1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253 |
- module greduo;
- % Compute 'greduce' with several orders for the minimal polynomial.
- global'(gorder gorders greduce_result);
- share gorder;
- share gorders;
- share greduce_result;
- if null gorders then gorders:='(list revgradlex gradlex lex);
- symbolic procedure greduce!-orders!-eval u;
- % 'Greduce_orders(p,g)'; the result is the (minimal) reduction of 'p'
- % corresponding to the global variable '*orders', eventually '0'.
- begin scalar b,g,l,o,p,r,rr,s,ss,v,x;
- l:=length u;
- if 2>l or 3<l then
- rederr('groe4,1,"groe4 must have 2 or 3 parameters.");
- p:=reval car u;u:=cdr u;
- if eqexpr p then p:=!*eqn2a p;
- g:=reval car u;u:=cdr u;
- if not eqcar(g,'list) then
- rederr('groe4,2,"groe4: 2nd parameter must be a list.");
- for each gg in cdr g do
- if null x and eqexpr gg then x:=t;
- if x then
- g:='list.for each gg in cdr g collect
- if eqexpr gg then !*eqn2a gg else gg;
- if u then<<v:=reval car u;
- if not eqcar(v,'list) then
- rederr('groe4,3,"groe4: 3rd par. must be a list (or it must be omitted).")>>;
- v:='list.groebnervars(cdr g,v);
- for each oo in cdr gorders do
- if null b then
- <<o:=oo;oo:=if eqcar(oo,'list)then cdr oo else oo.nil;torder(v.oo);
- rr:=greduceeval{p,g};ss:=greduce!-orders!-size rr;
- if null r or ss<s then <<gorder:=o;r:=rr;s:=ss;greduce_result:=rr>>;
- if rr=0 then b:=t>>;return r end;
- put('greduce_orders,'psopfn,'greduce!-orders!-eval);
- symbolic procedure greduce!-orders!-size p;
- % Compute the size of the polynomial 'p'.
- if atom p then 1 else
- if eqcar(p,'expt)then(1+greduce!-orders!-size cadr p+2*x
- where x=if fixp caddr p and caddr p>1 and caddr p<30 then caddr p
- else 5*greduce!-orders!-size caddr p)else
- for each x in p sum greduce!-orders!-size x;
- endmodule;;end;
|