="integer"/>
- </OMATP>
- <OMI> 0 </OMI>
- </OMATTR>
- </OMOBJ>
- Intermediate representation:
- (cn ((type integer)) 0)
- <math>
- <cn type="integer">0</cn>
- </math>
- om2mml();
- <OMOBJ>
- <OMATTR>
- <OMATP>
- <OMS cd="cc" name="type"/>
- <OMS cd="omtypes" name="float"/>
- </OMATP>
- <OMF dec=1.0/>
- </OMATTR>
- </OMOBJ>
- Intermediate representation:
- (cn ((type semantic)) 1.0)
- <math>
- <cn type="semantic">1.0</cn>
- </math>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS name="complex_cartesian" cd="nums1"/>
- <OMV name="x"/>
- <OMV name="y"/>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (plus nil x (times nil y &imaginaryi;))
- <math>
- <apply><plus/>
- <ci> x </ci>
- <apply><times/>
- <ci> y </ci>
- <cn type="constant"> &imaginaryi; </cn>
- </apply>
- </apply>
- </math>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS name="complex_polar" cd="nums1"/>
- <OMV name="x"/>
- <OMV name="y"/>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (times nil x (exp nil (times nil y &imaginaryi;)))
- <math>
- <apply><times/>
- <ci> x </ci>
- <apply><exp/>
- <apply><times/>
- <ci> y </ci>
- <cn type="constant"> &imaginaryi; </cn>
- </apply>
- </apply>
- </apply>
- </math>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS name="rational" cd="nums1"/>
- <OMV name="x"/>
- <OMV name="y"/>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (divide nil x y)
- <math>
- <apply><divide/>
- <ci> x </ci>
- <ci> y </ci>
- </apply>
- </math>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS name="complex_cartesian" cd="nums1"/>
- <OMI>4</OMI>
- <OMI>2</OMI>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (complex_cartesian nil 4 2)
- <math>
- <cn type="complex-cartesian"> 4 <sep/> 2 </cn>
- </math>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS name="complex_polar" cd="nums1"/>
- <OMI>4</OMI>
- <OMI>2</OMI>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (complex_polar nil 4 2)
- <math>
- <cn type="complex-polar"> 4 <sep/> 2 </cn>
- </math>
- om2mml();
- <OMOBJ>
- <OMA>
- <OMS name="rational" cd="nums1"/>
- <OMI>4</OMI>
- <OMI>2</OMI>
- </OMA>
- </OMOBJ>
- Intermediate representation:
- (rational nil 4 2)
- <math>
- <cn type="rational">4<sep/>2</cn>
- </math>
- % end;
- end;
- Time for test: 90 ms
|