123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146 |
- module groebman; % Operators for manipulation of bases and
- % polynomials in Groebner style.
-
- flag ('(groebrestriction groebresmax gvarslast groebprotfile gltb),'share);
-
- % control of the polynomial arithmetic actually loaded
- symbolic procedure gsorteval pars;
- % reformat a polynomial or a list of polynomials by a distributive
- % ordering; a list will be sorted and zeros are elimiated
- begin scalar vars,u,v,w,oldorder,nolist,!*factor,!*exp,!*gsugar;
- integer n,pcount!*;!*exp:=t;
- n:=length pars;
- u:=reval car pars;
- v:=if n>1 then reval cadr pars else nil;
- if not eqcar(u,'list) then
- <<nolist:=t;u:=list('list,u)>>;
- w:= for each j in groerevlist u
- collect if eqexpr j then !*eqn2a j else j;
- vars:=groebnervars(w,v);
- if not vars then vdperr 'gsort;
- oldorder:= vdpinit vars;
- !*vdpinteger:=nil;
- w:=for each j in w collect a2vdp j;
- w:=vdplsort w;
- w:=for each x in w collect vdp2a x;
- while member(0,w) do w:=delete(0,w);
- setkorder oldorder;
- return if nolist and w then car w else 'list.w end;
-
- put('gsort,'psopfn,'gsorteval);
-
- symbolic procedure gspliteval pars;
- % split a polynomial into leading monomial and reductum;
- begin scalar vars,x,u,v,w,oldorder,!*factor,!*exp,!*gsugar;
- integer n,pcount!*;!*exp:=t;
- n:=length pars;
- u:=reval car pars;
- v:=if n>1 then reval cadr pars else nil;
- u:=list('list,u);
- w:=for each j in groerevlist u
- collect if eqexpr j then !*eqn2a j else j;
- vars:=groebnervars(w,v);
- if not vars then vdperr 'gsplit;
- oldorder:=vdpinit vars;
- !*vdpinteger:=nil;
- w:=a2vdp car w;
- if vdpzero!? w then x:=w else
- <<x:=vdpfmon(vdplbc w,vdpevlmon w);w:=vdpred w>>;
- w:={'list,vdp2a x,vdp2a w};
- setkorder oldorder;return w end;
- put('gsplit,'psopfn,'gspliteval);
- symbolic procedure gspolyeval pars;
- % calculate the S Polynomial from two given polynomials
- begin scalar vars,u,u1,u2,v,w,oldorder,!*factor,!*exp,!*gsugar;
- integer n,pcount!*;!*exp:=t;
- n:=length pars;
- if n<2 or n#>3 then
- rerror(groebnr2,1,"gspoly, illegal number or parameters");
- u1:= car pars;u2:= cadr pars;
- u:={'list,u1,u2};
- v:=if n>2 then groerevlist caddr pars else nil;
- w:=for each j in groerevlist u
- collect if eqexpr j then !*eqn2a j else j;
- vars:=groebnervars(w,v);
- if not vars then vdperr 'gspoly;
- groedomainmode();
- oldorder:=vdpinit vars;
- w:=for each j in w collect f2vdp numr simp j;
- w:=vdp2a groebspolynom3 (car w,cadr w);
- setkorder oldorder;return w end;
-
- put('gspoly,'psopfn,'gspolyeval);
-
- symbolic procedure gvarseval u;
- % u is a list of polynomials; gvars extracts the variables from u
- begin integer n;scalar v,!*factor,!*exp,!*gsugar;!*exp:=t;
- n:=length u;
- v:=for each j in groerevlist reval car u collect
- if eqexpr j then !*eqn2a j else j;
- v:=groebnervars(v,nil);
- v:=if n=2 then
- intersection (v,groerevlist reval cadr u) else v;
- return 'list.v end;
-
- put('gvars,'psopfn,'gvarseval);
-
- symbolic procedure greduceeval pars;
- % Polynomial reduction modulo a Groebner basis driver. u is an
- % expression and v a list of expressions. Greduce calculates the
- % polynomial u reduced wrt the list of expressions v reduced to a
- % groebner basis modulo using the optional caddr argument as the
- % order of variables.
- % 1 expression to be reduced
- % 2 polynomials or equations; base for reduction
- % 3 optional: list of variables
- begin scalar vars,x,u,v,w,np,oldorder,!*factor,!*groebfac,!*exp;
- scalar !*gsugar;
- integer n,pcount!*;!*exp:=t;
- if !*groebprot then groebprotfile:={'list};
- n:=length pars;
- x:=reval car pars;
- u:=reval cadr pars;
- v:=if n>2 then reval caddr pars else nil;
- w:=for each j in groerevlist u
- collect if eqexpr j then !*eqn2a j else j;
- if null w then rerror(groebnr2,2,"Empty list in greduce");
- vars:=groebnervars(w,v);
- if not vars then vdperr 'greduce;
- oldorder:=vdpinit vars;
- groedomainmode();
- % cancel common denominators
- w:=for each j in w collect reorder numr simp j;
- % optimize varable sequence if desired
- if !*groebopt then<<w:=vdpvordopt (w,vars);vars:=cdr w;
- w:=car w;vdpinit vars>>;
- w:=for each j in w collect f2vdp j;
- if !*groebprot then w:=for each j in w collect vdpenumerate j;
- if not !*vdpinteger then
- <<np:=t;
- for each p in w do
- np:=if np then vdpcoeffcientsfromdomain!? p
- else nil;
- if not np then <<!*vdpmodular:= nil;!*vdpinteger:=t>> >>;
- w:=groebner2(w,nil);x:=a2vdp x;
- if !*groebprot then
- <<w:=for each j in w collect vdpenumerate j;
- groebprotsetq('candidate,vdp2a x);
- for each j in w do groebprotsetq(mkid('poly,vdpnumber j),
- vdp2a j)>>;
- w:=car w;
- !*vdpinteger:=nil;
- w:=groebnormalform(x,w,'sort);
- w:=vdp2a w;
- setkorder oldorder;
- gvarslast:='list.vars;
- return if w then w else 0 end;
-
- put('greduce,'psopfn,'greduceeval);
-
- put('preduce,'psopfn,'preduceeval);
-
- endmodule;;end;
|