123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165 |
- %********************************************************************
- module linalgsys$
- %********************************************************************
- % Routines for the memory efficient solution of linear algebraic systems
- % Author: Thomas Wolf
- % December 1998
- symbolic fluid '(count_tries tr_subsys max_losof matrix_849)$
- lisp(tr_subsys:=nil)$
- symbolic procedure trian_lin_alg(arglist)$
- if not lin_problem then nil else
- begin scalar h1,h2,h3,h4,f,fl,newfl,tr_opt,remain_pdes,remain_fl,li,
- total_terms;
- tr_opt:=t;
- % get a list h1 of purely algebraic equation by disregarding the
- % non-algebraic equations
- h2:=car arglist;
- while h2 do <<
- if is_algebraic(car h2) then h1:=cons(car h2,h1);
- h2:=cdr h2
- >>;
- % Just for testing spot_over_det():
- spot_over_det(h1,nil,nil,nil)$
- write "count_tries=",count_tries; terpri()$
- return nil;
- % start with reducing the length of all equations as much as possible
- repeat <<
- h2:=alg_length_reduction({h1,nil,vl_,h1});
- % nil for forg which is not used in alg_length_reduction()
- if h2 then h1:=car h2
- >> until contradiction_ or null h2;
-
- remain_pdes:=h1;
- total_terms:=0;
- for each h2 in remain_pdes do total_terms:=total_terms+get(h2,'terms);
- % fl now becomes a list of lists: ((n1,f1,d11,d12,d13,..),
- % (n2,f2,d21,d22,d23,...),...) where fi are the functions,
- % dij are equation names in which fi occurs and ni is the number of dij
- for each h2 in h1 do fl:=add_equ_to_fl(h2,fl)$
- % newfl is the final newly ordered list of functions
- while fl and null contradiction_ do <<
- % re-order all functions, those occuring in the fewest equations
- % come first
- fl:=idx_sort fl;
- if tr_opt then <<terpri()$write"fl2="$prettyprint fl>>$
- if caar fl = 1 then << % the first function occurs in only one eqn.
- % If a function occurs in only one equation then drop the function
- % and the equation from all functions in fl
- while caar fl leq 1 do <<
- if tr_opt and (caar fl = 1) then <<
- write"equation ",caddar fl," determines ",cadar fl$terpri()
- >>$
- newfl:=cons(cadar fl,newfl);
- fl:=if caar fl = 0 then cdr fl
- else <<remain_pdes:=delete(caddar fl,remain_pdes);
- total_terms:=total_terms-get(caddar fl,'terms);
- fl:=del_equ_from_fl(caddar fl,cdr fl)>>
- >>;
- >> else << % all remaining functions occur in at least 2 eqn.
- % Find a subsystem of equations that has less or equally many
- % functions as equations
- % ...
- % Find a function which is easiest decoupled/substituted
- % (e.g. use min-growth-substitution for that)
- remain_fl:=for each h3 in fl collect cadr h3;
- % update 'fcteval_lin for all equations. This is a preparation to
- % find the cheapest substitution
- for each h1 in remain_pdes do <<
- h2:=get(h1,'fcteval_lin)$
- li:=nil;
- if null h2 then << % assign all allowed subst.
- for each f in remain_fl do
- if not freeof(get(h1,'rational),f) then
- li:=cons(cons(reval coeffn(get(h1,'val),f,1),f),li);
- >> else << % keep only substitutions related to fl-functions
- while h2 do <<
- if not freeof(cdar h2,remain_fl) then li:=cons(car h2,li);
- h2:=cdr h2
- >>
- >>;
- if li then put(h1,'fcteval_lin,reverse li);
- >>;
- % Do the substitution with the lowest upper bound of increase in complexity
- % make_subst(pdes,forg,vl,l1,length_limit,pdelimit,less_vars,no_df,no_cases,
- % lin_subst,min_growth,cost_limit,keep_eqn)$
- h1:=make_subst(remain_pdes,remain_fl,vl_,remain_pdes,
- nil,nil,nil,nil,t,t,t,nil,t,nil)$
- if null contradiction_ and h1 then << % update all data
- h2:=caddr h1; % h2 was used for substitution
- h3:=total_terms-get(h2,'terms)$
- remain_pdes:=delete(h2,car h1);
- total_terms:=0;
- for each h4 in remain_pdes do total_terms:=total_terms+get(h4,'terms);
- if tr_opt then <<
- write"equation ",h2," now disregarded"$ terpri()$
- write"growth: ",total_terms-h3," terms"$terpri()$
- write length remain_pdes," remaining PDEs: ",remain_pdes$ terpri()$
- >>$
- fl:=del_equ_from_fl(h2,fl);
- h2:=cadr h1;
- while (not pairp car h2) or (caar h2 neq 'EQUAL) do h2:=cdr h2;
- f:=cadar h2$
- remain_fl:=delete(f,remain_fl);
- if tr_opt then <<
- write length remain_fl," remaining functions: ",remain_fl$ terpri()$
- >>$
- % Drop the entry for function f from fl. h4 is the list of
- % equations with f
- if cadar fl = f then <<h4:=cddar fl;fl:=cdr fl>>
- else <<
- h3:=fl;
- while cadadr h3 neq f do h3:=cdr h3;
- h4:=cddadr h3;
- rplacd(h3,cddr h3);
- >>;
- % update the appearance of equations in fl in which f was substituted
- for each h3 in h4 do <<
- fl:=del_equ_from_fl(h3,fl);
- if not freeof(remain_pdes,h3) then fl:=add_equ_to_fl(h3,fl)
- >>$
- % Have length reductions become possible through substitution?
- repeat <<
- h2:=alg_length_reduction({remain_pdes,nil,vl_,remain_pdes});
- % nil for forg which is not used in alg_length_reduction()
- if h2 then <<
- % update fl:
- % at first deleting dropped redundand equations from fl
- h3:=setdiff(remain_pdes,car h2);
- for each h4 in h3 do fl:=del_equ_from_fl(h4,fl);
- remain_pdes:=car h2;
- % now updating the entry for the changed equations
- for each h3 in caddr h2 do <<
- fl:=del_equ_from_fl(h3,fl);
- if not freeof(remain_pdes,h3) then fl:=add_equ_to_fl(h3,fl)
- >>
- >>
- >> until contradiction_ or null h2;
- >> else rederr("make_subst=nil, what now???");
- >>
- >>$
- if newfl neq ftem_ then
- change_fcts_ordering(newfl,car arglist,vl_)
- % clear dec_with????
- end$
- endmodule$
- end$
|