123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166 |
- module ideals; % operators for polynomial ideals.
- % Author: Herbert Melenk.
- % Copyright (c) 1992 The RAND Corporation and Konrad-Zuse-Zentrum.
- % All rights reserved.
- create!-package('(ideals),'(contrib groebner));
- imports groebner;
- load!-package 'groebner;
- fluid '(gb!-list!*);
- global '(id!-vars!*);
- share id!-vars!*;
- imports idquotienteval, groebnereval, preduceeval, torder ;
- exports gb, gb!-equal, gb!-itersect, gb!-member, gb!-quotient, gb!-plus,
- gb!-subset, gb!-times, i!-setting, idealp, ideal2list, id!-equal, id!-quotient,
- intersection, member, over, subset ;
- symbolic procedure i!-setting u;
- begin scalar o;
- o := id!-vars!*;
- id!-vars!* := 'list . for each x in u collect reval x;
- gb!-list!* := nil; return o end;
- put('i_setting,'psopfn,'i!-setting);
- algebraic operator i;
- symbolic procedure ideal2list u; 'list . cdr test!-ideal u;
- symbolic operator ideal2list;
- symbolic procedure gb u;
- begin scalar v,w;
- u:= test!-ideal reval u;
- v:={u,id!-vars!*,vdpsortmode!*};
- w:=assoc(v,gb!-list!*);
- return if w then cdr w else gb!-new u end;
- symbolic procedure gb!-new u;
- begin scalar v,w;
- u:= test!-ideal reval u;
- v:={u,id!-vars!*,vdpsortmode!*};
- w:='I . cdr groebnereval{'list . cdr u,id!-vars!*};
- gb!-list!* := (v.w) . gb!-list!*;
- gb!-list!* := ((w.cdr v).w) . gb!-list!*; return w end;
- symbolic operator gb;
- symbolic procedure test!-ideal u;
- if not eqcar(id!-vars!*,'list) then
- typerr(id!-vars!*,"ideal setting; set variables first") else
- if eqcar(u,'list) then 'i.cdr u else
- if not eqcar(u,'i) then typerr(u,"polynomial ideal") else u;
- symbolic procedure idealp u; eqcar(u,'i) or eqcar(u,'list);
- symbolic operator idealp;
- newtok '((!. !=) id!-equal);
- algebraic operator id!-equal;
- infix id!-equal;
- precedence id!-equal,=;
- symbolic procedure gb!-equal(a,b); if gb a = gb b then 1 else 0;
- symbolic operator gb!-equal;
- algebraic <<let (~a .= ~b) => gb!-equal(a,b) when idealp a and idealp b>>;
- symbolic procedure gb!-member(p,u);
- if 0=preduceeval{p,ideal2list gb u,id!-vars!*} then 1 else 0;
- symbolic operator gb!-member;
- algebraic operator member;
- algebraic <<let ~a member ~b => gb!-member(a,b) when idealp b>>;
- symbolic procedure gb!-subset(a,b);
- begin scalar q; q:= t; a:=cdr test!-ideal reval a;
- b:=ideal2list gb b; for each p in a do
- q:=q and 0=preduceeval{p,b,id!-vars!*};
- return if q then 1 else 0 end;
- symbolic operator gb!-subset;
- algebraic operator subset;
- infix subset;
- precedence subset,member;
- algebraic <<let (~a subset ~b) => gb!-subset(a,b) when idealp a and idealp b>>;
- symbolic procedure gb!-plus(a,b);
- <<a := cdr test!-ideal reval a;
- b := cdr test!-ideal reval b; gb ('i.append(a,b)) >>;
- symbolic operator gb!-plus;
- algebraic operator .+;
- algebraic << let (~a .+ ~b) => gb!-plus(a,b) when idealp a and idealp b>>;
- symbolic procedure gb!-times(a,b);
- <<a := cdr test!-ideal reval a; b := cdr test!-ideal reval b;
- gb ('i. for each p in a join for each q in b collect {'times,p,q}) >>;
- symbolic operator gb!-times;
- algebraic operator .*;
- algebraic << let (~a .* ~b) => gb!-times(a,b) when idealp a and idealp b>>;
- symbolic procedure gb!-intersect(a,b);
- begin scalar tt,oo,q,v;
- tt:='!-!-t; v:= id!-vars!*;
- oo := eval '(torder '(lex));
- a := cdr test!-ideal reval a;
- b := cdr test!-ideal reval b;
- q:='i. append(
- for each p in a collect {'times,tt,p},
- for each p in b collect {'times,{'difference,1,tt},p});
- id!-vars!* := 'list . tt. cdr id!-vars!*;
- q:= errorset({'gb,mkquote q},nil,!*backtrace);
- id!-vars!* := v;
- eval{'torder,mkquote{oo}};
- if errorp q then rederr "ideal intersection failed";
- q:=for each p in cdar q join if not smemq(tt,p) then {p};
- return gb('i . q) end;
- symbolic operator gb!-intersect;
- algebraic operator intersection;
- algebraic <<let intersection (~a , ~b) => gb!-intersect(a,b)
- when idealp a and idealp b>>;
- newtok '((!. !:) id!-quotient);
- algebraic operator id!-quotient;
- infix id!-quotient;
- precedence id!-quotient,/;
- symbolic procedure gb!-quotient(a,b);
- <<a := test!-ideal reval a; b := test!-ideal reval b; gb!-quotient1(a,cdr b)>>;
- symbolic procedure gb!-quotient1(a,b);
- begin scalar q; q:='i.cdr idquotienteval{ideal2list a,car b,id!-vars!*};
- return if null cdr b then q else gb!-intersect(q,gb!-quotient1(a,cdr b)) end;
- symbolic operator gb!-quotient;
- algebraic operator over;
- algebraic <<let (~a ./ ~b) => gb!-quotient(a,b) when idealp a and idealp b>>;
- algebraic <<let (~a .: ~b) => gb!-quotient(a,b) when idealp a and idealp b>>;
- endmodule;;end;
|