123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234 |
- \section{Variables}
- \begin{Variable}{assumptions}
- \index{solve}
- After solving a linear or polynomial equation system
- with parameters, the variable \name{assumptions} contains a list
- of side relations for the parameters. The solution is valid only
- as long as none of these expression is zero.
- \begin{Examples}
- solve({a*x-b*y+x,y-c},{x,y});&
- \{\{x=\rfrac{b*c}{a + 1},y=c\}\} \\
- assumptions; & \{a + 1\}
- \end{Examples}
- \end{Variable}
- \begin{Variable}{CARD\_NO}
- \index{FORTRAN}\index{output}
- \name{card\_no} sets the total number of cards allowed in a Fortran
- output statement when \name{fort} is on. Default is 20.
- \begin{Examples}
- on fort; \\
- card_no := 4; & CARD\_NO=4. \\
- z := (x + y)**15; &
- \begin{multilineoutput}{6cm}
- ANS1=5005.*X**6*Y**9+3003.*X**5*Y**10+1365.*X**4*Y**
- . 11+455.*X**3*Y**12+105.*X**2*Y**13+15.*X*Y**14+Y**15
- Z=X**15+15.*X**14*Y+105.*X**13*Y**2+455.*X**12*Y**3+
- . 1365.*X**11*Y**4+3003.*X**10*Y**5+5005.*X**9*Y**6+
- . 6435.*X**8*Y**7+6435.*X**7*Y**8+ANS1
- \end{multilineoutput}
- \end{Examples}
- \begin{Comments}
- Twenty total cards means 19 continuation cards. You may set it for more
- if your Fortran system allows more. Expressions are broken apart in a
- Fortran-compatible way if they extend for more than \name{card\_no}
- continuation cards.
- \end{Comments}
- \end{Variable}
- \begin{Constant}{E}
- The constant \name{e} is reserved for use as the base of the natural
- logarithm. Its value is approximately 2.71828284590, which REDUCE gives
- to the current decimal precision when the switch \nameref{rounded} is on.
- \begin{Comments}
- \name{e} may be used as an iterative variable in a \nameref{for} statement,
- or as a local variable or a \nameref{procedure}. If \name{e} is defined
- as a local
- variable inside the procedure, the normal definition as the base of the
- natural logarithm would be suspended inside the procedure.
- \end{Comments}
- \end{Constant}
- \begin{Variable}{EVAL\_MODE}
- \index{algebraic}\index{symbolic}
- The system variable \name{eval\_mode} contains the current mode, either
- \nameref{algebraic} or \nameref{symbolic}.
- \begin{Examples}
- EVAL\_MODE; & ALGEBRAIC
- \end{Examples}
- \begin{Comments}
- Some commands do not behave the same way in algebraic and symbolic modes.
- %You can determine what mode you are in without using this command by noting
- %that the numbered prompt in algebraic mode contains a colon (\name{:}), while
- %the numbered prompt in symbolic mode contains an asterisk (\name{*}).
- \end{Comments}
- \end{Variable}
- \begin{Variable}{FORT\_WIDTH}
- \index{output}\index{FORTRAN}
- The \name{fort\_width} variable sets the number of characters in a line of
- Fortran-compatible output produced when the \nameref{fort} switch is on.
- Default is 70.
- \begin{Examples}
- fort_width := 30; & FORT\_WIDTH := 30 \\
- on fort; \\
- df(sin(x**3*y),x); & \begin{multilineoutput}{3cm}
- ANS=3.*COS(X
- . **3*Y)*X**2*
- . Y
- \end{multilineoutput}
- \end{Examples}
- \begin{Comments}
- \name{fort\_width} includes the usually blank characters at the beginning
- of the card. As you may notice above, it is conservative and makes the
- lines even shorter than it was told.
- \end{Comments}
- \end{Variable}
- \begin{Variable}{HIGH\_POW}
- \index{polynomial}\index{degree}
- The variable \name{high\_pow} is set by \nameref{coeff} to the highest power
- of the variable of interest in the given expression. You can access this
- variable for use in further computation or display.
- \begin{Examples}
- coeff((x+1)^5*(x*(y+3)^2)^2,x); &
- \begin{multilineoutput}{6cm}
- \{0,
- 0,
- Y^{4} + 12*Y^{3} + 54*Y^{2} + 108*Y + 81,
- 5*(Y^{4} + 12*Y^{3} + 54*Y^{2} + 108*Y + 81),
- 10*(Y^{4} + 12*Y^{3} + 54*Y^{2} + 108*Y + 81),
- 10*(Y^{4} + 12*Y^{3} + 54*Y^{2} + 108*Y + 81),
- 5*(Y^{4} + 12*Y^{3} + 54*Y^{2} + 108*Y + 81),
- Y^{4} + 12*Y^{3} + 54*Y^{2} + 108*Y + 81\}
- \end{multilineoutput} \\
- high_pow; & 7
- \end{Examples}
- \end{Variable}
- \begin{Constant}{I}
- \index{complex}
- REDUCE knows \name{i} is the square root of -1,
- and that \IFTEX{$i^2 = -1$}{i^2 = -1}.
- \begin{Examples}
- (a + b*i)*(c + d*i); & A*C + A*D*I + B*C*I - B*D \\
- i**2; & -1
- \end{Examples}
- \begin{Comments}
- \name{i} cannot be used as an identifier. It is all right to use \name{i}
- as an index variable in a \name{for} loop, or as a local (\name{scalar})
- variable inside a \name{begin...end} block, but it loses its definition as
- the square root of -1 inside the block in that case.
- Only the simplest properties of \IFTEX{$i$}{i} are known by REDUCE unless
- the switch \nameref{complex} is turned on, which implements full complex
- arithmetic in factoring, simplification, and functional values.
- \name{complex} is ordinarily off.
- \end{Comments}
- \end{Constant}
- \begin{Constant}{INFINITY}
- The name \name{infinity} is used to represent the infinite positive number.
- However, at the present time, arithmetic in terms of this operator reflects
- finite arithmetic, rather than true operations on infinity.
- \end{Constant}
- \begin{Variable}{LOW\_POW}
- \index{degree}\index{polynomial}
- The variable \name{low\_pow} is set by \nameref{coeff} to the lowest power
- of the variable of interest in the given expression. You can access this
- variable for use in further computation or display.
- \begin{Examples}
- coeff((x+2*y)**6,y); &
- \begin{multilineoutput}{6cm}
- \{X^{6},
- 12*X^{5},
- 60*X^{4},
- 160*X^{3},
- 240*X^{2},
- 192*X,
- 64\}
- \end{multilineoutput}\\
- low_pow; & 0 \\
- coeff(x**2*(x*sin(y) + 1),x);
- & \{0,0,1,SIN(Y)\} \\
- low_pow; & 2
- \end{Examples}
- \end{Variable}
- \begin{Constant}{NIL}
- \index{false}
- \name{nil} represents the truth value {\it false} in symbolic mode, and is
- a synonym for 0 in algebraic mode. It cannot be used for any other
- purpose, even inside procedures or \nameref{for} loops.
- \end{Constant}
- \begin{Constant}{PI}
- The identifier \name{pi} is reserved for use as the circular constant.
- Its value is given by 3.14159265358..., which REDUCE gives to the current
- decimal precision when REDUCE is in a floating-point mode.
- \begin{Comments}
- \name{pi} may be used as a looping variable in a \nameref{for} statement,
- or as a local variable in a \nameref{procedure}. Its value in such cases
- will be taken from the local environment.
- \end{Comments}
- \end{Constant}
- \begin{Variable}{requirements}
- \index{solve}
- After an attempt to solve an inconsistent equation system
- with parameters, the variable \name{requirements} contains a list
- of expressions. These expressions define a set of conditions implicitly
- equated with zero. Any solution to this system defines a setting for
- the parameters sufficient to make the original system consistent.
- \begin{Examples}
- solve({x-a,x-y,y-1},{x,y}); & \{\}\\
- requirements;&\{a - 1\}
- \end{Examples}
- \end{Variable}
- \begin{Variable}{ROOT\_MULTIPLICITIES}
- \index{root}\index{solve}\index{polynomial}
- The \name{root\_multiplicities} variable is set to the list of the
- multiplicities of the roots of an equation by the \nameref{solve} operator.
- \begin{Comments}
- \nameref{solve} returns its solutions in a list. The multiplicities of
- each solution are put in the corresponding locations of the list
- \name{root\_multiplicities}.
- \end{Comments}
- \end{Variable}
- \begin{Constant}{T}
- The constant \name{t} stands for the truth value {\it true}. It cannot be used
- as a scalar variable in a \nameref{block}, as a looping variable in a
- \nameref{for} statement or as an \nameref{operator} name.
- \end{Constant}
|