123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859 |
- comment
- Test and demonstration file for the Taylor expansion package,
- by Rainer M. Schoepf. Works with version 2.2 (18-Jun-97);
- %%% showtime;
- on errcont; % disable interruption on errors
- comment Simple Taylor expansion;
- xx := taylor (e**x, x, 0, 4);
- yy := taylor (e**y, y, 0, 4);
- comment Basic operations, i.e. addition, subtraction, multiplication,
- and division are possible: this is not done automatically if
- the switch TAYLORAUTOCOMBINE is OFF. In this case it is
- necessary to use taylorcombine;
- taylorcombine (xx**2);
- taylorcombine (ws - xx);
- taylorcombine (xx**3);
- comment The result is again a Taylor kernel;
- if taylorseriesp ws then write "OK";
- comment It is not possible to combine Taylor kernels that were
- expanded with respect to different variables;
- taylorcombine (xx**yy);
- comment But we can take the exponential or the logarithm
- of a Taylor kernel;
- taylorcombine (e**xx);
- taylorcombine log ws;
- comment A more complicated example;
- hugo := taylor(log(1/(1-x)),x,0,5);
- taylorcombine(exp(hugo/(1+hugo)));
- comment We may try to expand about another point;
- taylor (xx, x, 1, 2);
- comment Arc tangent is one of the functions this package knows of;
- xxa := taylorcombine atan ws;
- comment The trigonometric functions;
- taylor (tan x / x, x, 0, 2);
- taylorcombine sin ws;
- taylor (cot x / x, x, 0, 4);
- comment The poles of these functions are correctly handled;
- taylor(tan x,x,pi/2,0);
- taylor(tan x,x,pi/2,3);
- comment Expansion with respect to more than one kernel is possible;
- xy := taylor (e**(x+y), x, 0, 2, y, 0, 2);
- taylorcombine (ws**2);
- comment We take the inverse and convert back to REDUCE's standard
- representation;
- taylorcombine (1/ws);
- taylortostandard ws;
- comment Some examples of Taylor kernel divsion;
- xx1 := taylor (sin (x), x, 0, 4);
- taylorcombine (xx/xx1);
- taylorcombine (1/xx1);
- tt1 := taylor (exp (x), x, 0, 3);
- tt2 := taylor (sin (x), x, 0, 3);
- tt3 := taylor (1 + tt2, x, 0, 3);
- taylorcombine(tt1/tt2);
- taylorcombine(tt1/tt3);
- taylorcombine(tt2/tt1);
- taylorcombine(tt3/tt1);
- comment Here's what I call homogeneous expansion;
- xx := taylor (e**(x*y), {x,y}, 0, 2);
- xx1 := taylor (sin (x+y), {x,y}, 0, 2);
- xx2 := taylor (cos (x+y), {x,y}, 0, 2);
- temp := taylorcombine (xx/xx2);
- taylorcombine (ws*xx2);
- comment The following shows a principal difficulty:
- since xx1 is symmetric in x and y but has no constant term
- it is impossible to compute 1/xx1;
- taylorcombine (1/xx1);
- comment Substitution in Taylor expressions is possible;
- sub (x=z, xy);
- comment Expression dependency in substitution is detected;
- sub (x=y, xy);
- comment It is possible to replace a Taylor variable by a constant;
- sub (x=4, xy);
- sub (x=4, xx1);
- sub (y=0, ws);
- comment This package has three switches:
- TAYLORKEEPORIGINAL, TAYLORAUTOEXPAND, and TAYLORAUTOCOMBINE;
- on taylorkeeporiginal;
- temp := taylor (e**(x+y), x, 0, 5);
- taylorcombine (log (temp));
- taylororiginal ws;
- taylorcombine (temp * e**x);
- on taylorautoexpand;
- taylorcombine ws;
- taylororiginal ws;
- taylorcombine (xx1 / x);
- on taylorautocombine;
- xx / xx2;
- ws * xx2;
- comment Another example that shows truncation if Taylor kernels
- of different expansion order are combined;
- comment First we increase the number of terms to be printed;
- taylorprintterms := all;
- p := taylor (x**2 + 2, x, 0, 10);
- p - x**2;
- p - taylor (x**2, x, 0, 5);
- taylor (p - x**2, x, 0, 6);
- off taylorautocombine;
- taylorcombine(p-x**2);
- taylorcombine(p - taylor(x**2,x,0,5));
- comment Switch back to finite number of terms;
- taylorprintterms := 6;
- comment Some more examples;
- taylor(1/(1+y^4+x^2*y^2+x^4),{x,y},0,6);
- taylor ((1 + x)**n, x, 0, 3);
- taylor (e**(-a*t) * (1 + sin(t)), t, 0, 4);
- operator f;
- taylor (1 + f(t), t, 0, 3);
- taylor(f(sqrt(x^2+y^2)),x,x0,4,y,y0,4);
- clear f;
- taylor (sqrt(1 + a*x + sin(x)), x, 0, 3);
- taylorcombine (ws**2);
- taylor (sqrt(1 + x), x, 0, 5);
- taylor ((cos(x) - sec(x))^3, x, 0, 5);
- taylor ((cos(x) - sec(x))^-3, x, 0, 5);
- taylor (sqrt(1 - k^2*sin(x)^2), x, 0, 6);
- taylor (sin(x + y), x, 0, 3, y, 0, 3);
- taylor (e^x - 1 - x,x,0,6);
- taylorcombine sqrt ws;
- taylor(sin(x)/x,x,1,2);
- taylor((sqrt(4+h)-2)/h,h,0,5);
- taylor((sqrt(x)-2)/(4-x),x,4,2);
- taylor((sqrt(y+4)-2)/(-y),y,0,2);
- taylor(x*tanh(x)/(sqrt(1-x^2)-1),x,0,3);
- taylor((e^(5*x)-2*x)^(1/x),x,0,2);
- taylor(sin x/cos x,x,pi/2,3);
- taylor(log x*sin(x^2)/(x*sinh x),x,0,2);
- taylor(1/x-1/sin x,x,0,2);
- taylor(tan x/log cos x,x,pi/2,2);
- taylor(log(x^2/(x^2-a)),x,0,3);
- comment Three more complicated examples contributed by Stan Kameny;
- zz2 := (z*(z-2*pi*i)*(z-pi*i/2)^2)/(sinh z-i);
- dz2 := df(zz2,z);
- z0 := pi*i/2;
- taylor(dz2,z,z0,6);
- zz3:=(z*(z-2*pi)*(z-pi/2)^2)/(sin z-1);
- dz3 := df(zz3,z);
- z1 := pi/2;
- taylor(dz3,z,z1,6);
- taylor((sin tan x-tan sin x)/(asin atan x-atan asin x),x,0,6);
- comment If the expansion point is not constant, it has to be taken
- care of in differentation, as the following examples show;
- taylor(sin(x+a),x,a,8);
- df(ws,a);
- taylor(cos(x+a),x,a,7);
- comment A problem are non-analytical terms: rational powers and
- logarithmic terms can be handled, but other types of essential
- singularities cannot;
- taylor(sqrt(x),x,0,2);
- taylor(asinh(1/x),x,0,5);
- taylor(e**(1/x),x,0,2);
- comment Another example for non-integer powers;
- sub (y = sqrt (x), yy);
- comment Expansion about infinity is possible in principle...;
- taylor (e**(1/x), x, infinity, 5);
- xi := taylor (sin (1/x), x, infinity, 5);
- y1 := taylor(x/(x-1), x, infinity, 3);
- z := df(y1, x);
- comment ...but far from being perfect;
- taylor (1 / sin (x), x, infinity, 5);
- clear z;
- comment You may access the expansion with the PART operator;
- part(yy,0);
- part(yy,1);
- part(yy,4);
- part(yy,6);
- comment The template of a Taylor kernel can be extracted;
- taylortemplate yy;
- taylortemplate xxa;
- taylortemplate xi;
- taylortemplate xy;
- taylortemplate xx1;
- comment Here is a slightly less trivial example;
- exp := (sin (x) * sin (y) / (x * y))**2;
- taylor (exp, x, 0, 1, y, 0, 1);
- taylor (exp, x, 0, 2, y, 0, 2);
- tt := taylor (exp, {x,y}, 0, 2);
- comment An example that uses factorization;
- on factor;
- ff := y**5 - 1;
- zz := sub (y = taylor(e**x, x, 0, 3), ff);
- on exp;
- zz;
- comment A simple example of Taylor kernel differentiation;
- hugo := taylor(e^x,x,0,5);
- df(hugo^2,x);
- comment The following shows the (limited) capabilities to integrate
- Taylor kernels. Only simple cases are supported, otherwise
- a warning is printed and the Taylor kernels are converted to
- standard representation;
- zz := taylor (sin x, x, 0, 5);
- ww := taylor (cos y, y, 0, 5);
- int (zz, x);
- int (ww, x);
- int (zz + ww, x);
- comment And here we present Taylor series reversion.
- We start with the example given by Knuth for the algorithm;
- taylor (t - t**2, t, 0, 5);
- taylorrevert (ws, t, x);
- tan!-series := taylor (tan x, x, 0, 5);
- taylorrevert (tan!-series, x, y);
- atan!-series:=taylor (atan y, y, 0, 5);
- tmp := taylor (e**x, x, 0, 5);
- taylorrevert (tmp, x, y);
- taylor (log y, y, 1, 5);
- comment The following example calculates the perturbation expansion
- of the root x = 20 of the following polynomial in terms of
- EPS, in ROUNDED mode;
- poly := for r := 1 : 20 product (x - r);
- on rounded;
- tpoly := taylor (poly, x, 20, 4);
- taylorrevert (tpoly, x, eps);
- comment Some more examples using rounded mode;
- taylor(sin x/x,x,0,4);
- taylor(sin x,x,pi/2,4);
- taylor(tan x,x,pi/2,4);
- off rounded;
- comment An example that involves computing limits of type 0/0 if
- expansion is done via differentiation;
- taylor(sqrt((e^x - 1)/x),x,0,15);
- comment An example that involves intermediate non-analytical terms
- which cancel entirely;
- taylor(x^(5/2)/(log(x+1)*tan(x^(3/2))),x,0,5);
- comment Other examples involving non-analytical terms;
- taylor(log(e^x-1),x,0,5);
- taylor(e^(1/x)*(e^x-1),x,0,5);
- taylor(log(x)*x^10,x,0,5);
- taylor(log(x)*x^10,x,0,11);
- taylor(log(x-a)/((a-b)*(a-c)) + log(2(x-b))/((b-c)*(b-a))
- + log(x-c)/((c-a)*(c-b)),x,infinity,2);
- ss := (sqrt(x^(2/5) +1) - x^(1/3)-1)/x^(1/3);
- taylor(exp ss,x,0,2);
- taylor(exp sub(x=x^15,ss),x,0,2);
- taylor(dilog(x),x,0,4);
- taylor(ei(x),x,0,4);
- comment In the following we demonstrate the possibiblity to compute the
- expansion of a function which is given by a simple first order
- differential equation: the function myexp(x) is exp(-x^2);
- operator myexp,myerf;
- let {df(myexp(~x),~x) => -2*x*myexp(x), myexp(0) => 1,
- df(myerf(~x),~x) => 2/sqrt(pi)*myexp(x), myerf(0) => 0};
- taylor(myexp(x),x,0,5);
- taylor(myerf(x),x,0,5);
- clear {df(myexp(~x),~x) => -2*x*myexp(x), myexp(0) => 1,
- df(myerf(~x),~x) => 2/sqrt(pi)*myexp(x), myerf(0) => 0};
- clear myexp,erf;
- %%% showtime;
- comment There are two special operators, implicit_taylor and
- inverse_taylor, to compute the Taylor expansion of implicit
- or inverse functions;
- implicit_taylor(x^2 + y^2 - 1,x,y,0,1,5);
- implicit_taylor(x^2 + y^2 - 1,x,y,0,1,20);
- implicit_taylor(x+y^3-y,x,y,0,0,8);
- implicit_taylor(x+y^3-y,x,y,0,1,5);
- implicit_taylor(x+y^3-y,x,y,0,-1,5);
- implicit_taylor(y*e^y-x,x,y,0,0,5);
- comment This is the function exp(-1/x^2), which has an essential
- singularity at the point 0;
- implicit_taylor(x^2*log y+1,x,y,0,0,3);
- inverse_taylor(exp(x)-1,x,y,0,8);
- inverse_taylor(exp(x),x,y,0,5);
- inverse_taylor(sqrt(x),x,y,0,5);
- inverse_taylor(log(1+x),x,y,0,5);
- inverse_taylor((e^x-e^(-x))/2,x,y,0,5);
- comment In the next two cases the inverse functions have a branch
- point, therefore the computation fails;
- inverse_taylor((e^x+e^(-x))/2,x,y,0,5);
- inverse_taylor(exp(x^2-1),x,y,0,5);
- inverse_taylor(exp(sqrt(x))-1,x,y,0,5);
- inverse_taylor(x*exp(x),x,y,0,5);
- %%% showtime;
- comment An application is the problem posed by Prof. Stanley:
- we prove that the finite difference expression below
- corresponds to the given derivative expression;
- operator diff,a,f,gg; % We use gg to avoid conflict with high energy
- % physics operator.
- let diff(~f,~arg) => df(f,arg);
- derivative_expression :=
- diff(a(x,y)*diff(gg(x,y),x)*diff(gg(x,y),y)*diff(f(x,y),y),x) +
- diff(a(x,y)*diff(gg(x,y),x)*diff(gg(x,y),y)*diff(f(x,y),x),y) ;
- finite_difference_expression :=
- +a(x+dx,y+dy)*f(x+dx,y+dy)*gg(x+dx,y+dy)^2/(32*dx^2*dy^2)
- +a(x+dx,y)*f(x+dx,y+dy)*gg(x+dx,y+dy)^2/(32*dx^2*dy^2)
- +a(x,y+dy)*f(x+dx,y+dy)*gg(x+dx,y+dy)^2/(32*dx^2*dy^2)
- +a(x,y)*f(x+dx,y+dy)*gg(x+dx,y+dy)^2/(32*dx^2*dy^2)
- -f(x,y)*a(x+dx,y+dy)*gg(x+dx,y+dy)^2/(32*dx^2*dy^2)
- -f(x,y)*a(x+dx,y)*gg(x+dx,y+dy)^2/(32*dx^2*dy^2)
- -f(x,y)*a(x,y+dy)*gg(x+dx,y+dy)^2/(32*dx^2*dy^2)
- -a(x,y)*f(x,y)*gg(x+dx,y+dy)^2/(32*dx^2*dy^2)
- -gg(x,y)*a(x+dx,y+dy)*f(x+dx,y+dy)*gg(x+dx,y+dy)/(16*dx^2*dy^2)
- -gg(x,y)*a(x+dx,y)*f(x+dx,y+dy)*gg(x+dx,y+dy)/(16*dx^2*dy^2)
- -gg(x,y)*a(x,y+dy)*f(x+dx,y+dy)*gg(x+dx,y+dy)/(16*dx^2*dy^2)
- -a(x,y)*gg(x,y)*f(x+dx,y+dy)*gg(x+dx,y+dy)/(16*dx^2*dy^2)
- +f(x,y)*gg(x,y)*a(x+dx,y+dy)*gg(x+dx,y+dy)/(16*dx^2*dy^2)
- +f(x,y)*gg(x,y)*a(x+dx,y)*gg(x+dx,y+dy)/(16*dx^2*dy^2)
- +f(x,y)*gg(x,y)*a(x,y+dy)*gg(x+dx,y+dy)/(16*dx^2*dy^2)
- +a(x,y)*f(x,y)*gg(x,y)*gg(x+dx,y+dy)/(16*dx^2*dy^2)
- -gg(x+dx,y)^2*a(x+dx,y+dy)*f(x+dx,y+dy)/(32*dx^2*dy^2)
- +gg(x,y+dy)*gg(x+dx,y)*a(x+dx,y+dy)*f(x+dx,y+dy)/(16*dx^2*dy^2)
- -gg(x,y+dy)^2*a(x+dx,y+dy)*f(x+dx,y+dy)/(32*dx^2*dy^2)
- +gg(x,y)^2*a(x+dx,y+dy)*f(x+dx,y+dy)/(32*dx^2*dy^2)
- -a(x+dx,y)*gg(x+dx,y)^2*f(x+dx,y+dy)/(32*dx^2*dy^2)
- -a(x,y+dy)*gg(x+dx,y)^2*f(x+dx,y+dy)/(32*dx^2*dy^2)
- -a(x,y)*gg(x+dx,y)^2*f(x+dx,y+dy)/(32*dx^2*dy^2)
- +gg(x,y+dy)*a(x+dx,y)*gg(x+dx,y)*f(x+dx,y+dy)/(16*dx^2*dy^2)
- +a(x,y+dy)*gg(x,y+dy)*gg(x+dx,y)*f(x+dx,y+dy)/(16*dx^2*dy^2)
- +a(x,y)*gg(x,y+dy)*gg(x+dx,y)*f(x+dx,y+dy)/(16*dx^2*dy^2)
- -gg(x,y+dy)^2*a(x+dx,y)*f(x+dx,y+dy)/(32*dx^2*dy^2)
- +gg(x,y)^2*a(x+dx,y)*f(x+dx,y+dy)/(32*dx^2*dy^2)
- -a(x,y+dy)*gg(x,y+dy)^2*f(x+dx,y+dy)/(32*dx^2*dy^2)
- -a(x,y)*gg(x,y+dy)^2*f(x+dx,y+dy)/(32*dx^2*dy^2)
- +gg(x,y)^2*a(x,y+dy)*f(x+dx,y+dy)/(32*dx^2*dy^2)
- +a(x,y)*gg(x,y)^2*f(x+dx,y+dy)/(32*dx^2*dy^2)
- +f(x,y)*gg(x+dx,y)^2*a(x+dx,y+dy)/(32*dx^2*dy^2)
- -f(x,y)*gg(x,y+dy)*gg(x+dx,y)*a(x+dx,y+dy)/(16*dx^2*dy^2)
- +f(x,y)*gg(x,y+dy)^2*a(x+dx,y+dy)/(32*dx^2*dy^2)
- -f(x,y)*gg(x,y)^2*a(x+dx,y+dy)/(32*dx^2*dy^2)
- +a(x+dx,y-dy)*f(x+dx,y-dy)*gg(x+dx,y-dy)^2/(32*dx^2*dy^2)
- +a(x+dx,y)*f(x+dx,y-dy)*gg(x+dx,y-dy)^2/(32*dx^2*dy^2)
- +a(x,y-dy)*f(x+dx,y-dy)*gg(x+dx,y-dy)^2/(32*dx^2*dy^2)
- +a(x,y)*f(x+dx,y-dy)*gg(x+dx,y-dy)^2/(32*dx^2*dy^2)
- -f(x,y)*a(x+dx,y-dy)*gg(x+dx,y-dy)^2/(32*dx^2*dy^2)
- -f(x,y)*a(x+dx,y)*gg(x+dx,y-dy)^2/(32*dx^2*dy^2)
- -f(x,y)*a(x,y-dy)*gg(x+dx,y-dy)^2/(32*dx^2*dy^2)
- -a(x,y)*f(x,y)*gg(x+dx,y-dy)^2/(32*dx^2*dy^2)
- -gg(x,y)*a(x+dx,y-dy)*f(x+dx,y-dy)*gg(x+dx,y-dy)/(16*dx^2*dy^2)
- -gg(x,y)*a(x+dx,y)*f(x+dx,y-dy)*gg(x+dx,y-dy)/(16*dx^2*dy^2)
- -gg(x,y)*a(x,y-dy)*f(x+dx,y-dy)*gg(x+dx,y-dy)/(16*dx^2*dy^2)
- -a(x,y)*gg(x,y)*f(x+dx,y-dy)*gg(x+dx,y-dy)/(16*dx^2*dy^2)
- +f(x,y)*gg(x,y)*a(x+dx,y-dy)*gg(x+dx,y-dy)/(16*dx^2*dy^2)
- +f(x,y)*gg(x,y)*a(x+dx,y)*gg(x+dx,y-dy)/(16*dx^2*dy^2)
- +f(x,y)*gg(x,y)*a(x,y-dy)*gg(x+dx,y-dy)/(16*dx^2*dy^2)
- +a(x,y)*f(x,y)*gg(x,y)*gg(x+dx,y-dy)/(16*dx^2*dy^2)
- -gg(x+dx,y)^2*a(x+dx,y-dy)*f(x+dx,y-dy)/(32*dx^2*dy^2)
- +gg(x,y-dy)*gg(x+dx,y)*a(x+dx,y-dy)*f(x+dx,y-dy)/(16*dx^2*dy^2)
- -gg(x,y-dy)^2*a(x+dx,y-dy)*f(x+dx,y-dy)/(32*dx^2*dy^2)
- +gg(x,y)^2*a(x+dx,y-dy)*f(x+dx,y-dy)/(32*dx^2*dy^2)
- -a(x+dx,y)*gg(x+dx,y)^2*f(x+dx,y-dy)/(32*dx^2*dy^2)
- -a(x,y-dy)*gg(x+dx,y)^2*f(x+dx,y-dy)/(32*dx^2*dy^2)
- -a(x,y)*gg(x+dx,y)^2*f(x+dx,y-dy)/(32*dx^2*dy^2)
- +gg(x,y-dy)*a(x+dx,y)*gg(x+dx,y)*f(x+dx,y-dy)/(16*dx^2*dy^2)
- +a(x,y-dy)*gg(x,y-dy)*gg(x+dx,y)*f(x+dx,y-dy)/(16*dx^2*dy^2)
- +a(x,y)*gg(x,y-dy)*gg(x+dx,y)*f(x+dx,y-dy)/(16*dx^2*dy^2)
- -gg(x,y-dy)^2*a(x+dx,y)*f(x+dx,y-dy)/(32*dx^2*dy^2)
- +gg(x,y)^2*a(x+dx,y)*f(x+dx,y-dy)/(32*dx^2*dy^2)
- -a(x,y-dy)*gg(x,y-dy)^2*f(x+dx,y-dy)/(32*dx^2*dy^2)
- -a(x,y)*gg(x,y-dy)^2*f(x+dx,y-dy)/(32*dx^2*dy^2)
- +gg(x,y)^2*a(x,y-dy)*f(x+dx,y-dy)/(32*dx^2*dy^2)
- +a(x,y)*gg(x,y)^2*f(x+dx,y-dy)/(32*dx^2*dy^2)
- +f(x,y)*gg(x+dx,y)^2*a(x+dx,y-dy)/(32*dx^2*dy^2)
- -f(x,y)*gg(x,y-dy)*gg(x+dx,y)*a(x+dx,y-dy)/(16*dx^2*dy^2)
- +f(x,y)*gg(x,y-dy)^2*a(x+dx,y-dy)/(32*dx^2*dy^2)
- -f(x,y)*gg(x,y)^2*a(x+dx,y-dy)/(32*dx^2*dy^2)
- +f(x,y)*a(x+dx,y)*gg(x+dx,y)^2/(16*dx^2*dy^2)
- +f(x,y)*a(x,y+dy)*gg(x+dx,y)^2/(32*dx^2*dy^2)
- +f(x,y)*a(x,y-dy)*gg(x+dx,y)^2/(32*dx^2*dy^2)
- +a(x,y)*f(x,y)*gg(x+dx,y)^2/(16*dx^2*dy^2)
- -f(x,y)*gg(x,y+dy)*a(x+dx,y)*gg(x+dx,y)/(16*dx^2*dy^2)
- -f(x,y)*gg(x,y-dy)*a(x+dx,y)*gg(x+dx,y)/(16*dx^2*dy^2)
- -f(x,y)*a(x,y+dy)*gg(x,y+dy)*gg(x+dx,y)/(16*dx^2*dy^2)
- -a(x,y)*f(x,y)*gg(x,y+dy)*gg(x+dx,y)/(16*dx^2*dy^2)
- -f(x,y)*a(x,y-dy)*gg(x,y-dy)*gg(x+dx,y)/(16*dx^2*dy^2)
- -a(x,y)*f(x,y)*gg(x,y-dy)*gg(x+dx,y)/(16*dx^2*dy^2)
- +f(x,y)*gg(x,y+dy)^2*a(x+dx,y)/(32*dx^2*dy^2)
- +f(x,y)*gg(x,y-dy)^2*a(x+dx,y)/(32*dx^2*dy^2)
- -f(x,y)*gg(x,y)^2*a(x+dx,y)/(16*dx^2*dy^2)
- +a(x-dx,y+dy)*f(x-dx,y+dy)*gg(x-dx,y+dy)^2/(32*dx^2*dy^2)
- +a(x-dx,y)*f(x-dx,y+dy)*gg(x-dx,y+dy)^2/(32*dx^2*dy^2)
- +a(x,y+dy)*f(x-dx,y+dy)*gg(x-dx,y+dy)^2/(32*dx^2*dy^2)
- +a(x,y)*f(x-dx,y+dy)*gg(x-dx,y+dy)^2/(32*dx^2*dy^2)
- -f(x,y)*a(x-dx,y+dy)*gg(x-dx,y+dy)^2/(32*dx^2*dy^2)
- -f(x,y)*a(x-dx,y)*gg(x-dx,y+dy)^2/(32*dx^2*dy^2)
- -f(x,y)*a(x,y+dy)*gg(x-dx,y+dy)^2/(32*dx^2*dy^2)
- -a(x,y)*f(x,y)*gg(x-dx,y+dy)^2/(32*dx^2*dy^2)
- -gg(x,y)*a(x-dx,y+dy)*f(x-dx,y+dy)*gg(x-dx,y+dy)/(16*dx^2*dy^2)
- -gg(x,y)*a(x-dx,y)*f(x-dx,y+dy)*gg(x-dx,y+dy)/(16*dx^2*dy^2)
- -gg(x,y)*a(x,y+dy)*f(x-dx,y+dy)*gg(x-dx,y+dy)/(16*dx^2*dy^2)
- -a(x,y)*gg(x,y)*f(x-dx,y+dy)*gg(x-dx,y+dy)/(16*dx^2*dy^2)
- +f(x,y)*gg(x,y)*a(x-dx,y+dy)*gg(x-dx,y+dy)/(16*dx^2*dy^2)
- +f(x,y)*gg(x,y)*a(x-dx,y)*gg(x-dx,y+dy)/(16*dx^2*dy^2)
- +f(x,y)*gg(x,y)*a(x,y+dy)*gg(x-dx,y+dy)/(16*dx^2*dy^2)
- +a(x,y)*f(x,y)*gg(x,y)*gg(x-dx,y+dy)/(16*dx^2*dy^2)
- -gg(x-dx,y)^2*a(x-dx,y+dy)*f(x-dx,y+dy)/(32*dx^2*dy^2)
- +gg(x,y+dy)*gg(x-dx,y)*a(x-dx,y+dy)*f(x-dx,y+dy)/(16*dx^2*dy^2)
- -gg(x,y+dy)^2*a(x-dx,y+dy)*f(x-dx,y+dy)/(32*dx^2*dy^2)
- +gg(x,y)^2*a(x-dx,y+dy)*f(x-dx,y+dy)/(32*dx^2*dy^2)
- -a(x-dx,y)*gg(x-dx,y)^2*f(x-dx,y+dy)/(32*dx^2*dy^2)
- -a(x,y+dy)*gg(x-dx,y)^2*f(x-dx,y+dy)/(32*dx^2*dy^2)
- -a(x,y)*gg(x-dx,y)^2*f(x-dx,y+dy)/(32*dx^2*dy^2)
- +gg(x,y+dy)*a(x-dx,y)*gg(x-dx,y)*f(x-dx,y+dy)/(16*dx^2*dy^2)
- +a(x,y+dy)*gg(x,y+dy)*gg(x-dx,y)*f(x-dx,y+dy)/(16*dx^2*dy^2)
- +a(x,y)*gg(x,y+dy)*gg(x-dx,y)*f(x-dx,y+dy)/(16*dx^2*dy^2)
- -gg(x,y+dy)^2*a(x-dx,y)*f(x-dx,y+dy)/(32*dx^2*dy^2)
- +gg(x,y)^2*a(x-dx,y)*f(x-dx,y+dy)/(32*dx^2*dy^2)
- -a(x,y+dy)*gg(x,y+dy)^2*f(x-dx,y+dy)/(32*dx^2*dy^2)
- -a(x,y)*gg(x,y+dy)^2*f(x-dx,y+dy)/(32*dx^2*dy^2)
- +gg(x,y)^2*a(x,y+dy)*f(x-dx,y+dy)/(32*dx^2*dy^2)
- +a(x,y)*gg(x,y)^2*f(x-dx,y+dy)/(32*dx^2*dy^2)
- +f(x,y)*gg(x-dx,y)^2*a(x-dx,y+dy)/(32*dx^2*dy^2)
- -f(x,y)*gg(x,y+dy)*gg(x-dx,y)*a(x-dx,y+dy)/(16*dx^2*dy^2)
- +f(x,y)*gg(x,y+dy)^2*a(x-dx,y+dy)/(32*dx^2*dy^2)
- -f(x,y)*gg(x,y)^2*a(x-dx,y+dy)/(32*dx^2*dy^2)
- +a(x-dx,y-dy)*f(x-dx,y-dy)*gg(x-dx,y-dy)^2/(32*dx^2*dy^2)
- +a(x-dx,y)*f(x-dx,y-dy)*gg(x-dx,y-dy)^2/(32*dx^2*dy^2)
- +a(x,y-dy)*f(x-dx,y-dy)*gg(x-dx,y-dy)^2/(32*dx^2*dy^2)
- +a(x,y)*f(x-dx,y-dy)*gg(x-dx,y-dy)^2/(32*dx^2*dy^2)
- -f(x,y)*a(x-dx,y-dy)*gg(x-dx,y-dy)^2/(32*dx^2*dy^2)
- -f(x,y)*a(x-dx,y)*gg(x-dx,y-dy)^2/(32*dx^2*dy^2)
- -f(x,y)*a(x,y-dy)*gg(x-dx,y-dy)^2/(32*dx^2*dy^2)
- -a(x,y)*f(x,y)*gg(x-dx,y-dy)^2/(32*dx^2*dy^2)
- -gg(x,y)*a(x-dx,y-dy)*f(x-dx,y-dy)*gg(x-dx,y-dy)/(16*dx^2*dy^2)
- -gg(x,y)*a(x-dx,y)*f(x-dx,y-dy)*gg(x-dx,y-dy)/(16*dx^2*dy^2)
- -gg(x,y)*a(x,y-dy)*f(x-dx,y-dy)*gg(x-dx,y-dy)/(16*dx^2*dy^2)
- -a(x,y)*gg(x,y)*f(x-dx,y-dy)*gg(x-dx,y-dy)/(16*dx^2*dy^2)
- +f(x,y)*gg(x,y)*a(x-dx,y-dy)*gg(x-dx,y-dy)/(16*dx^2*dy^2)
- +f(x,y)*gg(x,y)*a(x-dx,y)*gg(x-dx,y-dy)/(16*dx^2*dy^2)
- +f(x,y)*gg(x,y)*a(x,y-dy)*gg(x-dx,y-dy)/(16*dx^2*dy^2)
- +a(x,y)*f(x,y)*gg(x,y)*gg(x-dx,y-dy)/(16*dx^2*dy^2)
- -gg(x-dx,y)^2*a(x-dx,y-dy)*f(x-dx,y-dy)/(32*dx^2*dy^2)
- +gg(x,y-dy)*gg(x-dx,y)*a(x-dx,y-dy)*f(x-dx,y-dy)/(16*dx^2*dy^2)
- -gg(x,y-dy)^2*a(x-dx,y-dy)*f(x-dx,y-dy)/(32*dx^2*dy^2)
- +gg(x,y)^2*a(x-dx,y-dy)*f(x-dx,y-dy)/(32*dx^2*dy^2)
- -a(x-dx,y)*gg(x-dx,y)^2*f(x-dx,y-dy)/(32*dx^2*dy^2)
- -a(x,y-dy)*gg(x-dx,y)^2*f(x-dx,y-dy)/(32*dx^2*dy^2)
- -a(x,y)*gg(x-dx,y)^2*f(x-dx,y-dy)/(32*dx^2*dy^2)
- +gg(x,y-dy)*a(x-dx,y)*gg(x-dx,y)*f(x-dx,y-dy)/(16*dx^2*dy^2)
- +a(x,y-dy)*gg(x,y-dy)*gg(x-dx,y)*f(x-dx,y-dy)/(16*dx^2*dy^2)
- +a(x,y)*gg(x,y-dy)*gg(x-dx,y)*f(x-dx,y-dy)/(16*dx^2*dy^2)
- -gg(x,y-dy)^2*a(x-dx,y)*f(x-dx,y-dy)/(32*dx^2*dy^2)
- +gg(x,y)^2*a(x-dx,y)*f(x-dx,y-dy)/(32*dx^2*dy^2)
- -a(x,y-dy)*gg(x,y-dy)^2*f(x-dx,y-dy)/(32*dx^2*dy^2)
- -a(x,y)*gg(x,y-dy)^2*f(x-dx,y-dy)/(32*dx^2*dy^2)
- +gg(x,y)^2*a(x,y-dy)*f(x-dx,y-dy)/(32*dx^2*dy^2)
- +a(x,y)*gg(x,y)^2*f(x-dx,y-dy)/(32*dx^2*dy^2)
- +f(x,y)*gg(x-dx,y)^2*a(x-dx,y-dy)/(32*dx^2*dy^2)
- -f(x,y)*gg(x,y-dy)*gg(x-dx,y)*a(x-dx,y-dy)/(16*dx^2*dy^2)
- +f(x,y)*gg(x,y-dy)^2*a(x-dx,y-dy)/(32*dx^2*dy^2)
- -f(x,y)*gg(x,y)^2*a(x-dx,y-dy)/(32*dx^2*dy^2)
- +f(x,y)*a(x-dx,y)*gg(x-dx,y)^2/(16*dx^2*dy^2)
- +f(x,y)*a(x,y+dy)*gg(x-dx,y)^2/(32*dx^2*dy^2)
- +f(x,y)*a(x,y-dy)*gg(x-dx,y)^2/(32*dx^2*dy^2)
- +a(x,y)*f(x,y)*gg(x-dx,y)^2/(16*dx^2*dy^2)
- -f(x,y)*gg(x,y+dy)*a(x-dx,y)*gg(x-dx,y)/(16*dx^2*dy^2)
- -f(x,y)*gg(x,y-dy)*a(x-dx,y)*gg(x-dx,y)/(16*dx^2*dy^2)
- -f(x,y)*a(x,y+dy)*gg(x,y+dy)*gg(x-dx,y)/(16*dx^2*dy^2)
- -a(x,y)*f(x,y)*gg(x,y+dy)*gg(x-dx,y)/(16*dx^2*dy^2)
- -f(x,y)*a(x,y-dy)*gg(x,y-dy)*gg(x-dx,y)/(16*dx^2*dy^2)
- -a(x,y)*f(x,y)*gg(x,y-dy)*gg(x-dx,y)/(16*dx^2*dy^2)
- +f(x,y)*gg(x,y+dy)^2*a(x-dx,y)/(32*dx^2*dy^2)
- +f(x,y)*gg(x,y-dy)^2*a(x-dx,y)/(32*dx^2*dy^2)
- -f(x,y)*gg(x,y)^2*a(x-dx,y)/(16*dx^2*dy^2)
- +f(x,y)*a(x,y+dy)*gg(x,y+dy)^2/(16*dx^2*dy^2)
- +a(x,y)*f(x,y)*gg(x,y+dy)^2/(16*dx^2*dy^2)
- -f(x,y)*gg(x,y)^2*a(x,y+dy)/(16*dx^2*dy^2)
- +f(x,y)*a(x,y-dy)*gg(x,y-dy)^2/(16*dx^2*dy^2)
- +a(x,y)*f(x,y)*gg(x,y-dy)^2/(16*dx^2*dy^2)
- -f(x,y)*gg(x,y)^2*a(x,y-dy)/(16*dx^2*dy^2)
- -a(x,y)*f(x,y)*gg(x,y)^2/(8*dx^2*dy^2)$
- comment We define abbreviations for the partial derivatives;
- operator ax,ay,fx,fy,gx,gy;
- operator axx,axy,ayy,fxx,fxy,fyy,gxx,gxy,gyy;
- operator axxx,axxy,axyy,ayyy,fxxx,fxxy,fxyy,fyyy,gxxx,gxxy,gxyy,gyyy;
- operator axxxy,axxyy,axyyy,fxxxy,fxxyy,fxyyy,
- gxxxx,gxxxy,gxxyy,gxyyy,gyyyy;
- operator axxxyy,axxyyy,fxxyyy,fxxxyy,gxxxxy,gxxxyy,gxxyyy,gxyyyy;
- operator gxxxxyy,gxxxyyy,gxxyyyy;
- operator_diff_rules := {
- df(a(~x,~y),~x) => ax(x,y),
- df(a(~x,~y),~y) => ay(x,y),
- df(f(~x,~y),~x) => fx(x,y),
- df(f(~x,~y),~y) => fy(x,y),
- df(gg(~x,~y),~x) => gx(x,y),
- df(gg(~x,~y),~y) => gy(x,y),
- df(ax(~x,~y),~x) => axx(x,y),
- df(ax(~x,~y),~y) => axy(x,y),
- df(ay(~x,~y),~x) => axy(x,y),
- df(ay(~x,~y),~y) => ayy(x,y),
- df(fx(~x,~y),~x) => fxx(x,y),
- df(fx(~x,~y),~y) => fxy(x,y),
- df(fy(~x,~y),~x) => fxy(x,y),
- df(fy(~x,~y),~y) => fyy(x,y),
- df(gx(~x,~y),~x) => gxx(x,y),
- df(gx(~x,~y),~y) => gxy(x,y),
- df(gy(~x,~y),~x) => gxy(x,y),
- df(gy(~x,~y),~y) => gyy(x,y),
- df(axx(~x,~y),~x) => axxx(x,y),
- df(axy(~x,~y),~x) => axxy(x,y),
- df(ayy(~x,~y),~x) => axyy(x,y),
- df(ayy(~x,~y),~y) => ayyy(x,y),
- df(fxx(~x,~y),~x) => fxxx(x,y),
- df(fxy(~x,~y),~x) => fxxy(x,y),
- df(fxy(~x,~y),~y) => fxyy(x,y),
- df(fyy(~x,~y),~x) => fxyy(x,y),
- df(fyy(~x,~y),~y) => fyyy(x,y),
- df(gxx(~x,~y),~x) => gxxx(x,y),
- df(gxx(~x,~y),~y) => gxxy(x,y),
- df(gxy(~x,~y),~x) => gxxy(x,y),
- df(gxy(~x,~y),~y) => gxyy(x,y),
- df(gyy(~x,~y),~x) => gxyy(x,y),
- df(gyy(~x,~y),~y) => gyyy(x,y),
- df(axyy(~x,~y),~x) => axxyy(x,y),
- df(axxy(~x,~y),~x) => axxxy(x,y),
- df(ayyy(~x,~y),~x) => axyyy(x,y),
- df(fxxy(~x,~y),~x) => fxxxy(x,y),
- df(fxyy(~x,~y),~x) => fxxyy(x,y),
- df(fyyy(~x,~y),~x) => fxyyy(x,y),
- df(gxxx(~x,~y),~x) => gxxxx(x,y),
- df(gxxy(~x,~y),~x) => gxxxy(x,y),
- df(gxyy(~x,~y),~x) => gxxyy(x,y),
- df(gyyy(~x,~y),~x) => gxyyy(x,y),
- df(gyyy(~x,~y),~y) => gyyyy(x,y),
- df(axxyy(~x,~y),~x) => axxxyy(x,y),
- df(axyyy(~x,~y),~x) => axxyyy(x,y),
- df(fxxyy(~x,~y),~x) => fxxxyy(x,y),
- df(fxyyy(~x,~y),~x) => fxxyyy(x,y),
- df(gxxxy(~x,~y),~x) => gxxxxy(x,y),
- df(gxxyy(~x,~y),~x) => gxxxyy(x,y),
- df(gxyyy(~x,~y),~x) => gxxyyy(x,y),
- df(gyyyy(~x,~y),~x) => gxyyyy(x,y),
- df(gxxxyy(~x,~y),~x) => gxxxxyy(x,y),
- df(gxxyyy(~x,~y),~x) => gxxxyyy(x,y),
- df(gxyyyy(~x,~y),~x) => gxxyyyy(x,y)
- };
- let operator_diff_rules;
- texp := taylor (finite_difference_expression, dx, 0, 1, dy, 0, 1);
- comment You may also try to expand further but this needs a lot
- of CPU time. Therefore the following line is commented out;
- %texp := taylor (finite_difference_expression, dx, 0, 2, dy, 0, 2);
- factor dx,dy;
- result := taylortostandard texp;
- derivative_expression - result;
- clear diff(~f,~arg);
- clearrules operator_diff_rules;
- clear diff,a,f,gg;
- clear ax,ay,fx,fy,gx,gy;
- clear axx,axy,ayy,fxx,fxy,fyy,gxx,gxy,gyy;
- clear axxx,axxy,axyy,ayyy,fxxx,fxxy,fxyy,fyyy,gxxx,gxxy,gxyy,gyyy;
- clear axxxy,axxyy,axyyy,fxxxy,fxxyy,fxyyy,gxxxx,gxxxy,gxxyy,gxyyy,gyyyy;
- clear axxxyy,axxyyy,fxxyyy,fxxxyy,gxxxxy,gxxxyy,gxxyyy,gxyyyy;
- clear gxxxxyy,gxxxyyy,gxxyyyy;
- taylorprintterms := 5;
- off taylorautoexpand,taylorkeeporiginal;
- %%% showtime;
- comment An example provided by Alan Barnes: elliptic functions;
- % Jacobi's elliptic functions
- % sn(x,k), cn(x,k), dn(x,k).
- % The modulus and complementary modulus are denoted by K and K!'
- % usually written mathematically as k and k' respectively
- %
- % epsilon(x,k) is the incomplete elliptic integral of the second kind
- % usually written mathematically as E(x,k)
- %
- % KK(k) is the complete elliptic integral of the first kind
- % usually written mathematically as K(k)
- % K(k) = arcsn(1,k)
- % KK!'(k) is the complementary complete integral
- % usually written mathematically as K'(k)
- % NB. K'(k) = K(k')
- % EE(k) is the complete elliptic integral of the second kind
- % usually written mathematically as E(k)
- % EE!'(k) is the complementary complete integral
- % usually written mathematically as E'(k)
- % NB. E'(k) = E(k')
- operator sn, cn, dn, epsilon;
- elliptic_rules := {
- % Differentiation rules for basic functions
- df(sn(~x,~k),~x) => cn(x,k)*dn(x,k),
- df(cn(~x,~k),~x) => -sn(x,k)*dn(x,k),
- df(dn(~x,~k),~x) => -k^2*sn(x,k)*cn(x,k),
- df(epsilon(~x,~k),~x)=> dn(x,k)^2,
- % k-derivatives
- % DF Lawden Elliptic Functions & Applications Springer (1989)
- df(sn(~x,~k),~k) => (k*sn(x,k)*cn(x,k)^2
- -epsilon(x,k)*cn(x,k)*dn(x,k)/k)/(1-k^2)
- + x*cn(x,k)*dn(x,k)/k,
- df(cn(~x,~k),~k) => (-k*sn(x,k)^2*cn(x,k)
- +epsilon(x,k)*sn(x,k)*dn(x,k)/k)/(1-k^2)
- - x*sn(x,k)*dn(x,k)/k,
- df(dn(~x,~k),~k) => k*(-sn(x,k)^2*dn(x,k)
- +epsilon(x,k)*sn(x,k)*cn(x,k))/(1-k^2)
- - k*x*sn(x,k)*cn(x,k),
- df(epsilon(~x,~k),~k) => k*(sn(x,k)*cn(x,k)*dn(x,k)
- -epsilon(x,k)*cn(x,k)^2)/(1-k^2)
- -k*x*sn(x,k)^2,
- % parity properties
- sn(-~x,~k) => -sn(x,k),
- cn(-~x,~k) => cn(x,k),
- dn(-~x,~k) => dn(x,k),
- epsilon(-~x,~k) => -epsilon(x,k),
- sn(~x,-~k) => sn(x,k),
- cn(~x,-~k) => cn(x,k),
- dn(~x,-~k) => dn(x,k),
- epsilon(~x,-~k) => epsilon(x,k),
- % behaviour at zero
- sn(0,~k) => 0,
- cn(0,~k) => 1,
- dn(0,~k) => 1,
- epsilon(0,~k) => 0,
- % degenerate cases of modulus
- sn(~x,0) => sin(x),
- cn(~x,0) => cos(x),
- dn(~x,0) => 1,
- epsilon(~x,0) => x,
- sn(~x,1) => tanh(x),
- cn(~x,1) => 1/cosh(x),
- dn(~x,1) => 1/cosh(x),
- epsilon(~x,1) => tanh(x)
- };
- let elliptic_rules;
- hugo := taylor(sn(x,k),k,0,6);
- otto := taylor(cn(x,k),k,0,6);
- taylorcombine(hugo^2 + otto^2);
- clearrules elliptic_rules;
- clear sn, cn, dn, epsilon;
- %%% showtime;
- comment That's all, folks;
- end;
|