susy2.tex 48 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312
  1. \documentstyle[12pt]{article}
  2. \def\be{\begin{equation}}
  3. \def\ee{\end{equation}}
  4. \def\pe{\begin{eqnarray}}
  5. \def\ke{\end{eqnarray}}
  6. \topmargin=-2cm\textheight=23.5cm\textwidth=16cm
  7. \oddsidemargin=0.25cm
  8. \evensidemargin=0.25cm
  9. \begin{document}
  10. \title{S U S Y 2}
  11. \author{by \\
  12. Ziemowit Popowicz by \\ \\
  13. Institute of Theoretical Physics, University of Wroc{\l}aw,\\
  14. pl.M.Borna 9 50-205 Wroc{\l}aw, Poland \\
  15. e-mail ziemek@ift.uni.wroc.pl \\
  16. version 1.2}
  17. \maketitle
  18. \begin{abstract}
  19. This package deal, with supersymmetric functions and with algebra
  20. of supersymmetric operators in the extended N=2 as well as in the
  21. nonextended N=1 supersymmery. It allows us
  22. to make realization of SuSy algebra of differential operators,
  23. compute the gradients of given SuSy Hamiltonians and to obtain
  24. SuSy version of soliton equations using SuSy Lax approach. There
  25. are also many additional procedures also encountered in SuSy soliton
  26. approach, as for example: conjugation of a given SuSy operator, computation
  27. of general form of SuSy Hamiltonians (up to SuSy-divergence equivalence),
  28. checking of the validity of the Jacobi identity for some SuSy
  29. Hamiltonian operators.
  30. \end{abstract}
  31. \section{Introduction}
  32. The main idea of the supersymmetry (SuSy) is to treat boson and fermion
  33. operators equally [1,2]. This has been realised by introducing the so called
  34. supermultiplets constructed from the boson and fermion operators and
  35. additionally from the Mayorana spinors. Such supermultiplets posses the
  36. proper transfomations property under the transformation of the Lorentz group.
  37. At the moment we have no experimental confirmations that the supersymmetry
  38. appeare in the nature.
  39. The idea of using supersymmetry (SuSy) for the
  40. generalization of the soliton equations [3-7] appeared almost in parallel
  41. to the usage of SuSy in the quantum field theory. The first results,
  42. concerning the construction of classical field theories with fermionic
  43. and bosonic fields
  44. depending on time and one space variable, can be found in [8-12].
  45. In many cases, the addition of fermions fields does not guarantee that the
  46. final theory becomes SuSy invariant and therefore this method was named as
  47. the fermionic extension in order to distinguish it from the fully SuSy method.
  48. In order to get a SuSy theory we have to add to a system of k bosonic
  49. equations kN fermion and k(N-1) boson fields (k=1,2,... N=1,2,..) in such a way
  50. that the final theory becomes SuSy invariant. From the soliton point of view
  51. we can distinguish two important classes of the supersymmetric equations:
  52. the non-extended $(N = 1)$ and extended $( N > 1 )$ cases. Consideration of the
  53. extended case may imply new bosonic equations whose properties need further
  54. investigation. This may be viewed as a bonus, but this extended case is no
  55. more fundamental than the non-extended one. The problem of the
  56. supersymmetrization of the nonlinear partial differential equations has its
  57. own history, and at the moment we have no unique solution [13-40].
  58. We can distinguish three different methods of
  59. supersymmetrization, as for example the algebraic, geometric and direct method.
  60. In the first two cases we are looking for the symmetry group of the
  61. given equation and then we replace this group by the corresponding
  62. SuSy group. As a final product we are able to obtain
  63. SuSy generalization
  64. of the given equation. The classification into the algebraical or
  65. geometrical approach is connected with the kind of symmetry which appears
  66. in the classical case. For example, if our classical equation could be
  67. described in terms of the geometrical object then the simple exchange
  68. of the classical symmetry group of this object with its SuSy partner
  69. justifies the name geometric. In the case of algebraic we are looking for the
  70. symmetry group of the equation without any reference to its
  71. geometrical origin. This strategy could be applied to the so called
  72. hidden symmetry as for example in the case of the Toda lattice .
  73. These methods each have advantages and disadvantages. For example,
  74. sometimes we obtain the fermionic extensions. In the case of the
  75. extended supersymmetric Korteweg-de-Vries equation we have three different
  76. fully SuSy extensions; however only one of them fits to these two
  77. classifications.
  78. In the direct approach we simply replace all
  79. objects which are appear in the evolution equation by all possible
  80. combinations of the supermultiplets and its superderivative in such a way
  81. that to conserve the conformal dimensions. This is non unique
  82. and we yields many different possibilities. However the
  83. arbitrariness is reduced if we additionally investigate
  84. super-bi-hamiltonian structure or try to find its supersymmetric Lax pair.
  85. In many cases this approach is successful.
  86. The utilization of the above methods can be helped by
  87. symbolic computer algebraic and for this reason
  88. we prapared the package SuSy2 in the symbolic language
  89. REDUCE [41].
  90. We have implemented and ordered the superfunctions in our program,
  91. extensively using the concept of `` noncom operator '' in order to implement
  92. the supersymmetric integro - differential operators. The program is meant
  93. to perform the symbolic calculations using either fully supersymmetric
  94. supermultiplets or the components version of our supersymmetry.
  95. We have constructed 25 different commands to allow us to compute
  96. almost all objects encountered in the supersymmetrization procedure
  97. of the soliton equation.
  98. \section{Supersymmetry}
  99. The basic object in the supersymmetric analysis is the superfield
  100. and the supersymmetric derivative. The superfields are the superfermions or
  101. the superbosons [1]. These fields, in the case of extended N=2 sypersymmetry,
  102. depends, in addition to $ x $ and $ t $, upon two
  103. anticommuting variables, $\theta_{1}$ and $\theta_{2}$ {~}{~}
  104. ($\theta_{2}\theta_{1} = - \theta_{1}\theta_{2} , \theta_{1}^{2}=
  105. \theta_{2}^{2}=0 $ ).
  106. Their Taylor expansion with respect to the $ \theta^{'}s $ is
  107. \be
  108. b(x,t,\theta_{1},\theta_{2}):=w+\theta_{1}\zeta_{1}+
  109. \theta_{2}\zeta_{2}+\theta_{2}\theta_{1}u\\,
  110. \ee
  111. in the case of superbosons, while for the superfermions reads
  112. \be
  113. f(x,t,\theta_{1},\theta_{2}):=\zeta_{1}+\theta_{1}w+
  114. \theta_{2}u+\theta_{2}\theta_{1}\zeta_{2},
  115. \ee
  116. where $w$ and $u$ are classical (commuting) functions depending on $ x $ and $ t $ ,
  117. $ \zeta_{1} $ and $ \zeta_{2} $ are odd Grassmann valued functions depending
  118. on $ x $ and $ t $.
  119. In the set of these superfunctions we can defined the usual derivative
  120. and the superderivative. Usually, we encounter two different realizations
  121. of the superderivative : the first we call `` traditional '' and the second
  122. `` chiral ''.
  123. The traditional realization can be defined by introducing
  124. two superderivatives $ D_{1} $ and $ D_{2} $
  125. \pe
  126. D_{1} &=& \partial_{\theta_{1}}+\theta_{1}\partial,\\
  127. D_{2} &=& \partial_{\theta_{2}}+\theta_{2}\partial,
  128. \ke
  129. with the properties:
  130. \pe
  131. D_{1}*D_{1}=D_{2}*D_{2} = \partial , \\
  132. D_{1}*D_{2} + D_{2}*D_{1} = 0 .
  133. \ke
  134. The chiral denoted is by
  135. \pe
  136. D_{1} &=& \partial_{\theta_{1}} - \frac{1}{2}\theta_{2}\partial,\\
  137. D_{2} &=& \partial_{\theta_{2}} - \frac{1}{2}\theta_{1}\partial,
  138. \ke
  139. with the properties:
  140. \pe
  141. D_{1}*D_{1}=D_{2}*D_{2} = 0 , \\
  142. D_{1}*D_{2} + D_{2}*D_{1} = -\partial .
  143. \ke
  144. Below we shall use the name `` traditional'' or `` chiral '' or
  145. `` chiral1 ''algebras to denote kind of the commutation realations on the
  146. superderivativeis assumed. The `` chiral1 '' algebras case possess,
  147. additioanly to the ``chiral '' algebra, the commutator of $D_{1}$ and
  148. $D_{2}$ denoted as
  149. \pe
  150. D_{3} = D_{1}*D_{2} -D_{2}*D_{1}.
  151. \ke
  152. In SuSy2 package we have will implemented the superfunctions and the
  153. algebra of superderivatives. Moreover, we have defined many additional
  154. procedures which are useful in the supersymetrizations of the classical
  155. nonlinear system of partial differential equation. Different applications
  156. of this package to the physical problems could be found in the
  157. papers [34-38].
  158. \section{Superfunctions}
  159. The superfunctions are represented in this package by:
  160. \be
  161. {\bf bos}(f,0,0),
  162. \ee
  163. for superbosons, while by
  164. \be
  165. {\bf fer}(g,0,0),
  166. \ee
  167. for superfermions.
  168. The first index denotes the name of the given superobject, the second
  169. denotes the value of SuSy derivatives, and the last give the value
  170. of usual derivative. The $bos$ and $fer$ objects are declared as the
  171. operators and as noncom object in the Reduce language. The first index
  172. can take an arbitrary name but with the following restriction:
  173. \be
  174. {\bf bos}(0,n,m)=0,
  175. \ee
  176. \be
  177. {\bf fer}(0,n,m)=0.
  178. \ee
  179. for any values of n,m.
  180. The program has the capability to compute the coordinates of
  181. the arbitrary SuSy expression, using the expansions in the powers of $\theta$.
  182. We have here four commands:
  183. \vspace{0.5cm}
  184. A) In order to have the given expression in the components use
  185. \be
  186. {\bf fpart}(expression).
  187. \ee
  188. The output is in the form of the list, in which first element is the zero
  189. order term in $\theta$, second is the first order term in $\theta_{1}$,
  190. third is the first order term in $\theta_{2}$ and the fourth is in
  191. $\theta_{2}*\theta_{1}$. For example, the superfunction (11) has the
  192. representation
  193. \pe
  194. {\bf fpart(bos}(f,0,0)) & => & \{ {\bf fun}(f_{0},0),{\bf gras}(ff_{1},0), \cr
  195. && {\bf gras}(ff_{2},0),{\bf fun}(f_{1},0) \},
  196. \ke
  197. where $fun$ denotes the classical function while the $gras$ the Grassmann
  198. function. First index in the $fun$ or in $gras$ denotes the name of the given
  199. object, while the second denotes the usual derivative.
  200. \vspace{0.2cm}
  201. B) In order to have the bosonic sector only, in which all odd Grassmann
  202. functions disappear, use
  203. \be
  204. {\bf bpart}(expression).
  205. \ee
  206. Example:
  207. \be
  208. bpart(fer(g,0,0)) => \{0, fun(g_{0},0), fun(g_{1},0),0 \}.
  209. \ee
  210. C) In order to have the given coordinates, use
  211. \be
  212. {\bf bf\underline{~}part}(expression,n),
  213. \ee
  214. where n=0,1,2,3.
  215. Example:
  216. \be
  217. bf\underline{~}part(bos(f,0,0),3) => fun(f_{1},0).
  218. \ee
  219. D) In order to have the given coordinates in the bosonic sector, use
  220. \be
  221. {\bf b\underline{~}part}(expression,n),
  222. \ee
  223. where n=0,1,2,3.
  224. Example
  225. \be
  226. b\underline{~}part(fer(g,0,0),1) => fun(g_{0},0)
  227. \ee
  228. Notice that in the program, from the default we switch to on the
  229. factor $ fer,bos,gras,fun $. If you remove this factor, then many commands
  230. give you wrong result (for example the command lyst, lyst1 and lyst2).
  231. \section{The inverse and exponentials of superfunctions.}
  232. In addition to our definitions of the superfunctions we can also
  233. define the inverse and the exponential of superboson.
  234. The inverse of the given bos function (not to be confused with the
  235. `` inverse function '' encountered in the usual analysis) is defined as
  236. \be
  237. {\bf bos}(f,n,m,-1),
  238. \ee
  239. for an arbitrary $ f,n,m $ with the property $bos(f,n,m,-1)*bos(f,n,m,1)=1$.
  240. The object $ bos(f,n,m,k) $, in general denotes the k-th power of the
  241. $ bos(f,n,m) $ superfunction.
  242. If we use the command $``{\bf{let{~}inverse}}''$ then three indices
  243. $ bos $ objects
  244. are transformed onto four indices objects.
  245. The exponential of the superboson function is
  246. \be
  247. {\bf axp}(bos(f,0,0)).
  248. \ee
  249. It is also possible to use $ axp(f) $, but then we should specify what is f.
  250. We have the following representation in the components for the inverse and
  251. $ axp $ superfunctions
  252. \pe
  253. fpart(bos(f,0,0,-1)) & = & \{fun(f_{0},0,-1),
  254. -fun(f_{0},0,-1)*gras(ff_{1},0), \cr
  255. && -fun(f_{0},0,-1)*gras(ff_{2},0),
  256. - fun(f_{0},0,-2)*fun(f_{1},0,1) \cr
  257. && + 2*fun(f_{0},0,-3)*gras(ff_{1},0)*
  258. gras(ff_{2},0)\} \\
  259. fpart(axp(f)) & = & \{{\bf axx}( bf\underline{~}part(f,0) ),
  260. axx(bf\underline{~}part(f,0))*bf\underline{~}part(f,1), \cr
  261. && axx(bf\underline{~}part(f,0))*bf\underline{~}part(f,2),
  262. axx(bf\underline{~}part(f,0)) \cr
  263. && *(bf\underline{~}part(f,3)
  264. +2bf\underline{~}part(f,1)*bf\underline{~}part(f,2)) \}
  265. \ke
  266. where $ axx(f) $ denotes teh exponentiation of the given classical
  267. function while $ fun(f,m,n) $ the $ n $ th power of the function $ fun(f,m)$.
  268. \section{Ordering.}
  269. Three different superfunctions $ fer,bos,axp $ are ordered among themselves as
  270. \pe
  271. fer(f,n,m)*bos(h,j,k)*axp(g) , \\
  272. fer(f,n,m)*bos(h,j,k,l)*axp(g),
  273. \ke
  274. indenpendently of the indices. Superfunctions $ bos $ and $ axp $ are
  275. commuting among themselves, while the superfunctions $fer$ anticommutes
  276. among themselves. For these superfunctions we introduce the following
  277. ordering:.
  278. A) The $ bos $ objects with three and four indices are ordered as:
  279. the first index antilexicographically, the second and the third index as
  280. decreasing order of natural numbers. The last, fourth index is not
  281. ordered because:
  282. \pe
  283. bos(f,n,m,k)*bos(f,n,m,l) => bos(f,n,m,k+l)
  284. \ke
  285. B) The anticommuting $ fer $ objects we ordered as follows: the first index
  286. antilexicographically, second and third index as decreasing order of natural
  287. numbers.
  288. Example:
  289. \be
  290. fer(f,n,m)*fer(g,k,l) => - fer(g,k,l)*fer(f,n,m)
  291. \ee
  292. for an arbitrary n,m,k,l
  293. \be
  294. fer(f,n,m)*fer(f,n,m) => 0
  295. \ee
  296. for an arbitrary f,n,m.
  297. \pe
  298. bos(f,2,3,7)*bos(aa,0,3)*bos(f,2,3,-7) => bos(aa,0,3) , \\
  299. bos(f,2,3,2)*bos(zz,0,3,2)*bos(f,2,3,-2) => bos(zz,0,3,2).
  300. \ke
  301. C) For all exponential functions we have
  302. \be
  303. axp(f)*axp(g) => axp(f+g).
  304. \ee
  305. \section{(Super)Differential operators.}
  306. We have implemented three different realizations of the
  307. supersymmetric derivatives. In order to select traditional realization
  308. declare $ {\bf{let {~} trad}} $ . In order to
  309. select chiral or chiral1 algebra declare
  310. $ {\bf{let {~} chiral}} $ or $ {\bf{let {~} chiral1}}$.
  311. By default we have traditional algebra.
  312. We have introduced three different types of SuSy
  313. operators which act on the superfunctions
  314. and are considered as operators and as noncomuting objects in
  315. the Reduce language.
  316. For the usual differentiation we introduced two types of operators:
  317. (i) rigth differentations,
  318. \be
  319. {\bf d(1)}*bos(f,0,0) => bos(f,0,1)+bos(f,0,0)*d(1);
  320. \ee
  321. (ii) left differentations,
  322. \be
  323. fer(f,0,0)*{\bf d(2)} => -fer(f,0,1)+d(2)*fer(f,0,0).
  324. \ee
  325. From this example follows that the third index in the $bos,fer$ object can
  326. take an arbitrary integer value.
  327. Susy derivatives we denote as $der$ and $del$. $Der$ and $del$ represent
  328. the right and left operatopns, respectively, and are one component argument
  329. operations. The action of these objects on the superfunctions depends on
  330. the choice of the supersymmetric algebra.
  331. Explicitely we have for the traditional algebra:
  332. a) Right SuSy derivative
  333. \pe
  334. {\bf der(1)}*bos(f,0,0) & =>& fer(f,1,0)+bos(f,0,0)*der(1), \\
  335. {\bf der(2)}*fer(g,0,0) & =>& bos(g,2,0)-fer(g,0,0)*der(2), \\
  336. der(1)*fer(f,2,0) & =>& bos(f,3,0)-fer(f,2,0)*der(1), \\
  337. der(2)*bos(f,3,0) & =>& -fer(f,1,1)+bos(f,3,0)*der(2), \\
  338. der(1)*bos(f,0,0,-1) & =>& -fer(f,1,0)*bos(f,0,0,-2) + \cr
  339. && bos(f,0,0,-1)*der(1), \\
  340. der(2)*axp(bos(f,0,0)) &=>& fer(f,2,0)*axp(bos(f,0,0))+ \cr
  341. && axp(bos(f,0,0))*der(2).
  342. \ke
  343. b) Left SuSy derivative
  344. \pe
  345. bos(f,0,0)*{\bf del(1)} &=>& -fer(f,1,0)+del(1)*bos(f,0,0), \\
  346. fer(g,0,0)*{\bf del(2)} &=>& bos(g,2,0)-del(2)*fer(g,0,0), \\
  347. fer(f,2,0)*del(2) &=>& bos(f,3,0)-del(1)*fer(f,2,0), \\
  348. bos(f,3,0)*del(2) &=>& fer(f,1,1)+del(2)*bos(f,3,0), \\
  349. bos(f,0,0,-1)*del(1) &=>& fer(f,1,0)*bos(f,0,0,-2)+\cr
  350. && del(1)*bos(f,0,0,-1),\\
  351. axp(bos(f,0,0))*del(2)& =>& -fer(f,2,0)*axp(bos(f,0,0))+\cr
  352. && del(2)*axp(bos(f,0,0)).
  353. \ke
  354. From these examples follows that the second index in the fer, bos objects
  355. can take 0, 1, 2, 3 values only with the following meaning: 0 - no SuSy
  356. derivatives, 1 - first SuSy derivative, 2 - second SuSy derivative, 3 - first
  357. and second SuSy derivative.
  358. Using the notations we obtain
  359. \pe
  360. der(1)*der(2)*bos(f,0,0) & => & bos(f,3,0)+ \cr
  361. && bos(f,0,0)*der(1)*der(2)+ \cr
  362. && fer(f,1,0)*der(2) \cr
  363. && - fer(f,2,0)*der(1).
  364. \ke
  365. For the ``chiral '' representation, the meaning of the second argument in
  366. the $bos$ or $fer$ object is same as in the ``traditional ''
  367. case while the actions of susy operators on the superfunctions are
  368. different. For example we have
  369. \pe
  370. der(1)*fer(f,1,0) => -fer(f,1,0)*der(1), \\
  371. der(1)*fer(f,2,0) => bos(g,3,0) - fer(f,2,0)*der(1), \\
  372. der(2)*bos(g,3,0) => -fer(g,2,1) + bos(g,3,0)*der(2) \\
  373. bos(g,2,0)*del(2) => del(2)*bos(g,2,)).
  374. \ke
  375. For the ``chiral1'' representation we have different meanig of the second
  376. argument in the $bos$ and $fer$ object. Explicitely the values 0,1,2 in
  377. this second arguments denotes the values of the susy derivatives while 3
  378. denotes the value of the commutator. Explicitey we have
  379. \pe
  380. der(3)*bos(f,0,0) & => & bos(f,3,0) + 2*fer(f,1,0,0)*der(2) \cr
  381. && -2*fer(f,2,0)*der(1) + bos(f,0,0)*der(3) \\
  382. der(1)*fer(f,2,0) &=>& (bos(f,3,0)-bos(f,0,1))/2 - fer(f,2,0)*der(1).
  383. \ke
  384. The supersymmetric operators are always ordered in the case of ``traditional''
  385. algebra as
  386. \pe
  387. der(2)*der(1) &=>& -der(1)*der(2),\\
  388. del(2)*del(1) &=>& -del(1)*del(2), \\
  389. der(1)*del(1) &=>& d(1), \\
  390. der(1)*del(2) &=>& -del(2)*der(1),
  391. \ke
  392. and similarly for others.
  393. For the ``chiral'' algebra we postulate
  394. \pe
  395. der(2)*der(1) &=>& -d(1) - der(1)*der(2),\\
  396. del(2)*del(1) &=>& -d(1) - del(1)*del(2), \\
  397. der(1)*del(1) &=>& 0, \\
  398. der(1)*del(2) &=>& -d(1) - del(2)*der(1),
  399. \ke
  400. while for ``chiral1'' additionaly we have
  401. \pe
  402. der(3)*der(1) => -der(1)*d(1) \\
  403. der(1)*der(3) => der(1)*d(1) \\
  404. der(3)*der(2) => der(2)*d(1) \\
  405. der(2)*der(3) => -der(2)*d(1).
  406. \ke
  407. Please notice that if we would like to have the commponents of some
  408. $bos(f,3,0,-1)$ superfunction in the ``chiral'' representation then new
  409. object appear. Indeed,
  410. \pe
  411. b\underline{~}part(bos(f,3,0,-1) ,1) => {\bf fun(f1,0,f0,1,-1)},
  412. \ke
  413. We should consider this five indices object $fun$ as
  414. \pe
  415. fun(f,n,g,m,-k) => (fun(f,n)-fun(g,m)/2)^{-k}.
  416. \ke
  417. Similar interpretation is valid for other commands containing
  418. objects like $bos(f,3,n,-k)$
  419. \section{Action of the operators.}
  420. In order to have the value of the action of the given operator
  421. on some superfunction we introduce two operations pr and pg.
  422. A)
  423. \be
  424. pr(n,expression)
  425. \ee
  426. where n:=0,1,2,3.
  427. This command denotes the value itself of action of the SuSy derivatives
  428. on the given expression.For n=0 there is no SuSy derivative, n=1 corresponds
  429. to $der(1)$, n=2 to $der(2)$, while n=3 to $der(1)*der(2)$.
  430. Example:
  431. \be
  432. pr(1,bos(f,0,0)) => fer(f,1,0),
  433. \ee
  434. \be
  435. pr(3,fer(g,0,0)) => fer(f,3,0).
  436. \ee
  437. B) For the usual derivative we reserve command
  438. \be
  439. pg(n,expression)
  440. \ee
  441. where n=0,1,2,...., denotes the value of the usual derivative on the
  442. expression
  443. Example
  444. \be
  445. pg(2,bos(f,0,0)) => bos(f,0,2)
  446. \ee
  447. \section{Supersymmetric integration}
  448. There is one command ${\bf s\underline {~} int}(number,expression,list)$
  449. only. This allows us to compute the value of supersymmetric integration of
  450. arbitrary polynomial expression constructed from $fer$ and $bos$ objects. It
  451. is valid in the traditional representation of the supersymmetry. The
  452. $numbers$ takes the following values: $ 0 \rightarrow $ corresponds for
  453. usual $"x"$ integration, $ 1 $ or $ 2 $ for the first or second
  454. supersymmetric index while $ 3 $ to the integration both over first and
  455. second indexes. The $list$ is the list of the names of the superfunctions
  456. over which we would like to integrate. The output of this command is in the
  457. form of the integrated part and non-integrated part. The non-integrated part
  458. is denoted by $del(-number)$ if $number = 1,2,3$ and by $d(-3)$ for 0.
  459. Example
  460. \be
  461. {\bf {s\underline {~} int}}(0, 2bos(f,0,1)*bos(f,0,1),\{f\}) =
  462. bos(f,0,0)^{2},
  463. \ee
  464. \be
  465. s\underline {~} int(1,2*fer(f,1,0)*bos(f,0,0),\{f\}) = bos(f,0,0)^{2},
  466. \ee
  467. \pe
  468. && s\underline {~} int(3,
  469. bos(f,3,0)*bos(g,0,0)+bos(f,0,0)*bos(g,3,0),\{f,g\}) =\ \\
  470. && {~~}{~~}{~~~~}{~~~}{~~}bos(f,0,0)*bos(g,0,0)-\ \\
  471. && del(-3)\Big ( fer(f,1,0)*fer(g,2,0)-fer(f,2,0)*bos(g,1,0) \Big ).
  472. \ke
  473. \section{Integration operators.}
  474. We introduced four different types of integration operators:
  475. right and left denoted as $ d(-1) $ and $ d(-2) $ respectively and moreover
  476. two different types of neutral integration operators $ d(-3) $ and $ d(-4) $.
  477. In first two cases they act acorrding to the formula
  478. \be
  479. {\bf d(-1)}*bos(f,0,0) = \sum_{i=1}^{\infty} (-1)^{i}*bos(f,0,i-1)*d(-1)^{i},
  480. \ee \label{calka}
  481. for the right integration, while
  482. \be
  483. bos(f,0,0)*{\bf d(-2)}= \sum_{i=1}^{\infty} d(-2)^{i}*bos(f,0,i-1),
  484. \ee
  485. for the left integration.
  486. Before using these operators the precision of the integration must be
  487. specified by the declaration
  488. ${\bf{ww:=number}}$.
  489. If required this precision can be changed
  490. by clearing the old value of $ww$ and introducing the new one.
  491. Both operators are defined by their action and by the properties
  492. \pe
  493. d(1)*d(-1) &=& d(-1)*d(1)=d(2)*d(-1)=d(2)*d(-1)=1 , \\
  494. && der(1)*d(-1)=d(-1)*der(1), \\
  495. && d(-1)*del(1)=del(1)*d(-1) ,
  496. \ke
  497. and analogously for $ d(-2) $ and $ der(2), del(2) $.
  498. The neutral operator does not show up any action on some expression but
  499. has several properties. More precisly
  500. \pe
  501. d(1)*{\bf d(-3)} &=& d(-3)*d(1)=d(2)*d(-3)=d(-3)*d(2)=1, \\
  502. && der(k)*d(-3)=d(-3)*der(k), \\
  503. && d(-3)*del(k)=del(k)*d(-3),
  504. \ke
  505. while for $ d(-4) $
  506. \pe
  507. d(1)*{\bf d(-4)} &=& d(-4)*d(1)=d(2)*d(-4)=d(-4)*d(2)=1 , \\
  508. && der(k)*d(-4)=d(-4)*der(k),
  509. \ke
  510. where k=1, 2.
  511. From the last two formulas we see that $ d(-3) $ operator is transparent under
  512. $ del $ operators while $ d(-4) $ operators stops $ del $ action.
  513. Similarly to $ d(-3) $ or $ d(-4) $ it is also possible to use the neutral
  514. differentation operator denote ${\bf d(3)}$. It has the properties
  515. \pe
  516. d(3)*d(-4) &=& d(-4)*d(3)=d(3)*d(-3)=d(-3)*d(3)=1, \\
  517. && der(k)*d(3)=d(3)*der(k), \\
  518. && d(3)*del(k)=del(k)*d(3),
  519. \ke
  520. where k=1, 2.
  521. We can have also `` accelerated '' integration operators denoted by
  522. $ dr(-n) $ where n is a natural number. The action of these operators
  523. is exactly the same as $ d(-1)**n $ but instead of using n - times the
  524. integration formulas in the case $ d(-1)**n $, $ dr(-n) $ uses
  525. only once the following formula
  526. \be
  527. {\bf dr(-n)}*bos(f,0,0) = \sum\limits^{ww}_{s=0}(-1)^{s}\pmatrix{ n+s-1 \cr n-1 }
  528. bos(f,0,s)dr(-n-s).
  529. \ee
  530. We have to, similarly to the $ d(-1) $ case,
  531. declare also the "precision" of integration if we would like to use the
  532. "accelerated" integration operators.
  533. The switch $ {\bf{let {~} cutoff}} $ and command $ {\bf{cut:= number}} $
  534. allows us to annihilate the higher order terms in the $ dr $ integrations
  535. procedure. Moreover, the switch $ {\bf{let {~} drr}} $
  536. automatically changes usual integrations $ d(-1) $ into
  537. "accelerated" integrations $ dr $. The switch $ {\bf{let {~} nodrr}} $
  538. changes $ dr $ integrations onto $ d(-1) $.
  539. \section{Useful Commands.}
  540. A) Combinations.
  541. We encounter, in many practical applications, problem of construction
  542. of different possible combinations of superfunction and
  543. super-pseudo-differential elements with the given conformal dimensions.
  544. We declare three different procedures in order to realize this requirement:
  545. \pe
  546. {\bf w\underline{~}comb}(list,n,m,x), \\
  547. {\bf fcomb}(list,n,m,x), \\
  548. {\bf pse\underline{~}ele}(n,list,m).
  549. \ke
  550. All these
  551. commands are based on the gradations trick (to associate with
  552. superfuction and superderivative the scaling parametr -
  553. conformal dimension).
  554. We consider here k/2 and k (k natural number and $ k > 0 $ )
  555. gradation only.
  556. Command $w\underline{~}comb$ gives the most general form of
  557. superfunctions combinations of given gradation. It is four argument
  558. procedure in which:
  559. (i) first argument is a list in which each element is
  560. three elements list in which: first element is the name of the
  561. superfuction from which we would like to construct our combinations,
  562. second denotes its gradation while the last can take two values
  563. f - in the case where superfunction is superfermionic or b -
  564. for superbosonic.
  565. (ii) second argument is a number - the desired gradation.
  566. (iii) third argument is an arbitrary not numerical value which enumerates
  567. the free parameters in our combinations.
  568. (iv) fourth argument takes two values
  569. f - in the case when whole combinations should be fermionic or
  570. b - for the bosonic nature of combination.
  571. \vspace{0.5cm}
  572. Examples:
  573. \pe
  574. w\underline{~}comb(\{ \{ f,1,b \},\{g,1,b \} \},2,z,b) & =>&
  575. z1*bos(f,3,0)+
  576. z2*bos(f,0,1)+\cr
  577. &&z3*bos(f,0,0)^2; \\
  578. w\underline{~}comb( \{ \{ f,1,b \} \},3/2,g,f) &=>&
  579. g1*fer(f,1,0)+ g2*fer(f,2,0);
  580. \ke
  581. Command $fcomb$, simillarly to $w\underline{~}comb$, gives us
  582. general form of an arbitrary combination of superfunctions modulo
  583. divergence terms.
  584. It is four argument command with the same meaning of
  585. arguments as in $w\underline{~}comb$ case. This command first calls
  586. $w\underline{~}comb$, then eliminates in the canonical way
  587. SuSy - derivatives, by integrations by parts of $w\underline{~}comb$.
  588. By canonical we understand that (SuSy) derivatives are removed first
  589. from the superfunction which is first in the list of superfuctions
  590. in fcomb command, next from second etc.
  591. In order to illustrate cannonical manner of elimination
  592. of (SuSy) derivatives let us consider some expression which is
  593. constructed from f, g and h superfunctions and their (SuSy) derivatives.
  594. This expression is first splited onto three subexpression called
  595. $f-expression, g-expression $ and $h-expression$.
  596. $F-expression$ contains only combinations of f with
  597. f or g or (and) h, while $g-expression$ contains only combinations
  598. of g with g or h and last $h-expresion$ contains only combinations of
  599. h with h. Command $fcomb$ removes first (SuSy) derivatives from f in f-exprssion,
  600. next from g in g-expression, and finally from h in h-expression.
  601. Let us present such situation on the following example
  602. \be
  603. fer(f,1,0)*fer(g,2,0) +bos(g,0,0)*bos(g,3,0).
  604. \ee
  605. Let us now assume that we have $ f,g $ order then $ f-expression $ is
  606. $ fer(f,1,0)*fer(g,2,0) $, while $g-expression$ is $ bos(g,0,1)*bos(g,3,0) $.
  607. Now canonical elimination gives us
  608. \be
  609. - bos(f,0,0)*bos(g,3,0) + 2*bos(g,0,0)*bos(g,3,1),
  610. \ee
  611. while assuming $ g,f $ order we obtain
  612. \be
  613. - bos(f,3,0)*bos(g,0,0) +2*bos(g,0,0)*bos(g,3,1)
  614. \ee
  615. Example
  616. \pe
  617. fcomb( \{\{u,1\}\},4,h) &=>& h(1)*fer(u,2,0)*fer(u,1,0)*bos(u,0,0) +\cr
  618. && h(2)*bos(u,3,0)*bos(u,0,0)^2 + \cr
  619. && h(3)*bos(u,0,2)*bos(u,0,0) +\cr
  620. && h(4)*bos(u,0,0)^4;
  621. \ke
  622. Finally, comand $pse\underline{~}ele$ gives us the general form of
  623. element which belongs to algebra of pseudo-SuSy derivative
  624. algebra [3].
  625. Such element can be symbolically written down as
  626. \be
  627. ( bos + fer*der(1)+fer*der(2)+bos*der(1)*der(2))*d(1)^n,
  628. \ee
  629. for the traditional and ``chiral'' representation while for ``chiral1''
  630. as
  631. \be
  632. ( bos + fer*der(1)+fer*der(2)+bos*der(3))*d(1)^n,
  633. \ee
  634. where at the moment, $ bos $ and $ fer $ denotes some an arbitrary
  635. superfunctions.
  636. The mentioned command allows us to obtain such element
  637. of the given gradation
  638. which is constructed from some set of superfunctions of given
  639. gradation. This command is three arguments.
  640. \be
  641. {\bf pse\underline{~}ele}(wx,wy,wz),
  642. \ee
  643. First index denotes the gradation of SuSy-pseudo-element.
  644. Second the names and gradations of the superfunctions from which we would
  645. like to construct our element. This second index $ wy $ is in the form of list
  646. exactly the same as in the $ w\underline{~}comb $ command.
  647. Last index denotes
  648. the names which enumerates the free parameters in our combination.
  649. \vspace{0.9cm}
  650. B) Parts of the pseudo-SuSy-differential elements.
  651. In order to obtain the components of the (pseudo)-SuSy element we have
  652. three different commands:
  653. \pe
  654. {\bf s\underline{~}part}(expression,n), \\
  655. {\bf d\underline{~}part}(expression,m), \\
  656. {\bf sd\underline{~}part}(expression,n,m),
  657. \ke
  658. where n,m=0,1,2,3,....
  659. The $s\underline{~}part$ gives us coefficient standing in n-th SuSy
  660. derivative. However notice, that for n=3 we should consider the coefficients
  661. standing in the $der(1)*der(2) $ operator for the traditional or chiral
  662. representations while for the chiral1 representation the terms standing in
  663. the $der(3)$ operator. The
  664. $d\underline{~}part$ command give us the coefficients
  665. standing in same power of d(1), while $sd\underline{~}part$ the term
  666. standing in n-th SuSy derivative and m-th power of usual derivative.
  667. Example:
  668. \pe
  669. ala: &=& bos(g,0,0)+fer(f,3,0)*der(1)+ (fer(h,2,0)*der(2)+\cr
  670. && bos(r,0,0)*der(1)*der(2))*d(1);\\
  671. s\underline{~}part(ala,3) & => & fer(f,3,0);\\
  672. d\underline{~}part(ala,1) &=>& fer(h,2,0)*der(2)+\cr
  673. && bos(r,0,0)*der(1)*der(2);\\
  674. sd\underline{~}part(ala,0,0) &=>& bos(g,0,0);
  675. \ke
  676. \vspace{0.9cm}
  677. C) Adjoint.
  678. The adjoint of some SuSy operator is defined in standard form as
  679. \be
  680. << \alpha,PP*\beta >> = << \beta,PP^*\alpha >>
  681. \ee
  682. where $\alpha$ and $\beta$ are the test superboson functions, PP is the opertor
  683. under consideration and $<< \alpha,\beta >>$ is a scalar product defined as
  684. \be
  685. << \alpha, \beta >>= \int \alpha*\beta*d\theta_{1}*d\theta_{2}
  686. \ee
  687. where we use the Berezin integral definition [1]
  688. \pe
  689. \int \theta_{i}*d\theta_{j} = \delta_{i,j}, \\
  690. \int d\theta_{i} =0.
  691. \ke
  692. For this operation we have command
  693. \be
  694. {\bf cp}(expression);
  695. \ee
  696. Examples:
  697. \pe
  698. cp(der(1)) &=>& -der(1),\\
  699. cp(del(1)*fer(r,1,0)*der(1)) & =>& fer(r,1,1)+fer(r,1,0)*d(1) -\cr
  700. && del(1)*bos(r,0,1),
  701. \ke
  702. From the last example there follows that it is possible to
  703. define $ cp(del(1)*fer(r,1,0)*der(1))$ in the different but equivalent
  704. manner
  705. namely as $fer(r,1,0)*d(1) - bos(r,0,1)*der(1)$.
  706. From the practical point of view, we do not define the conjugation for
  707. the $d(-1)$ and $d(-2)$ operators, because then
  708. we should define the precision of the action of the operators $d(-1)$ or
  709. $d(-2)$ and even then, we would obtain very complicated formulas. However,
  710. if somebody decides to use this conjugation to the $d(-1)$ or to the $d(-2)$,
  711. it is recommended, first to change by hand, these operators on $d(-3)$, next
  712. to compute $cp$ and change once more $d(-3)$ into $d(-1)$ or $d(-2)$ together
  713. with the declaration of the precision.
  714. \vspace{0.9cm}
  715. D) Projection.
  716. In many cases, especially in SuSy approach to soliton theory
  717. we have to obtain projection onto the invariant subspace (with respect
  718. to commutator) of algebra of pseu\-do-Su\-Sy-di\-ffe\-rential algebra.
  719. There are three different subspaces [4] and hence we have two argument
  720. command
  721. \be
  722. {\bf rzut}(expression,n)
  723. \ee
  724. in which n=0, 1, 2.
  725. Example
  726. \pe
  727. ewa: &=& (bos(f,0,0)+fer(f1,1,0)*der(1)+fer(f2,2,0)*der(2)+\cr
  728. && bos(f3,0,0)*der(1)*der(2))+ (bos(g,0,0)+ \cr
  729. && fer(g1,1,0)*der(1)+fer(g2,2,0)*der(2)+ \cr
  730. && bos(g3,0,0)*der(1)*der(2))*d(1),\\
  731. rzut(ewa,0) & =>& ewa,\\
  732. rzut(ewa,1) & =>& ewa-bos(f,0,0);\\
  733. rzut(ewa,2) & =>& bos(f3,0,0)*der(1)*der(2)+
  734. (fer(g1,1,0)*der(1) \cr
  735. && +fer(g2,2,0)*der(2)+ \cr
  736. && bos(g3,0,0)*der(1)*der(2))*d(1),
  737. \ke
  738. \vspace{0.9cm}
  739. E) Analogon of coeff.
  740. Motivated by practical applications, we constructed for our supersymmetric
  741. functions three commands, which allow us to obtain the list of the same
  742. combinations of some superfunctions and (SuSy) derivatives from some
  743. given operator-valued expression.
  744. The first command is one argument
  745. \be
  746. {\bf lyst}(expression)
  747. \ee
  748. with the output in the form of list.
  749. Example
  750. \pe
  751. magda:=fer(f,1,0)*fer(f,2,0)*a1 + der(1),\\
  752. lyst(magda) => \{fer(f,1,0)*fer(f,2,0)*a1, der(1) \},
  753. \ke
  754. The second command is also one argument
  755. \be
  756. {\bf lyst1}(expression)
  757. \ee
  758. with the output in the form of list in which each element is constructed
  759. from coefficients and (SuSy) operators of corresponding element in
  760. $lyst$ list. For example
  761. \be
  762. lyst1(magda) => \{ a1,der(1) \},
  763. \ee
  764. The third command is also one argument
  765. \be
  766. {\bf lyst2}(expression)
  767. \ee
  768. with the output in the form of list in which each element is constructed
  769. from coefficients standing in the given expression. For exampla
  770. \be
  771. lyst2(magda) => \{a1,1\}
  772. \ee
  773. \vspace{0.9cm}
  774. F) Simplifications.
  775. If we encounter during the process of computations such
  776. expression
  777. \be
  778. fer(f,1,0)*d(-3)*fer(f,2,0)*d(1)
  779. \ee
  780. it is not reduced further. On the other side we can replace $d(1)$ onto
  781. $d(2)$ and back $d(2)$ onto $d(1)$. In order to do such replacement we
  782. have the command
  783. \be
  784. {\bf chan}(expression)
  785. \ee
  786. Example
  787. \pe
  788. && chan(fer(f,1,0)*d(-3)*fer(f,2,0)*d(1)) => \cr
  789. && -fer(f,2,0)*fer(f,1,0) - fer(f,1,0)*d(-3)*fer(f,2,1).
  790. \ke
  791. Notice that as the result we kill the d(1) operation.
  792. \vspace{0.9cm}
  793. G) O(2) invariance.
  794. In many cases in the supersymmetric theories we deal with the O(2)
  795. invariance of SuSy indices. This invariance follows from the physical
  796. assumption on the nonprivileging the "fermionic" coordinates in the
  797. superspace. In order to check whether our formula posseses such
  798. invariance we can use
  799. \be
  800. {\bf odwa}(expression)
  801. \ee
  802. This procedure replaces in the given expresion $der(1)$ onto $-der(2)$ and
  803. $der(2)$ onto $der(1)$. Next, it changes, in the same manner, the values
  804. of the action of these operators on the superfunctions.
  805. \vspace{0.9cm}
  806. F) Macierz
  807. Similarly to the representation of the superfunctions in the components
  808. We can define the supercomponent form for the $pse\underline{~}ele$ objects
  809. similarly to the representation of the supersfunctions. Usually we can
  810. consider such object as the matrix which acts on the components of the
  811. superfunctions.It is realized in our program using the command :
  812. \be
  813. {\bf macierz}(expression,x,y),
  814. \ee
  815. where expression is the formula under consideration while x can take
  816. two values f or b depending wheather we would like to conside bosonic
  817. (b) part or fermionic (f) part of the expression. Last index in this
  818. command denotes the option in which we acts on the bosonic or fermionic
  819. superfunction. It takes two values f- for fermionic test superfunction
  820. or b - for bosonic case. More explicitely we obtain
  821. \pe
  822. macierz(der(1)*der(2),b,f) =\pmatrix{0 & 0 & 0 & 0 \cr
  823. 0 & 0 & d(1) & 0 \cr
  824. 0 & -d(1) & 0 & 0 \cr
  825. -d(1)**2 & 0 & 0 & 0 } \\
  826. macierz(der(1)*der(2),f,b)= \pmatrix {
  827. 0 & 0 & 0 & 0 \cr
  828. 0 & 0 & 0 & d(1) \cr
  829. -d(1) & 0 & 0 & 0 \cr
  830. 0 & 0 & 0 & 0 } .
  831. \ke
  832. \section{Functional gradients.}
  833. In SuSy soliton approach we very frequently encounter
  834. problem of computing the gradient of the given functional.
  835. The usual definition of the gradient [2] is adopted, in the supersymmetry
  836. also.
  837. \pe
  838. H^{'}[v] = < grad H ,v > , \\
  839. H^{'}[v] = \frac{\partial}{\partial \epsilon} H(u+\epsilon v)
  840. \mid_{\epsilon=0},
  841. \ke
  842. where $ H $ denotes some functional which depends on u. v denotes
  843. vector under which we compute the gradient and $ <,> $ the relevant
  844. scalar product.
  845. We implemented all that in our package for the ``tradicional '' algebra
  846. only. In order to compute the gradient with respect to some superfuction
  847. use
  848. \be
  849. {\bf gra}(expression,f),
  850. \ee
  851. where "expression" is the given density of the functional, while f denotes
  852. the first index in the superfunction ( name of the superfunction).
  853. Example
  854. \be
  855. gra(bos(f,3,0)*fer(f,1,0),f) => -2*fer(f,2,1)
  856. \ee
  857. For practical use we perform two additional commands:
  858. \pe
  859. {\bf dyw}(expression,f) \\
  860. {\bf war}(expression,f).
  861. \ke
  862. The first computes the variation of expression with respect to
  863. superfunction f, next removes (via integrations by parts) SuSy-
  864. derivatives from varied functions and finally produces list
  865. of factorized $fer$ and $bos$ superfunctions. When the given expression
  866. is full (SuSy)-derivative, the result of the dyw command is 0 and hence
  867. this command is very usefull in verifications of (SuSy)-divergences of
  868. expressions.
  869. When result of applications of dyw command is not zero
  870. then we would like to have the system of equations on the coefficients
  871. standing in the same factorized $fer$ and $bos$ superfunction. We can quickly
  872. obtain such list using command $war(expression,f)$ with the same
  873. meaning of arguments as in the $dyw$ command.
  874. Examples
  875. \be
  876. xxx:=fer(f,1,0)*fer(f,2,0)+x*bos(f,3,0)^2;
  877. \ee
  878. \pe
  879. dyw(xxx,f) &=>& \{ -2*bos(f,3,0)*bos(f,0,0),\cr
  880. && -2*x*bos(f,0,2)*bos(f,0,0) \}
  881. \ke
  882. \be
  883. war(xxx,f) => \{-2,-2*x \}.
  884. \ee
  885. \section{Conservation Laws.}
  886. In many cases we would like to know whether the given expression is
  887. a conservation law for some Hamiltonian equation. We can quikly check it
  888. using
  889. \be
  890. {\bf dot\underline{~}ham}( {equation},expression)
  891. \ee
  892. where "equation" is a set of two elements list in which
  893. first element denotes the function while the second its flow.
  894. The second argument should be understand as the density of some
  895. conserved current. For example, for SuSy version of the Nonlinear
  896. Schrodinger Equation [7] we obtain
  897. \pe
  898. ew: &=& \{ \{q,-bos(q,0,2)+bos(q,0,0)^3*bos(r,0,0)^2 -\cr
  899. && 2*bos(q,0,0)*pr(3,bos(q,0,0)*bos(r,0,0)) \},\cr
  900. &&\{ r,bos(r,0,2)-bos(q,0,0)^2*bos(r,0,0)^3+\cr
  901. && 2*bos(r,0,0)*pr(3,bos(q,0,0)*bos(r,0,0)) \} \},\\
  902. ham: &=& bos(q,0,1)*bos(r,0,0)+x*bos(q,0,0)^2*bos(r,0,0)^2,\\
  903. yyy: &=& dot\underline{~}ham(ew,ham).
  904. \ke
  905. As the result of previous computations we have a complicated expression
  906. which is not zero. We woulld like to interpreted it as a
  907. full (SuSy)-divergence and we can quickly verify it, if we use command
  908. $war$. We can solve, obtained list of equations, using known techniques.
  909. For example, in our previous case we obtain
  910. \be
  911. war(yyy,q) => \{ -4*x,-8*x,-4*x \};
  912. \ee
  913. \be
  914. war(yyy,r) => \{ 4*x,8*x,4*x \};
  915. \ee
  916. and we conclude that our ham is a constant of motion if x=0.
  917. It is also possible to use command $dot\underline{~}ham$ to
  918. the pseudo-SuSy-differential element what is very useful in SuSy
  919. approach to Lax operator in which we would like to check
  920. validity of the formula
  921. \be
  922. \partial_{t}*L:=[ L,A ].
  923. \ee
  924. where $ A $ is a some (SuSy) operator.
  925. \section{Jacobi Identity.}
  926. The Jacobi identity for some SuSy - hamiltonian operators is verified
  927. using the relation
  928. \be
  929. << \alpha , P^{`}_{(P\beta)}*\gamma >> + cyclic{~}permutation(
  930. \alpha,\beta,\gamma),
  931. \ee
  932. where $P^{`}$ denotes the directional derivative along the $P(\beta)$ vector
  933. and $<< , >>$ scalar product. Directional derivative is defined
  934. in the standard manner as [44]
  935. \be
  936. F^{'}(u)[v] = \frac{\partial}{\partial \epsilon}
  937. F(u+\epsilon v)\mid_{\epsilon =0},
  938. \ee
  939. where $ F $ is some functional depending on u. V is a directional vector.
  940. In this package we have several commands which allow us to
  941. verify the Jacobi identity.
  942. We have the possibility to compute, indenpendently of veryfing Jacobi
  943. identity, directional derivative for the given Hamiltonian operator along
  944. the given vector using
  945. \be
  946. {\bf n\underline{~}gat}( pp, wim )
  947. \ee
  948. where pp is scalar or matrix Hamiltonian operator. $ Wim $ denotes
  949. components of a vector along which we compute derivative and has the
  950. form of list in which each element has following representation
  951. \be
  952. bos(f) => <expression>.
  953. \ee
  954. The $ bos(f) $, in the last formula, denotes the shift of $ bos(f,0,0) $
  955. superfunction according to definition of directional derivative.
  956. In order to compute Jacobi identity use command
  957. \be
  958. {\bf fjacob}( pp, wim),
  959. \ee
  960. with the same meaning of $pp$ and $wim$ as in $n\underline{~}gat$ command.
  961. Notice that ordering of components in $wim$ list is important and
  962. is connected with interpretation of components of Hamiltonian operator
  963. $pp$ as a set of Poisson brackets constructed just from elements of $ wim $
  964. list.
  965. For example, in our scheme, first component of wim is always connected
  966. with element, from which we create Poisson bracket and which
  967. corresponds to first element on the diagonal of pp, second element of
  968. $ wim $ with second element on diagonal of $pp$ and etc.
  969. As the result of applications of $ fjacob $ command to some Hamiltonian
  970. operator we obtain a complicated formula, not necesarily equal to zero but
  971. which would be expressed as (SuSy) divergence. However, we can quickly
  972. verify it using the same method as in $ dot\underline{~}ham $ command
  973. which has been described in previous section.
  974. Usually, after the application of the $ fjacob $ command to some matrix
  975. Hamiltonian operator we obtain the hudge expression which is too complicated
  976. to analyze even when we would like to check its (SuSy)divergence. In this case
  977. we could extract from $fjacob$ expression terms containing given
  978. components of vector test functions fixed by us. We can use in this
  979. order command
  980. \be
  981. {\bf jacob}(pp,wim,mm)
  982. \ee
  983. where $ pp $ and $ wim $ has the same meaning as in $ fjacob $ case while
  984. $ mm $ is a three elements list denoting the components of
  985. ${\alpha,\beta,\gamma}$.
  986. This command is not prepered to compute in full the Jacobi identity,
  987. which contains the integrations operators. We do not implement here the
  988. symbolic integrations of superfunctions in order to simplify the final results.
  989. \newpage
  990. \section{The list of Objects, Commands and Switches}
  991. Objects:
  992. \vspace{0.6cm}
  993. \begin{tabular}{ c c c c c c }
  994. & {\bf bos}(f,n,m) & {\bf bos}(f,n,m,k) & {\bf fer}(f,n,m) & {\bf axp}(f)
  995. & {\bf fun}(f,n) \cr
  996. & {\bf fun}(f,n,m) & {\bf gras}(f,n) & {\bf axx}(f) & {\bf d}(1)
  997. & {\bf d}(2) \cr
  998. & {\bf d}(3) & {\bf d}(-1) & {\bf d}(-2) & {\bf d}(-3)
  999. & {\bf d}(-4) \cr
  1000. & {\bf dr}(-n) & {\bf der}(1) & {\bf der}(2) & {\bf del}(1) & {\bf del}(2)
  1001. \end{tabular}
  1002. \vspace{0.3cm}
  1003. \noindent Commands
  1004. \vspace{0.5cm}
  1005. \flushleft
  1006. {\footnotesize
  1007. \begin{tabular}{ l l l l }
  1008. {\bf fpart}(expression) & {\bf bpart}(expression) &
  1009. {\bf bf\underline{~}part}(expression,n) \cr
  1010. {\bf b\underline{~}part}(expression,n) & {\bf pr}(n,expression) &
  1011. {\bf pg}(n,expression) \cr
  1012. {\bf w\underline{~}comb}
  1013. (\{ \{ f,n,x
  1014. \},...\} ,m,z,y) &
  1015. {\bf fcomb}
  1016. (\{ \{ f,n,x
  1017. \},...\},m,z,y) &
  1018. {\bf pse\underline{~}ele}
  1019. (n,\{ \{ f,n \},... \},z) \cr
  1020. {\bf s\underline{~}part}(expression,n) &
  1021. {\bf d\underline{~}part}(expression,n) & {\bf sd\underline{~}}(expression,n,m) \cr
  1022. {\bf cp}(expression) & {\bf rzut}(expression,n) & {\bf lyst}(expression) \cr
  1023. {\bf lyst1}(expression) & {\bf lyst2}(expression) & {\bf
  1024. chan}(expression) \cr
  1025. {\bf odwa}(expression) & {\bf gra}(expression,f) & {\bf
  1026. dyw}(expression,f) \cr
  1027. {\bf war}(expression,f) & {\bf dot\underline{~}ham}(equations,expression)&
  1028. {\bf n\underline{~}gat}(operator,list) \cr
  1029. {\bf fjacob}(operator,list) & {\bf jacob}(operator,list,\{
  1030. $\alpha,\beta,\gamma$ \})& {\bf macierz}(expression,x,y) \cr
  1031. {\bf s\underline {~} int}( numbers, expession,list) & &
  1032. \end{tabular}
  1033. }
  1034. \vspace{0.3cm}
  1035. \noindent Switches
  1036. \vspace{0.3cm}
  1037. \begin{tabular}{ c c c c c c c}
  1038. & \bf trad & \bf chiral & \bf chiral1 {~}\bf inverse & \bf drr & \bf nodrr
  1039. \end{tabular}
  1040. \section{Acknowledgement}
  1041. The author would like to thank to dr. W.Neun for valuable remarks.
  1042. \begin{thebibliography}{99}
  1043. \item{} J.Wess and J.Bagger, ``Supersymmetry and Supergravity''
  1044. (Princeton, NJ 1982 );
  1045. \item{} S.Ferrara and J.G.Taylor ``Introduction to Supergravity''
  1046. ( Moscow 1985 ).
  1047. \item{} L.Faddeev and L.Takhtajan ``Hamiltonian Methods in the Theory of
  1048. Solitons '' (Springer-VerlaG 1987); A.Das ``Integrable Models'' (World
  1049. Sci.1989); M.Ablowitz and H.Segur ``Solitons and the Inverse
  1050. Scattering Transform'' (SIAM Philadelphia 1981).
  1051. \item{} A.Polyakov in ``Fields, Strings and critical Phenomena'' ed.E.Brezin and
  1052. J.Zinn-Justin, (North Holland 1989).
  1053. \item{} S.Manakov, S.Novikov, L.Pitaevski and V.Zakharov ``Soliton Theory: The
  1054. Inverse Problem'' (Nauka, Moscow (1980).
  1055. \item{} L.A.Dickey ``Soliton Equations and Hamiltonian Systems'', (World
  1056. Scientific, Singapore 1991).
  1057. \item{} E.Date, M.Jimbo, M.Kashiwara and T.Miwa, in ``Nonlinear Integrable
  1058. Systems - Classical and Quantum Theory'', ed. by M.Jimbo and
  1059. T.Miwa , (World Scientific, Singapore 1983) p. 39.
  1060. \item{} B.Kupershmidt, ``Elements of Superintegrable Systems''(Kluwer 1987).
  1061. \item{} M.Chaichian, P.Kulish Phys.Lett.18B (1978) 413.
  1062. \item{} R.D'Auria and S.Sciuto, Nucl. Phys. B.171 (1980) 189.
  1063. \item{} M.Gurses and O.Oguz, Phys.Lett.108A (1985) 437.
  1064. \item{} Y.Manin and R.Radul, Commun.Math.Phys. 98 (1985) 65 .
  1065. \item{} C.Morosi and L.Pizzochero, Commun.Math.Phys. 158 (1993) 267 .
  1066. \item{} C.Morosi and L.Pizzochero, J.Math.Phys.35 (1994) 2397.
  1067. \item{} C.Morosi and L.Pizzochero ''A Fully Supersymmetric AKNS Theory ''
  1068. preprint of Dipartimento di Matematica,Politecnico di Milano.
  1069. April 1994, to appeare in Commun.math.Phys.(1995).
  1070. \item{} P.Mathieu, J.Math.Phys.29 (1988) 2499.
  1071. \item{} C.A.Laberge and P.Mathieu, Phys.Lett.215B (1988) 718 .
  1072. \item{} P.Labelle and P.Mathieu, J.Math.Phys.32 (1991) 923 .
  1073. \item{} M.Chaichian and J.Lukierski, Phys.Lett. 183B (1987) 169 .
  1074. \item{} T.Inami and H.Kanno, Commun.Math.Phys. 136 (1991) 519 .
  1075. \item{} S.K.Nam, Intern.J.Mod.Phs.4 (1989) 4083.
  1076. \item{} K.Hiutu and D.Nemeschansky, Mod.Phys.Lett.A. 6 (1991) 3179.
  1077. \item{} C.M.Yung, Phys.Lett. 309B (1993) 75.
  1078. \item{} E.Ivanov and S.Krivons, Phys.Lett.291B (1992) 63.
  1079. \item{} P.Kulish Lett.Math.Phys.10 (1985) 87.
  1080. \item{} G.H.M.Roelofs and P.H.M. Kersten Journ. Math.Phys.33 (1992) 2185 .
  1081. \item{} J.C.Brunelli and A.Das, Journ.Math.Phys.36 (1995) 268.
  1082. \item{} F.Toppan, Int.Journ.Mod.Phys.A10 (1995) 895.
  1083. \item{} S.Krivonos and A.Sorin ``The minimal N=2 superextension of the NLS
  1084. equation'' hep-th/9504084 to appeare in Phys.lett.B.
  1085. \item{} S.Krivonos, A.Sorin and F.Toppan `` On the Super-NLS Equation and its
  1086. Relation with N=2 Super-KdV within Coset Approach'' hep-th/9504138.
  1087. \item{} W.Oevel and Z.Popowicz, Commun.Math.Phys. 139 (1991) 441.
  1088. \item{} Z.Popowicz J.Phys.A:Math.Gen. 19 (1986) 1495.
  1089. \item{} Z.Popowicz J.Phys.A:Math.Gen. 23 (1990) 1127.
  1090. \item{} Z.Popowicz Phys.Lett.319B (1993) 478.
  1091. \item{} Z.Popowicz Phys.Lett. 174A (1993) 411.
  1092. \item{} Z.Popowicz Int.Jour.Mod.Phys. 9 (1994) 2001.
  1093. \item{} Z.Popowicz Phys.Lett. 194A (1994) 375.
  1094. \item{} Z.Popowicz J.Phys.A.Math.Gen. 29 (1996) 1281.
  1095. \item{} M.Olshanetsky, Comm.Math.Phys. 88 (1983) 63.
  1096. \item{} J.Evans and T.Hollowood, Nucl.Phys. B352 (1991) 723.
  1097. \item{} A.C.Hearn ``R E D U C E user's manual 3.6'' (Rand.Publ.1995).
  1098. \item{} P.K.H.Gragert and P.H.M.Kersten ``Liesuper'' ftp.math.utwente.nl/pub/rweb /appl/lisuper.web
  1099. \item{} S.Krivonos and K.Thielmans ``A Mathematica Package for Computing N=2
  1100. Superfield Opeerator Product Expansion'', Preprint Imperial College
  1101. London TP 95-96/13 or hep-th/9512029.
  1102. \item{} B.Fuchssteiner and A.S.Fokas, Physica 4D (1981) 718.
  1103. \end{thebibliography}
  1104. \end{document}