1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827 |
- Sun Jun 6 19:46:42 MET DST 1999
- REDUCE 3.7, 15-Apr-1999 ...
- 1: 1:
- 2: 2: 2: 2: 2: 2: 2: 2: 2:
- 3: 3: % Demonstration of the REDUCE SOLVE package.
- on fullroots;
- % To get complete solutions.
- % Simultaneous linear fractional equations.
- solve({(a*x+y)/(z-1)-3,y+b+z,x-y},{x,y,z});
- - 3*(b + 1)
- {{x=--------------,
- a + 4
- - 3*(b + 1)
- y=--------------,
- a + 4
- - a*b - b + 3
- z=----------------}}
- a + 4
- % Use of square-free factorization together with recursive use of
- % quadratic and binomial solutions.
- solve((x**6-x**3-1)*(x**5-1)**2*x**2);
- Unknown: x
- 2*sqrt( - sqrt(5) - 5) + sqrt(10) - sqrt(2)
- {x=---------------------------------------------,
- 4*sqrt(2)
- - 2*sqrt( - sqrt(5) - 5) + sqrt(10) - sqrt(2)
- x=------------------------------------------------,
- 4*sqrt(2)
- 2*sqrt(sqrt(5) - 5) - sqrt(10) - sqrt(2)
- x=------------------------------------------,
- 4*sqrt(2)
- - 2*sqrt(sqrt(5) - 5) - sqrt(10) - sqrt(2)
- x=---------------------------------------------,
- 4*sqrt(2)
- x=1,
- x=0,
- 1/3
- ( - sqrt(5) + 1) *(sqrt(3)*i - 1)
- x=-------------------------------------,
- 1/3
- 2*2
- 1/3
- - ( - sqrt(5) + 1) *(sqrt(3)*i + 1)
- x=----------------------------------------,
- 1/3
- 2*2
- 1/3
- ( - sqrt(5) + 1)
- x=---------------------,
- 1/3
- 2
- 1/3
- (sqrt(5) + 1) *(sqrt(3)*i - 1)
- x=----------------------------------,
- 1/3
- 2*2
- 1/3
- - (sqrt(5) + 1) *(sqrt(3)*i + 1)
- x=-------------------------------------,
- 1/3
- 2*2
- 1/3
- (sqrt(5) + 1)
- x=------------------}
- 1/3
- 2
- multiplicities!*;
- {2,2,2,2,2,2,1,1,1,1,1,1}
- % A singular equation without and with a consistent inhomogeneous term.
- solve(a,x);
- {}
- solve(0,x);
- {x=arbcomplex(1)}
- off solvesingular;
- solve(0,x);
- {}
- % Use of DECOMPOSE to solve high degree polynomials.
- solve(x**8-8*x**7+34*x**6-92*x**5+175*x**4-236*x**3+226*x**2-140*x+46);
- Unknown: x
- sqrt( - sqrt( - 4*sqrt(3) - 3) - 3)*sqrt(2) + 2
- {x=-------------------------------------------------,
- 2
- - sqrt( - sqrt( - 4*sqrt(3) - 3) - 3)*sqrt(2) + 2
- x=----------------------------------------------------,
- 2
- sqrt( - sqrt(4*sqrt(3) - 3) - 3)*sqrt(2) + 2
- x=----------------------------------------------,
- 2
- - sqrt( - sqrt(4*sqrt(3) - 3) - 3)*sqrt(2) + 2
- x=-------------------------------------------------,
- 2
- sqrt(sqrt( - 4*sqrt(3) - 3) - 3)*sqrt(2) + 2
- x=----------------------------------------------,
- 2
- - sqrt(sqrt( - 4*sqrt(3) - 3) - 3)*sqrt(2) + 2
- x=-------------------------------------------------,
- 2
- sqrt(sqrt(4*sqrt(3) - 3) - 3)*sqrt(2) + 2
- x=-------------------------------------------,
- 2
- - sqrt(sqrt(4*sqrt(3) - 3) - 3)*sqrt(2) + 2
- x=----------------------------------------------}
- 2
- solve(x**8-88*x**7+2924*x**6-43912*x**5+263431*x**4-218900*x**3+
- 65690*x**2-7700*x+234,x);
- {x=sqrt( - i + 116) + 11,
- x= - sqrt( - i + 116) + 11,
- x=sqrt(i + 116) + 11,
- x= - sqrt(i + 116) + 11,
- x=4*sqrt(7) + 11,
- x= - 4*sqrt(7) + 11,
- x=2*sqrt(30) + 11,
- x= - 2*sqrt(30) + 11}
- % Recursive use of inverses, including multiple branches of rational
- % fractional powers.
- solve(log(acos(asin(x**(2/3)-b)-1))+2,x);
- 1 1
- {x=sqrt(sin(cos(----) + 1) + b)*(sin(cos(----) + 1) + b),
- 2 2
- e e
- 1 1
- x= - sqrt(sin(cos(----) + 1) + b)*(sin(cos(----) + 1) + b)}
- 2 2
- e e
- % Square-free factors that are unsolvable, being of fifth degree,
- % transcendental, or without a defined inverse.
- operator f;
- solve((x-1)*(x+1)*(x-2)*(x+2)*(x-3)*(x*log(x)-1)*(f(x)-1),x);
- {f(x) - 1=0,
- x=root_of(log(x_)*x_ - 1,x_,tag_2),
- x=3,
- x=2,
- x=1,
- x=-1,
- x=-2}
- multiplicities!*;
- {1,1,1,1,1,1,1}
- % Factors with more than one distinct top-level kernel, the first factor
- % a cubic. (Cubic solution suppressed since it is too messy to be of
- % much use).
- off fullroots;
- solve((x**(1/2)-(x-a)**(1/3))*(acos x-acos(2*x-b))* (2*log x
- -log(x**2+x-c)-4),x);
- 2 4 4 2
- e *(sqrt(4*c*e - 4*c + e ) - e )
- {x=-----------------------------------,
- 4
- 2*(e - 1)
- 2 4 4 2
- - e *(sqrt(4*c*e - 4*c + e ) + e )
- x=--------------------------------------,
- 4
- 2*(e - 1)
- 2 3 2
- x=root_of(a - 2*a*x_ - x_ + x_ ,x_,tag_7),
- x=b}
- on fullroots;
- % Treatment of multiple-argument exponentials as polynomials.
- solve(a**(2*x)-3*a**x+2,x);
- 2*arbint(3)*i*pi + log(2)
- {x=---------------------------,
- log(a)
- 2*arbint(2)*i*pi
- x=------------------}
- log(a)
- % A 12th degree reciprocal polynomial that is irreductible over the
- % integers, having a reduced polynomial that is also reciprocal.
- % (Reciprocal polynomials are those that have symmetric or antisymmetric
- % coefficient patterns.) We also demonstrate suppression of automatic
- % integer root extraction.
- solve(x**12-4*x**11+12*x**10-28*x**9+45*x**8-68*x**7+69*x**6-68*x**5+
- 45*x**4-28*x**3+12*x**2-4*x+1);
- Unknown: x
- sqrt( - sqrt(5) - 3)
- {x=----------------------,
- sqrt(2)
- - sqrt( - sqrt(5) - 3)
- x=-------------------------,
- sqrt(2)
- 2*sqrt( - sqrt(3)*i - 9) - sqrt(6)*i + sqrt(2)
- x=------------------------------------------------,
- 4*sqrt(2)
- - 2*sqrt( - sqrt(3)*i - 9) - sqrt(6)*i + sqrt(2)
- x=---------------------------------------------------,
- 4*sqrt(2)
- 2*sqrt( - 3*sqrt(5) - 1) - sqrt(10) + 3*sqrt(2)
- x=-------------------------------------------------,
- 4*sqrt(2)
- - 2*sqrt( - 3*sqrt(5) - 1) - sqrt(10) + 3*sqrt(2)
- x=----------------------------------------------------,
- 4*sqrt(2)
- 2*sqrt(sqrt(3)*i - 9) + sqrt(6)*i + sqrt(2)
- x=---------------------------------------------,
- 4*sqrt(2)
- - 2*sqrt(sqrt(3)*i - 9) + sqrt(6)*i + sqrt(2)
- x=------------------------------------------------,
- 4*sqrt(2)
- 2*sqrt(3*sqrt(5) - 1) + sqrt(10) + 3*sqrt(2)
- x=----------------------------------------------,
- 4*sqrt(2)
- - 2*sqrt(3*sqrt(5) - 1) + sqrt(10) + 3*sqrt(2)
- x=-------------------------------------------------,
- 4*sqrt(2)
- i*(sqrt(5) - 1)
- x=-----------------,
- 2
- i*( - sqrt(5) + 1)
- x=--------------------}
- 2
- % The treatment of factors with non-unique inverses by introducing
- % unique new real or integer indeterminant kernels.
- solve((sin x-a)*(2**x-b)*(x**c-3),x);
- {x=2*arbint(6)*pi + asin(a),
- x=2*arbint(6)*pi - asin(a) + pi,
- 2*arbint(5)*i*pi + log(b)
- x=---------------------------,
- log(2)
- 1/c 2*arbint(4)*pi 2*arbint(4)*pi
- x=3 *(cos(----------------) + sin(----------------)*i)}
- c c
- % Automatic restriction to principal branches.
- off allbranch;
- solve((sin x-a)*(2**x-b)*(x**c-3),x);
- {x=asin(a),
- 1/c
- x=3 ,
- log(b)
- x=--------}
- log(2)
- % Regular system of linear equations.
- solve({2*x1+x2+3*x3-9,x1-2*x2+x3+2,3*x1+2*x2+2*x3-7}, {x1,x2,x3});
- {{x1=-1,x2=2,x3=3}}
- % Underdetermined system of linear equations.
- on solvesingular;
- solve({x1-4*x2+2*x3+1,2*x1-3*x2-x3-5*x4+7,3*x1-7*x2+x3-5*x4+8},
- {x1,x2,x3,x4});
- {{x1=4*arbcomplex(8) + 2*arbcomplex(7) - 5,
- x2=arbcomplex(8) + arbcomplex(7) - 1,
- x3=arbcomplex(7),
- x4=arbcomplex(8)}}
- % Inconsistent system of linear equations.
- solve({2*x1+3*x2-x3-2,7*x1+4*x2+2*x3-8,3*x1-2*x2+4*x3-5},
- {x1,x2,x3});
- {}
- % Overdetermined system of linear equations.
- solve({x1-x2+x3-12,2*x1+3*x2-x3-13,3*x2+4*x3-5,-3*x1+x2+4*x3+20},
- {x1,x2,x3});
- {{x1=9,x2=-1,x3=2}}
- % Degenerate system of linear equations.
- operator xx,yy;
- yy(1) := -a**2*b**3-3*a**2*b**2-3*a**2*b+a**2*(xx(3)-2)-a*b-a*c+a*(xx(2)
- -xx(5))-xx(4)-xx(5)+xx(1)-1;
- 2 2 3
- yy(1) := - xx(5)*a - xx(5) - xx(4) + xx(3)*a + xx(2)*a + xx(1) - a *b
- 2 2 2 2
- - 3*a *b - 3*a *b - 2*a - a*b - a*c - 1
- yy(2) := -a*b**3-b**5+b**4*(-xx(4)-xx(5)+xx(1)-5)-b**3*c+b**3*(xx(2)
- -xx(5)-3)+b**2*(xx(3)-1);
- 2 2 2 2
- yy(2) := b *( - xx(5)*b - xx(5)*b - xx(4)*b + xx(3) + xx(2)*b + xx(1)*b - a*b
- 3 2
- - b - 5*b - b*c - 3*b - 1)
- yy(3) := -a*b**3*c-3*a*b**2*c-4*a*b*c+a*b*(-xx(4)-xx(5)+xx(1)-1)
- +a*c*(xx(3)-1)-b**2*c-b*c**2+b*c*(xx(2)-xx(5));
- yy(3) := - xx(5)*a*b - xx(5)*b*c - xx(4)*a*b + xx(3)*a*c + xx(2)*b*c
- 3 2 2 2
- + xx(1)*a*b - a*b *c - 3*a*b *c - 4*a*b*c - a*b - a*c - b *c - b*c
- yy(4) := -a**2-a*c+a*(xx(2)-xx(4)-2*xx(5)+xx(1)-1)-b**4-b**3*c-3*b**3
- -3*b**2*c-2*b**2-2*b*c+b*(xx(3)-xx(2)-xx(4)+xx(1)-2)
- +c*(xx(3)-1);
- yy(4) := - 2*xx(5)*a - xx(4)*a - xx(4)*b + xx(3)*b + xx(3)*c + xx(2)*a
- 2 4 3 3
- - xx(2)*b + xx(1)*a + xx(1)*b - a - a*c - a - b - b *c - 3*b
- 2 2
- - 3*b *c - 2*b - 2*b*c - 2*b - c
- yy(5) := -2*a-3*b**3-9*b**2-11*b-2*c+3*xx(3)+2*xx(2)-xx(4)-3*xx(5)+xx(1)
- -4;
- 3 2
- yy(5) := - 3*xx(5) - xx(4) + 3*xx(3) + 2*xx(2) + xx(1) - 2*a - 3*b - 9*b
- - 11*b - 2*c - 4
- soln := solve({yy(1),yy(2),yy(3),yy(4),yy(5)},
- {xx(1),xx(2),xx(3),xx(4),xx(5)});
- soln := {{xx(1)=arbcomplex(10) + arbcomplex(9) + 1,
- xx(2)=arbcomplex(10) + a + b + c,
- 3 2
- xx(3)=b + 3*b + 3*b + 1,
- xx(4)=arbcomplex(9),
- xx(5)=arbcomplex(10)}}
- for i := 1:5 do xx(i) := part(soln,1,i,2);
- for i := 1:5 do write yy(i);
- 0
- 0
- 0
- 0
- 0
- % Single equations liftable to polynomial systems.
- solve ({a*sin x + b*cos x},{x});
- 2 2
- sqrt(a + b ) - a
- {x= - 2*atan(-------------------),
- b
- 2 2
- sqrt(a + b ) + a
- x=2*atan(-------------------)}
- b
- solve ({a*sin(x+1) + b*cos(x+1)},{x});
- 2 2
- sqrt(a + b ) - a
- {x= - 2*atan(-------------------) - 1,
- b
- 2 2
- sqrt(a + b ) + a
- x=2*atan(-------------------) - 1}
- b
-
- % Intersection of 2 curves: system with a free parameter.
- solve ({sqrt(x^2 + y^2)=r,0=sqrt(x)+ y**3-1},{x,y,r});
- {{y=arbcomplex(12),
- 6 3
- x=y - 2*y + 1,
- 12 9 6 3 2
- r=sqrt(y - 4*y + 6*y - 4*y + y + 1)},
- {y=arbcomplex(11),
- 6 3
- x=y - 2*y + 1,
- 12 9 6 3 2
- r= - sqrt(y - 4*y + 6*y - 4*y + y + 1)}}
- solve ({e^x - e^(1/2 * x) - 7},{x});
- - sqrt(29) + 1
- {x=2*log(-----------------),
- 2
- sqrt(29) + 1
- x=2*log(--------------)}
- 2
- % Generally not liftable.
-
- % variable inside and outside of sin.
- solve({sin x + x - 1/2},{x});
- {x=root_of(2*sin(x_) + 2*x_ - 1,x_,tag_12)}
-
- % Variable inside and outside of exponential.
- solve({e^x - x**2},{x});
- - 1
- {x= - 2*lambert_w(------)}
- 2
- % Variable inside trigonometrical functions with different forms.
- solve ({a*sin(x+1) + b*cos(x+2)},{x});
- 2 2
- {x=2*atan((cos(1)*a - sqrt(2*cos(2)*sin(1)*a*b - 2*cos(1)*sin(2)*a*b + a + b )
- - sin(2)*b)/(cos(2)*b + sin(1)*a)),
- 2 2
- x=2*atan((cos(1)*a + sqrt(2*cos(2)*sin(1)*a*b - 2*cos(1)*sin(2)*a*b + a + b )
- - sin(2)*b)/(cos(2)*b + sin(1)*a))}
-
- % Undetermined exponents.
- solve({x^a - 2},{x});
- 1/a
- {x=2 }
-
- % Example taken from M.L. Griss, ACM Trans. Math. Softw. 2 (1976) 1.
- e1 := x1 - l/(3*k)$
- e2 := x2 - 1$
- e3 := x3 - 35*b6/(6*l)*x4 + 33*b11/(2*l)*x6 - 715*b15/(14*l)*x8$
- e4 := 14*k/(3*l)*x1 - 7*b4/(2*l)*x3 + x4$
- e5 := x5 - 891*b11/(40*l)*x6 +3861*b15/(56*l)*x8$
- e6 := -88*k/(15*l)*x1 + 22*b4/(5*l)*x3 - 99*b9/(8*l)*x5 +x6$
- e7 := -768*k/(5005*b13)*x1 + 576*b4/(5005*b13)*x3 -
- 324*b9/(1001*b13)*x5 + x7 - 16*l/(715*b13)*x8$
- e8 := 7*l/(143*b15)*x1 + 49*b6/(429*b15)*x4 - 21*b11/(65*b15)*x6 +
- x8 - 7*b2/(143*b15)$
- solve({e1,e2,e3,e4,e5,e6,e7,e8},{x1,x2,x3,x4,x5,x6,x7,x8});
- l
- {{x1=-----,
- 3*k
- x2=1,
- 2
- 5*(3*b2*k - l )
- x3=-----------------,
- 6*k*l
- 2 2
- 7*(45*b2*b4*k - 15*b4*l - 8*k*l )
- x4=------------------------------------,
- 2
- 36*k*l
- 2 2 2 4
- 2205*b2*b4*b6*k - 108*b2*k*l - 735*b4*b6*l - 392*b6*k*l + 36*l
- x5=--------------------------------------------------------------------,
- 3
- 32*k*l
- 2 2
- x6=(11*(893025*b2*b4*b6*b9*k - 11520*b2*b4*k*l - 43740*b2*b9*k*l
- 2 4 2 4
- - 297675*b4*b6*b9*l + 3840*b4*l - 158760*b6*b9*k*l + 14580*b9*l
- 4 4
- + 2048*k*l ))/(11520*k*l ),
- 2
- x7=(47652707025*b11*b2*b4*b6*b9*k - 614718720*b11*b2*b4*k*l
- 2 2
- - 2334010140*b11*b2*b9*k*l - 15884235675*b11*b4*b6*b9*l
- 4 2 4
- + 204906240*b11*b4*l - 8471592360*b11*b6*b9*k*l + 778003380*b11*b9*l
- 4
- + 109283328*b11*k*l + 172398476250*b15*b2*b4*b6*b9*k
- 2 2
- - 2223936000*b15*b2*b4*k*l - 8444007000*b15*b2*b9*k*l
- 2 4
- - 57466158750*b15*b4*b6*b9*l + 741312000*b15*b4*l
- 2 4 4
- - 30648618000*b15*b6*b9*k*l + 2814669000*b15*b9*l + 395366400*b15*k*l
- 2 4 4
- - 172872000*b2*b4*b6*k*l + 8467200*b2*k*l + 57624000*b4*b6*l
- 4 6 3
- + 30732800*b6*k*l - 2822400*l )/(7729722000*b13*b15*k*l ),
- 2
- x8=(7*(972504225*b11*b2*b4*b6*b9*k - 12545280*b11*b2*b4*k*l
- 2 2
- - 47632860*b11*b2*b9*k*l - 324168075*b11*b4*b6*b9*l
- 4 2 4
- + 4181760*b11*b4*l - 172889640*b11*b6*b9*k*l + 15877620*b11*b9*l
- 4 2 4
- + 2230272*b11*k*l - 3528000*b2*b4*b6*k*l + 172800*b2*k*l
- 4 4 6 4
- + 1176000*b4*b6*l + 627200*b6*k*l - 57600*l ))/(24710400*b15*k*l )}}
- f1 := x1 - x*x2 - y*x3 + 1/2*x**2*x4 + x*y*x5 + 1/2*y**2*x6 +
- 1/6*x**3*x7 + 1/2*x*y*(x - y)*x8 - 1/6*y**3*x9$
- f2 := x1 - y*x3 + 1/2*y**2*x6 - 1/6*y**3*x9$
- f3 := x1 + y*x2 - y*x3 + 1/2*y**2*x4 - y**2*x5 + 1/2*y**2*x6 +
- 1/6*y**3*x7 + 1/2*y**3*x8 - 1/6*y**3*x9$
- f4 := x1 + (1 - x)*x2 - x*x3 + 1/2*(1 - x)**2*x4 - y*(1 - x)*x5 +
- 1/2*y**2*x6 + 1/6*(1 - x)**3*x7 + 1/2*y*(1 - x - y)*(1 - x)*x8
- - 1/6*y**3*x9$
- f5 := x1 + (1 - x - y)*x2 + 1/2*(1 - x - y)**2*x4 +
- 1/6*(1 - x - y)**3*x7$
- f6 := x1 + (1 - x - y)*x3 + 1/2*(1 - x - y)*x6 +
- 1/6*(1 - x - y)**3*x9$
- f7 := x1 - x*x2 + (1 - y)*x3 + 1/2*x*x4 - x*(1 - y)*x5 +
- 1/2*(1 - y)**2*x6 - 1/6*x**3*x7 + 1/2*x*(1 - y)*(1 - y + x)*x8
- + 1/6*(1-y)**3*x9$
- f8 := x1 - x*x2 + x*x3 + 1/2*x**2*x4 - x**2*x5 + 1/2*x**2*x6 +
- 1/6*x**3*x7 - 1/2*x**3*x8 + 1/6*x**3*x9$
- f9 := x1 - x*x2 + 1/2*x**2*x4 + 1/6*x**3*x7$
- solve({f1,f2,f3,f4,f5,f6,f7,f8,f9},{x1,x2,x3,x4,x5,x6,x7,x8,x9});
- {{x1=0,x2=0,x3=0,x4=0,x5=0,x6=0,x7=0,x8=0,x9=0}}
- solve({f1 - 1,f2,f3,f4,f5,f6,f7,f8,f9},{x1,x2,x3,x4,x5,x6,x7,x8,x9});
- 8 8 7 3 7 2 7 7 6 4
- {{x1=(y*( - 8*x *y + 10*x + 9*x *y - 49*x *y + 85*x *y - 43*x + 23*x *y
- 6 3 6 2 6 6 5 5 5 4
- - 128*x *y + 266*x *y - 246*x *y + 77*x + 20*x *y - 145*x *y
- 5 3 5 2 5 5 4 6 4 5
- + 383*x *y - 512*x *y + 329*x *y - 75*x + 9*x *y - 84*x *y
- 4 4 4 3 4 2 4 4 3 7
- + 276*x *y - 469*x *y + 464*x *y - 233*x *y + 43*x + 3*x *y
- 3 6 3 5 3 4 3 3 3 2 3
- - 23*x *y + 97*x *y - 196*x *y + 245*x *y - 201*x *y + 87*x *y
- 3 2 8 2 7 2 6 2 5 2 4
- - 14*x - 2*x *y + 13*x *y - 25*x *y + 23*x *y - 10*x *y
- 2 3 2 2 2 2 9 8 7
- - 17*x *y + 31*x *y - 15*x *y + 2*x - 2*x*y + 10*x*y - 24*x*y
- 6 5 4 3 2 6 5
- + 41*x*y - 57*x*y + 53*x*y - 24*x*y + 2*x*y + x*y - 2*y + 7*y
- 4 3 2 10 10 9 2 9 9
- - 9*y + 5*y - y ))/(2*x *y - 4*x + 8*x *y - 24*x *y + 20*x
- 8 3 8 2 8 8 7 4 7 3 7 2
- + x *y - 17*x *y + 47*x *y - 31*x - 24*x *y + 92*x *y - 105*x *y
- 7 7 6 5 6 4 6 3 6 2
- + 18*x *y + 15*x - 28*x *y + 172*x *y - 350*x *y + 308*x *y
- 6 6 5 6 5 5 5 4 5 3
- - 104*x *y + 4*x - 14*x *y + 103*x *y - 290*x *y + 401*x *y
- 5 2 5 5 4 7 4 6 4 5 4 4
- - 278*x *y + 83*x *y - 5*x + 6*x *y - 35*x *y + 14*x *y + 90*x *y
- 4 3 4 2 4 4 3 8 3 7
- - 149*x *y + 97*x *y - 24*x *y + x + 20*x *y - 118*x *y
- 3 6 3 5 3 4 3 3 3 2 3
- + 244*x *y - 237*x *y + 117*x *y - 21*x *y - 7*x *y + 2*x *y
- 2 9 2 8 2 7 2 6 2 5 2 4
- + 13*x *y - 86*x *y + 228*x *y - 294*x *y + 204*x *y - 86*x *y
- 2 3 2 2 10 9 8 7
- + 23*x *y - 2*x *y + 4*x*y - 31*x*y + 84*x*y - 121*x*y
- 6 5 4 3 9 8 7 6
- + 100*x*y - 48*x*y + 15*x*y - 3*x*y + 4*y - 12*y + 15*y - 9*y
- 5
- + 2*y ),
- 10 10 9 2 9 9 8 3 8 2 8
- x2=(2*x *y - 2*x + 5*x *y - 12*x *y + 7*x - 8*x *y + 9*x *y + 2*x *y
- 8 7 4 7 3 7 2 7 7 6 5
- - x - 15*x *y + 65*x *y - 83*x *y + 52*x *y - 17*x + 5*x *y
- 6 4 6 3 6 2 6 6 5 6 5 5
- - 5*x *y - 20*x *y + 46*x *y - 54*x *y + 20*x + 23*x *y - 151*x *y
- 5 4 5 3 5 2 5 5 4 7
- + 321*x *y - 338*x *y + 166*x *y - 13*x *y - 8*x + 29*x *y
- 4 6 4 5 4 4 4 3 4 2 4
- - 207*x *y + 523*x *y - 676*x *y + 522*x *y - 222*x *y + 36*x *y
- 4 3 8 3 7 3 6 3 5 3 4
- + x + 16*x *y - 103*x *y + 300*x *y - 463*x *y + 433*x *y
- 3 3 3 2 3 2 9 2 7 2 6 2 5
- - 268*x *y + 98*x *y - 15*x *y - x *y + 22*x *y - 54*x *y + 60*x *y
- 2 4 2 3 2 2 2 10 9 8
- - 56*x *y + 44*x *y - 17*x *y + 2*x *y - 2*x*y + 10*x*y - 22*x*y
- 7 6 5 4 3 2 7 6
- + 34*x*y - 48*x*y + 48*x*y - 23*x*y + 2*x*y + x*y - 2*y + 7*y
- 5 4 3 10 10 9 2 9 9
- - 9*y + 5*y - y )/(x*(2*x *y - 4*x + 8*x *y - 24*x *y + 20*x
- 8 3 8 2 8 8 7 4 7 3
- + x *y - 17*x *y + 47*x *y - 31*x - 24*x *y + 92*x *y
- 7 2 7 7 6 5 6 4 6 3
- - 105*x *y + 18*x *y + 15*x - 28*x *y + 172*x *y - 350*x *y
- 6 2 6 6 5 6 5 5 5 4
- + 308*x *y - 104*x *y + 4*x - 14*x *y + 103*x *y - 290*x *y
- 5 3 5 2 5 5 4 7 4 6
- + 401*x *y - 278*x *y + 83*x *y - 5*x + 6*x *y - 35*x *y
- 4 5 4 4 4 3 4 2 4 4
- + 14*x *y + 90*x *y - 149*x *y + 97*x *y - 24*x *y + x
- 3 8 3 7 3 6 3 5 3 4
- + 20*x *y - 118*x *y + 244*x *y - 237*x *y + 117*x *y
- 3 3 3 2 3 2 9 2 8 2 7
- - 21*x *y - 7*x *y + 2*x *y + 13*x *y - 86*x *y + 228*x *y
- 2 6 2 5 2 4 2 3 2 2 10
- - 294*x *y + 204*x *y - 86*x *y + 23*x *y - 2*x *y + 4*x*y
- 9 8 7 6 5 4
- - 31*x*y + 84*x*y - 121*x*y + 100*x*y - 48*x*y + 15*x*y
- 3 9 8 7 6 5
- - 3*x*y + 4*y - 12*y + 15*y - 9*y + 2*y )),
- 9 9 8 2 8 8 7 3 7 2 7
- x3=(2*x *y - 4*x + 8*x *y - 32*x *y + 26*x + 9*x *y - 70*x *y + 131*x *y
- 7 6 4 6 3 6 2 6 6 5 5
- - 66*x + 7*x *y - 73*x *y + 226*x *y - 253*x *y + 89*x + 11*x *y
- 5 4 5 3 5 2 5 5 4 6
- - 81*x *y + 244*x *y - 383*x *y + 280*x *y - 73*x + 13*x *y
- 4 5 4 4 4 3 4 2 4 4
- - 89*x *y + 235*x *y - 367*x *y + 360*x *y - 189*x *y + 39*x
- 3 7 3 6 3 5 3 4 3 3 3 2
- + 9*x *y - 59*x *y + 156*x *y - 227*x *y + 231*x *y - 171*x *y
- 3 3 2 8 2 7 2 6 2 5 2 4
- + 74*x *y - 13*x + 3*x *y - 21*x *y + 62*x *y - 78*x *y + 51*x *y
- 2 3 2 2 2 2 8 7 6
- - 35*x *y + 30*x *y - 14*x *y + 2*x - 5*x*y + 18*x*y - 22*x*y
- 5 4 3 2 8 7 6 5 4
- - x*y + 21*x*y - 13*x*y + x*y + x*y + 2*y - 6*y + 6*y + y - 6*y
- 3 2 10 10 9 2 9 9 8 3
- + 4*y - y )/(2*x *y - 4*x + 8*x *y - 24*x *y + 20*x + x *y
- 8 2 8 8 7 4 7 3 7 2
- - 17*x *y + 47*x *y - 31*x - 24*x *y + 92*x *y - 105*x *y
- 7 7 6 5 6 4 6 3 6 2
- + 18*x *y + 15*x - 28*x *y + 172*x *y - 350*x *y + 308*x *y
- 6 6 5 6 5 5 5 4 5 3
- - 104*x *y + 4*x - 14*x *y + 103*x *y - 290*x *y + 401*x *y
- 5 2 5 5 4 7 4 6 4 5 4 4
- - 278*x *y + 83*x *y - 5*x + 6*x *y - 35*x *y + 14*x *y + 90*x *y
- 4 3 4 2 4 4 3 8 3 7
- - 149*x *y + 97*x *y - 24*x *y + x + 20*x *y - 118*x *y
- 3 6 3 5 3 4 3 3 3 2 3
- + 244*x *y - 237*x *y + 117*x *y - 21*x *y - 7*x *y + 2*x *y
- 2 9 2 8 2 7 2 6 2 5 2 4
- + 13*x *y - 86*x *y + 228*x *y - 294*x *y + 204*x *y - 86*x *y
- 2 3 2 2 10 9 8 7
- + 23*x *y - 2*x *y + 4*x*y - 31*x*y + 84*x*y - 121*x*y
- 6 5 4 3 9 8 7 6
- + 100*x*y - 48*x*y + 15*x*y - 3*x*y + 4*y - 12*y + 15*y - 9*y
- 5
- + 2*y ),
- 9 9 8 2 8 8 7 3 7 2 7
- x4=(2*(2*x *y - 2*x + 4*x *y - 10*x *y + 6*x - 9*x *y + 21*x *y - 13*x *y
- 7 6 4 6 3 6 2 6 6 5 5
- + x - 18*x *y + 88*x *y - 130*x *y + 74*x *y - 14*x - 10*x *y
- 5 4 5 3 5 2 5 5 4 6
- + 74*x *y - 180*x *y + 191*x *y - 90*x *y + 15*x + 4*x *y
- 4 5 4 4 4 3 4 2 4 4
- - 18*x *y - 20*x *y + 105*x *y - 111*x *y + 47*x *y - 7*x
- 3 7 3 6 3 5 3 4 3 3 3 2
- + 16*x *y - 96*x *y + 188*x *y - 155*x *y + 44*x *y + 8*x *y
- 3 3 2 8 2 7 2 6 2 5
- - 6*x *y + x + 10*x *y - 62*x *y + 164*x *y - 219*x *y
- 2 4 2 3 2 2 2 9 8 7
- + 154*x *y - 56*x *y + 10*x *y - x *y + x*y - 13*x*y + 45*x*y
- 6 5 4 3 2 8 7 6
- - 72*x*y + 64*x*y - 35*x*y + 12*x*y - 2*x*y + 2*y - 7*y + 9*y
- 5 4 10 10 9 2 9 9 8 3
- - 5*y + y ))/(x*(2*x *y - 4*x + 8*x *y - 24*x *y + 20*x + x *y
- 8 2 8 8 7 4 7 3 7 2
- - 17*x *y + 47*x *y - 31*x - 24*x *y + 92*x *y - 105*x *y
- 7 7 6 5 6 4 6 3 6 2
- + 18*x *y + 15*x - 28*x *y + 172*x *y - 350*x *y + 308*x *y
- 6 6 5 6 5 5 5 4 5 3
- - 104*x *y + 4*x - 14*x *y + 103*x *y - 290*x *y + 401*x *y
- 5 2 5 5 4 7 4 6 4 5
- - 278*x *y + 83*x *y - 5*x + 6*x *y - 35*x *y + 14*x *y
- 4 4 4 3 4 2 4 4 3 8
- + 90*x *y - 149*x *y + 97*x *y - 24*x *y + x + 20*x *y
- 3 7 3 6 3 5 3 4 3 3 3 2
- - 118*x *y + 244*x *y - 237*x *y + 117*x *y - 21*x *y - 7*x *y
- 3 2 9 2 8 2 7 2 6 2 5
- + 2*x *y + 13*x *y - 86*x *y + 228*x *y - 294*x *y + 204*x *y
- 2 4 2 3 2 2 10 9 8
- - 86*x *y + 23*x *y - 2*x *y + 4*x*y - 31*x*y + 84*x*y
- 7 6 5 4 3 9 8
- - 121*x*y + 100*x*y - 48*x*y + 15*x*y - 3*x*y + 4*y - 12*y
- 7 6 5
- + 15*y - 9*y + 2*y )),
- 10 10 9 2 9 9 8 3 8 2 8
- x5=(2*x *y - 2*x + 7*x *y - 16*x *y + 7*x - 3*x *y - 11*x *y + 21*x *y
- 8 7 4 7 3 7 2 7 7 6 5
- - x - 18*x *y + 60*x *y - 46*x *y + 23*x *y - 17*x - 4*x *y
- 6 4 6 3 6 2 6 6 5 6 5 5
- + 38*x *y - 70*x *y + 40*x *y - 36*x *y + 20*x + 14*x *y - 86*x *y
- 5 4 5 3 5 2 5 5 4 7
- + 164*x *y - 182*x *y + 114*x *y - 14*x *y - 8*x + 24*x *y
- 4 6 4 5 4 4 4 3 4 2 4
- - 167*x *y + 387*x *y - 455*x *y + 348*x *y - 164*x *y + 32*x *y
- 4 3 8 3 7 3 6 3 5 3 4
- + x + 21*x *y - 130*x *y + 339*x *y - 458*x *y + 370*x *y
- 3 3 3 2 3 2 9 2 8 2 7
- - 211*x *y + 81*x *y - 14*x *y + 5*x *y - 43*x *y + 140*x *y
- 2 6 2 5 2 4 2 3 2 2 2
- - 209*x *y + 165*x *y - 86*x *y + 42*x *y - 16*x *y + 2*x *y
- 9 8 7 6 5 4 3 2
- - 5*x*y + 20*x*y - 32*x*y + 16*x*y + 8*x*y - 9*x*y + x*y + x*y
- 9 8 7 6 5 4 3 10 10
- + 2*y - 6*y + 6*y + y - 6*y + 4*y - y )/(x*y*(2*x *y - 4*x
- 9 2 9 9 8 3 8 2 8 8
- + 8*x *y - 24*x *y + 20*x + x *y - 17*x *y + 47*x *y - 31*x
- 7 4 7 3 7 2 7 7 6 5
- - 24*x *y + 92*x *y - 105*x *y + 18*x *y + 15*x - 28*x *y
- 6 4 6 3 6 2 6 6 5 6
- + 172*x *y - 350*x *y + 308*x *y - 104*x *y + 4*x - 14*x *y
- 5 5 5 4 5 3 5 2 5 5
- + 103*x *y - 290*x *y + 401*x *y - 278*x *y + 83*x *y - 5*x
- 4 7 4 6 4 5 4 4 4 3 4 2
- + 6*x *y - 35*x *y + 14*x *y + 90*x *y - 149*x *y + 97*x *y
- 4 4 3 8 3 7 3 6 3 5
- - 24*x *y + x + 20*x *y - 118*x *y + 244*x *y - 237*x *y
- 3 4 3 3 3 2 3 2 9 2 8
- + 117*x *y - 21*x *y - 7*x *y + 2*x *y + 13*x *y - 86*x *y
- 2 7 2 6 2 5 2 4 2 3 2 2
- + 228*x *y - 294*x *y + 204*x *y - 86*x *y + 23*x *y - 2*x *y
- 10 9 8 7 6 5
- + 4*x*y - 31*x*y + 84*x*y - 121*x*y + 100*x*y - 48*x*y
- 4 3 9 8 7 6 5
- + 15*x*y - 3*x*y + 4*y - 12*y + 15*y - 9*y + 2*y )),
- 9 9 8 2 8 8 7 3 7 2
- x6=(2*(2*x *y - 4*x + 8*x *y - 24*x *y + 16*x - 2*x *y - 19*x *y
- 7 7 6 4 6 3 6 2 6 6
- + 50*x *y - 23*x - 20*x *y + 71*x *y - 46*x *y - 15*x *y + 12*x
- 5 5 5 4 5 3 5 2 5 5
- - 8*x *y + 82*x *y - 195*x *y + 155*x *y - 46*x *y + 2*x
- 4 6 4 5 4 4 4 3 4 2 4
- + 8*x *y - 11*x *y - 81*x *y + 184*x *y - 142*x *y + 46*x *y
- 4 3 6 3 5 3 4 3 3 3 2 3
- - 4*x - 21*x *y + 50*x *y + x *y - 60*x *y + 49*x *y - 14*x *y
- 3 2 8 2 7 2 6 2 5 2 4 2 3
- + x + 6*x *y - 34*x *y + 82*x *y - 99*x *y + 54*x *y - 8*x *y
- 2 2 2 8 7 6 5 4
- - 4*x *y + x *y - 6*x*y + 38*x*y - 79*x*y + 78*x*y - 41*x*y
- 3 2 7 6 5 4 3 10
- + 11*x*y - x*y - 4*y + 10*y - 10*y + 5*y - y ))/(y*(2*x *y
- 10 9 2 9 9 8 3 8 2 8
- - 4*x + 8*x *y - 24*x *y + 20*x + x *y - 17*x *y + 47*x *y
- 8 7 4 7 3 7 2 7 7
- - 31*x - 24*x *y + 92*x *y - 105*x *y + 18*x *y + 15*x
- 6 5 6 4 6 3 6 2 6 6
- - 28*x *y + 172*x *y - 350*x *y + 308*x *y - 104*x *y + 4*x
- 5 6 5 5 5 4 5 3 5 2 5
- - 14*x *y + 103*x *y - 290*x *y + 401*x *y - 278*x *y + 83*x *y
- 5 4 7 4 6 4 5 4 4 4 3
- - 5*x + 6*x *y - 35*x *y + 14*x *y + 90*x *y - 149*x *y
- 4 2 4 4 3 8 3 7 3 6
- + 97*x *y - 24*x *y + x + 20*x *y - 118*x *y + 244*x *y
- 3 5 3 4 3 3 3 2 3 2 9
- - 237*x *y + 117*x *y - 21*x *y - 7*x *y + 2*x *y + 13*x *y
- 2 8 2 7 2 6 2 5 2 4 2 3
- - 86*x *y + 228*x *y - 294*x *y + 204*x *y - 86*x *y + 23*x *y
- 2 2 10 9 8 7 6
- - 2*x *y + 4*x*y - 31*x*y + 84*x*y - 121*x*y + 100*x*y
- 5 4 3 9 8 7 6 5
- - 48*x*y + 15*x*y - 3*x*y + 4*y - 12*y + 15*y - 9*y + 2*y )),
- 7 2 7 7 6 3 6 2 6 6 5 4
- x7=(6*(x *y - 2*x *y + x + x *y - 4*x *y + 5*x *y - 2*x - 6*x *y
- 5 3 5 2 5 5 4 5 4 4
- + 26*x *y - 38*x *y + 21*x *y - 3*x - 8*x *y + 49*x *y
- 4 3 4 2 4 4 3 6 3 5 3 4
- - 106*x *y + 101*x *y - 41*x *y + 5*x - x *y + 12*x *y - 42*x *y
- 3 3 3 2 3 3 2 7 2 6 2 5
- + 69*x *y - 52*x *y + 15*x *y - x + 4*x *y - 27*x *y + 59*x *y
- 2 4 2 3 2 2 2 8 7 6
- - 52*x *y + 14*x *y + 3*x *y - x *y + 3*x*y - 18*x*y + 39*x*y
- 5 4 3 2 7 6 5 4 3
- - 48*x*y + 34*x*y - 11*x*y + x*y + 2*y - 5*y + 6*y - 4*y + y )
- 10 10 9 2 9 9 8 3 8 2
- )/(x*(2*x *y - 4*x + 8*x *y - 24*x *y + 20*x + x *y - 17*x *y
- 8 8 7 4 7 3 7 2 7
- + 47*x *y - 31*x - 24*x *y + 92*x *y - 105*x *y + 18*x *y
- 7 6 5 6 4 6 3 6 2 6
- + 15*x - 28*x *y + 172*x *y - 350*x *y + 308*x *y - 104*x *y
- 6 5 6 5 5 5 4 5 3 5 2
- + 4*x - 14*x *y + 103*x *y - 290*x *y + 401*x *y - 278*x *y
- 5 5 4 7 4 6 4 5 4 4
- + 83*x *y - 5*x + 6*x *y - 35*x *y + 14*x *y + 90*x *y
- 4 3 4 2 4 4 3 8 3 7
- - 149*x *y + 97*x *y - 24*x *y + x + 20*x *y - 118*x *y
- 3 6 3 5 3 4 3 3 3 2 3
- + 244*x *y - 237*x *y + 117*x *y - 21*x *y - 7*x *y + 2*x *y
- 2 9 2 8 2 7 2 6 2 5
- + 13*x *y - 86*x *y + 228*x *y - 294*x *y + 204*x *y
- 2 4 2 3 2 2 10 9 8
- - 86*x *y + 23*x *y - 2*x *y + 4*x*y - 31*x*y + 84*x*y
- 7 6 5 4 3 9 8
- - 121*x*y + 100*x*y - 48*x*y + 15*x*y - 3*x*y + 4*y - 12*y
- 7 6 5
- + 15*y - 9*y + 2*y )),
- 9 8 2 8 8 7 3 7 2 7
- x8=(2*( - 2*x + x *y - 10*x *y + 13*x + 5*x *y - 24*x *y + 49*x *y
- 7 6 4 6 3 6 2 6 6 5 5
- - 30*x + 8*x *y - 41*x *y + 75*x *y - 78*x *y + 32*x + 7*x *y
- 5 4 5 3 5 2 5 5 4 6 4 5
- - 35*x *y + 61*x *y - 56*x *y + 41*x *y - 16*x - x *y + 9*x *y
- 4 4 4 3 4 2 4 4 3 7 3 6
- - 10*x *y + 15*x *y - 22*x *y + 6*x *y + 3*x - 10*x *y + 57*x *y
- 3 5 3 4 3 3 3 2 3 2 8
- - 107*x *y + 91*x *y - 55*x *y + 34*x *y - 10*x *y - 8*x *y
- 2 7 2 6 2 5 2 4 2 3 2 2
- + 46*x *y - 105*x *y + 116*x *y - 63*x *y + 23*x *y - 11*x *y
- 2 9 8 7 6 5 4
- + 2*x *y - 2*x*y + 16*x*y - 42*x*y + 54*x*y - 34*x*y + 6*x*y
- 3 2 8 7 6 5 4 3 10
- + x*y + x*y - 2*y + 6*y - 7*y + 3*y + y - y ))/(x*y*(2*x *y
- 10 9 2 9 9 8 3 8 2 8
- - 4*x + 8*x *y - 24*x *y + 20*x + x *y - 17*x *y + 47*x *y
- 8 7 4 7 3 7 2 7 7
- - 31*x - 24*x *y + 92*x *y - 105*x *y + 18*x *y + 15*x
- 6 5 6 4 6 3 6 2 6 6
- - 28*x *y + 172*x *y - 350*x *y + 308*x *y - 104*x *y + 4*x
- 5 6 5 5 5 4 5 3 5 2 5
- - 14*x *y + 103*x *y - 290*x *y + 401*x *y - 278*x *y + 83*x *y
- 5 4 7 4 6 4 5 4 4 4 3
- - 5*x + 6*x *y - 35*x *y + 14*x *y + 90*x *y - 149*x *y
- 4 2 4 4 3 8 3 7 3 6
- + 97*x *y - 24*x *y + x + 20*x *y - 118*x *y + 244*x *y
- 3 5 3 4 3 3 3 2 3 2 9
- - 237*x *y + 117*x *y - 21*x *y - 7*x *y + 2*x *y + 13*x *y
- 2 8 2 7 2 6 2 5 2 4 2 3
- - 86*x *y + 228*x *y - 294*x *y + 204*x *y - 86*x *y + 23*x *y
- 2 2 10 9 8 7 6
- - 2*x *y + 4*x*y - 31*x*y + 84*x*y - 121*x*y + 100*x*y
- 5 4 3 9 8 7 6 5
- - 48*x*y + 15*x*y - 3*x*y + 4*y - 12*y + 15*y - 9*y + 2*y )),
- 7 2 7 7 6 3 6 2 6 6 5 4
- x9=(6*( - 2*x *y + 2*x *y + 4*x - 4*x *y + 16*x *y - 6*x *y - 8*x + x *y
- 5 3 5 2 5 5 4 5 4 4 4 3
- + 18*x *y - 56*x *y + 26*x *y + 3*x + 4*x *y - 6*x *y - 40*x *y
- 4 2 4 4 3 6 3 5 3 4 3 3
- + 82*x *y - 38*x *y + 2*x - 6*x *y + 15*x *y - 9*x *y + 32*x *y
- 3 2 3 3 2 7 2 5 2 4 2 3
- - 46*x *y + 19*x *y - x + x *y - 5*x *y + 2*x *y - 7*x *y
- 2 2 2 8 7 6 5 4
- + 10*x *y - 3*x *y - 2*x*y + 9*x*y - 4*x*y - 16*x*y + 22*x*y
- 3 7 6 5 4 3 10 10
- - 9*x*y - 2*y + 2*y + 2*y - 4*y + 2*y ))/(y*(2*x *y - 4*x
- 9 2 9 9 8 3 8 2 8 8
- + 8*x *y - 24*x *y + 20*x + x *y - 17*x *y + 47*x *y - 31*x
- 7 4 7 3 7 2 7 7 6 5
- - 24*x *y + 92*x *y - 105*x *y + 18*x *y + 15*x - 28*x *y
- 6 4 6 3 6 2 6 6 5 6
- + 172*x *y - 350*x *y + 308*x *y - 104*x *y + 4*x - 14*x *y
- 5 5 5 4 5 3 5 2 5 5
- + 103*x *y - 290*x *y + 401*x *y - 278*x *y + 83*x *y - 5*x
- 4 7 4 6 4 5 4 4 4 3 4 2
- + 6*x *y - 35*x *y + 14*x *y + 90*x *y - 149*x *y + 97*x *y
- 4 4 3 8 3 7 3 6 3 5
- - 24*x *y + x + 20*x *y - 118*x *y + 244*x *y - 237*x *y
- 3 4 3 3 3 2 3 2 9 2 8
- + 117*x *y - 21*x *y - 7*x *y + 2*x *y + 13*x *y - 86*x *y
- 2 7 2 6 2 5 2 4 2 3 2 2
- + 228*x *y - 294*x *y + 204*x *y - 86*x *y + 23*x *y - 2*x *y
- 10 9 8 7 6 5
- + 4*x*y - 31*x*y + 84*x*y - 121*x*y + 100*x*y - 48*x*y
- 4 3 9 8 7 6 5
- + 15*x*y - 3*x*y + 4*y - 12*y + 15*y - 9*y + 2*y ))}}
- % The following examples were discussed in Char, B.W., Fee, G.J.,
- % Geddes, K.O., Gonnet, G.H., Monagan, M.B., Watt, S.M., "On the
- % Design and Performance of the Maple System", Proc. 1984 Macsyma
- % Users' Conference, G.E., Schenectady, NY, 1984, 199-219.
- % Problem 1.
- solve({ -22319*x0+25032*x1-83247*x2+67973*x3+54189*x4
- -67793*x5+81135*x6+22293*x7+27327*x8+96599*x9-15144,
- 79815*x0+37299*x1-28495*x2-52463*x3+25708*x4 -55333*x5-
- 2742*x6+83127*x7-29417*x8-43202*x9+93314, -29065*x0-77803*x1-
- 49717*x2-64748*x3-68324*x4 -50162*x5-64222*x6-
- 4716*x7+30737*x8+22971*x9+90348, 62470*x0+59658*x1-
- 46120*x2+58376*x3-28208*x4 -74506*x5+28491*x6+21099*x7+29149*x8-
- 20387*x9+36254, -98233*x0-26263*x1-63227*x2+34307*x3+92294*x4
- +10148*x5+3192*x6+24044*x7-83764*x8-1121*x9+13871,
- -20427*x0+62666*x1+27330*x2-78670*x3+9036*x4 +56024*x5-4525*x6-
- 50589*x7-62127*x8-32846*x9+38466,
- -85609*x0+5424*x1+86992*x2+59651*x3-60859*x4 -55984*x5-
- 6061*x6+44417*x7+92421*x8+6701*x9-9459,
- -68255*x0+19652*x1+92650*x2-93032*x3-30191*x4 -31075*x5-
- 89060*x6+12150*x7-78089*x8-12462*x9+1027, 55526*x0-
- 91202*x1+91329*x2-25919*x3-98215*x4 +30554*x5+913*x6-
- 35751*x7+17948*x8-58850*x9+66583, 40612*x0+84364*x1-
- 83317*x2+10658*x3+37213*x4 +50489*x5+72040*x6-
- 21227*x7+60772*x8+95114*x9-68533});
- Unknowns: {x0,x1,x2,x3,x4,x5,x6,x7,x8,x9}
- 4352444991703786550093529782474564455970663240687
- {{x0=---------------------------------------------------,
- 8420785423059099972039395927798127489505890997055
- 459141297061698284317621371232198410031030658042
- x1=---------------------------------------------------,
- 1684157084611819994407879185559625497901178199411
- 1068462443128238131632235196977352568525519548284
- x2=---------------------------------------------------,
- 1684157084611819994407879185559625497901178199411
- 1645748379263608982132912334741766606871657041427
- x3=---------------------------------------------------,
- 1684157084611819994407879185559625497901178199411
- 25308331428404990886292916036626876985377936966579
- x4=----------------------------------------------------,
- 42103927115295499860196979638990637447529454985275
- 17958909252564152456194678743404876001526265937527
- x5=----------------------------------------------------,
- 42103927115295499860196979638990637447529454985275
- - 50670056205024448621117426699348037457452368820774
- x6=-------------------------------------------------------,
- 42103927115295499860196979638990637447529454985275
- - 11882862555847887107599498171234654114612212813799
- x7=-------------------------------------------------------,
- 42103927115295499860196979638990637447529454985275
- - 273286267131634194631661772113331181980867938658
- x8=-----------------------------------------------------,
- 8420785423059099972039395927798127489505890997055
- 46816360472823082478331070276129336252954604132203
- x9=----------------------------------------------------}}
- 42103927115295499860196979638990637447529454985275
- solve({ -22319*x0+25032*x1-83247*x2+67973*x3+54189*x4
- -67793*x5+81135*x6+22293*x7+27327*x8+96599*x9-15144,
- 79815*x0+37299*x1-28495*x2-52463*x3+25708*x4 -55333*x5-
- 2742*x6+83127*x7-29417*x8-43202*x9+93314, -29065*x0-77803*x1-
- 49717*x2-64748*x3-68324*x4 -50162*x5-64222*x6-
- 4716*x7+30737*x8+22971*x9+90348, 62470*x0+59658*x1-
- 46120*x2+58376*x3-28208*x4-74506*x5+28491*x6+21099*x7+29149*x8-
- 20387*x9+36254,-98233*x0-26263*x1-63227*x2+34307*x3+92294*x4
- +10148*x5+3192*x6+24044*x7-83764*x8-1121*x9+13871,
- -20427*x0+62666*x1+27330*x2-78670*x3+9036*x4 +56024*x5-4525*x6-
- 50589*x7-62127*x8-32846*x9+38466,
- -85609*x0+5424*x1+86992*x2+59651*x3-60859*x4 -55984*x5-
- 6061*x6+44417*x7+92421*x8+6701*x9-9459,
- -68255*x0+19652*x1+92650*x2-93032*x3-30191*x4 -31075*x5-
- 89060*x6+12150*x7-78089*x8-12462*x9+1027, 55526*x0-
- 91202*x1+91329*x2-25919*x3-98215*x4 +30554*x5+913*x6-
- 35751*x7+17948*x8-58850*x9+66583, 40612*x0+84364*x1-
- 83317*x2+10658*x3+37213*x4 +50489*x5+72040*x6-
- 21227*x7+60772*x8+95114*x9-68533});
- Unknowns: {x0,x1,x2,x3,x4,x5,x6,x7,x8,x9}
- 4352444991703786550093529782474564455970663240687
- {{x0=---------------------------------------------------,
- 8420785423059099972039395927798127489505890997055
- 459141297061698284317621371232198410031030658042
- x1=---------------------------------------------------,
- 1684157084611819994407879185559625497901178199411
- 1068462443128238131632235196977352568525519548284
- x2=---------------------------------------------------,
- 1684157084611819994407879185559625497901178199411
- 1645748379263608982132912334741766606871657041427
- x3=---------------------------------------------------,
- 1684157084611819994407879185559625497901178199411
- 25308331428404990886292916036626876985377936966579
- x4=----------------------------------------------------,
- 42103927115295499860196979638990637447529454985275
- 17958909252564152456194678743404876001526265937527
- x5=----------------------------------------------------,
- 42103927115295499860196979638990637447529454985275
- - 50670056205024448621117426699348037457452368820774
- x6=-------------------------------------------------------,
- 42103927115295499860196979638990637447529454985275
- - 11882862555847887107599498171234654114612212813799
- x7=-------------------------------------------------------,
- 42103927115295499860196979638990637447529454985275
- - 273286267131634194631661772113331181980867938658
- x8=-----------------------------------------------------,
- 8420785423059099972039395927798127489505890997055
- 46816360472823082478331070276129336252954604132203
- x9=----------------------------------------------------}}
- 42103927115295499860196979638990637447529454985275
- % The next two problems give the current routines some trouble and
- % have therefore been commented out.
- % Problem 2.
- comment
- solve({ 81*x30-96*x21-45, -36*x4+59*x29+26,
- -59*x26+5*x3-33, -81*x19-92*x23-21*x17-9, -46*x29-
- 13*x22+22*x24+83, 47*x4-47*x14-15*x26-40, 83*x30+70*x17+56*x10-
- 31, 10*x27-90*x9+52*x21+52, -33*x20-97*x26+20*x6-76,
- 97*x16+41*x8-13*x12+66, 16*x16-52*x10-73*x28+49, -28*x1-53*x24-
- x27-67, -22*x26-29*x24+73*x10+8, 88*x18+61*x19-98*x9-55, 99*x28-
- 91*x26+26*x21-95, -6*x18+25*x7-77*x2+99, 28*x13-50*x17-52*x14-64,
- -50*x20+26*x11+93*x2+77, -70*x8+74*x19-94*x26+86, -18*x18-2*x16-
- 79*x23+91, 36*x26-13*x11-53*x25-5, 10*x7+57*x16-85*x10-14,
- -3*x27+44*x4+52*x22-1, 21*x11+20*x25-30*x4-83, 70*x2-97*x19-
- 41*x26-50, -51*x8+95*x12-85*x26+45, 83*x30+41*x12+50*x2+53,
- -4*x26+69*x8-58*x5-95, 59*x27-78*x30-66*x23+16, -10*x20-36*x11-
- 60*x1-59});
- % Problem 3.
- comment
- solve({ 115*x40+566*x41-378*x42+11401086415/6899901,
- 560*x0-45*x1-506*x2-11143386403/8309444, -621*x1-
- 328*x2+384*x3+1041841/64675, -856*x2+54*x3+869*x4-41430291/24700,
- 596*x3-608*x4-560*x5-10773384/11075,
- -61*x4+444*x5+924*x6+4185100079/11278780, 67*x5-95*x6-
- 682*x7+903866812/6618863, 196*x6+926*x7-930*x8-
- 2051864151/2031976, -302*x7-311*x8-890*x9-14210414139/27719792,
- 121*x8-781*x9-125*x10-4747129093/39901584, 10*x9+555*x10-
- 912*x11+32476047/3471829, -151*x38+732*x39-
- 397*x40+327281689/173242, 913*x10-259*x11-982*x12-
- 18080663/5014020, 305*x11+9*x12-357*x13+1500752933/1780680,
- 179*x12-588*x13+665*x14+8128189/51832, 406*x13+843*x14-
- 833*x15+201925713/97774, 107*x14+372*x15+505*x16-
- 5161192791/3486415, 720*x15-212*x16+607*x17-31529295571/7197760,
- 951*x16-685*x17+148*x18+1034546543/711104, -654*x17-
- 899*x18+543*x19+1942961717/1646560,
- -448*x18+673*x19+702*x20+856422818/1286375, 396*x19-
- 196*x20+218*x21-4386267866/21303625, -233*x20-796*x21-373*x22-
- 85246365829/57545250, 921*x21-368*x22+730*x23-
- 93446707622/51330363, -424*x22+378*x23+727*x24-
- 6673617931/3477462, -633*x23+565*x24-208*x25+8607636805/4092942,
- 971*x24+170*x25-865*x26-25224505/18354, 937*x25+333*x26-463*x27-
- 339307103/1025430, 494*x26-8*x27-50*x28+57395804/34695,
- 530*x27+631*x28-193*x29-8424597157/680022,
- -435*x28+252*x29+916*x30+196828511/19593, 327*x29+403*x30-
- 845*x31+8458823325/5927971, 246*x30+881*x31-
- 394*x32+13624765321/156546826, 946*x31+169*x32-43*x33-
- 53594199271/126093183, -146*x32+503*x33-
- 363*x34+66802797635/15234909, -132*x33-
- 686*x34+376*x35+8167530636/902635, -38*x34-188*x35-
- 583*x36+1814153743/1124240, 389*x35+562*x36-688*x37-
- 12251043951/5513560, -769*x37-474*x38-89*x39-2725415872/1235019,
- -625*x36-122*x37+468*x38+7725682775/4506736,
- 839*x39+936*x40+703*x41+1912091857/1000749,
- -314*x41+102*x42+790*x43+7290073150/8132873, -905*x42-
- 454*x43+524*x44-10110944527/4538233, 379*x43+518*x44-328*x45-
- 2071620692/519645, 284*x44-979*x45+690*x46-915987532/16665,
- 198*x45-650*x46-763*x47+548801657/11220, 974*x46+12*x47+410*x48-
- 3831097561/51051, -498*x47-135*x48-230*x49-18920705/9282,
- 665*x48+156*x49+34*x0-27714736/156585, -519*x49-366*x0-730*x1-
- 2958446681/798985});
- % Problem 4.
- % This one needs the Cramer code --- it takes forever otherwise.
- on cramer;
- solve({ -b*k8/a+c*k8/a, -b*k11/a+c*k11/a,
- -b*k10/a+c*k10/a+k2,
- -k3-b*k9/a+c*k9/a, -b*k14/a+c*k14/a, -b*k15/a+c*k15/a,
- -b*k18/a+c*k18/a-k2, -b*k17/a+c*k17/a, -b*k16/a+c*k16/a+k4,
- -b*k13/a+c*k13/a-b*k21/a+c*k21/a+b*k5/a-c*k5/a,
- b*k44/a-c*k44/a, -b*k45/a+c*k45/a, -b*k20/a+c*k20/a,
- -b*k44/a+c*k44/a, b*k46/a-c*k46/a,
- b**2*k47/a**2-2*b*c*k47/a**2+c**2*k47/a**2,
- k3, -k4, -b*k12/a+c*k12/a-a*k6/b+c*k6/b,
- -b*k19/a+c*k19/a+a*k7/c-b*k7/c, b*k45/a-c*k45/a,
- -b*k46/a+c*k46/a, -k48+c*k48/a+c*k48/b-c**2*k48/(a*b),
- -k49+b*k49/a+b*k49/c-b**2*k49/(a*c), a*k1/b-c*k1/b,
- a*k4/b-c*k4/b, a*k3/b-c*k3/b+k9, -k10+a*k2/b-c*k2/b,
- a*k7/b-c*k7/b, -k9, k11, b*k12/a-c*k12/a+a*k6/b-c*k6/b,
- a*k15/b-c*k15/b, k10+a*k18/b-c*k18/b,
- -k11+a*k17/b-c*k17/b, a*k16/b-c*k16/b,
- -a*k13/b+c*k13/b+a*k21/b-c*k21/b+a*k5/b-c*k5/b,
- -a*k44/b+c*k44/b, a*k45/b-c*k45/b,
- a*k14/c-b*k14/c+a*k20/b-c*k20/b, a*k44/b-c*k44/b,
- -a*k46/b+c*k46/b, -k47+c*k47/a+c*k47/b-c**2*k47/(a*b),
- a*k19/b-c*k19/b, -a*k45/b+c*k45/b, a*k46/b-c*k46/b,
- a**2*k48/b**2-2*a*c*k48/b**2+c**2*k48/b**2,
- -k49+a*k49/b+a*k49/c-a**2*k49/(b*c), k16, -k17,
- -a*k1/c+b*k1/c, -k16-a*k4/c+b*k4/c, -a*k3/c+b*k3/c,
- k18-a*k2/c+b*k2/c, b*k19/a-c*k19/a-a*k7/c+b*k7/c,
- -a*k6/c+b*k6/c, -a*k8/c+b*k8/c, -a*k11/c+b*k11/c+k17,
- -a*k10/c+b*k10/c-k18, -a*k9/c+b*k9/c,
- -a*k14/c+b*k14/c-a*k20/b+c*k20/b,
- -a*k13/c+b*k13/c+a*k21/c-b*k21/c-a*k5/c+b*k5/c,
- a*k44/c-b*k44/c, -a*k45/c+b*k45/c, -a*k44/c+b*k44/c,
- a*k46/c-b*k46/c, -k47+b*k47/a+b*k47/c-b**2*k47/(a*c),
- -a*k12/c+b*k12/c, a*k45/c-b*k45/c, -a*k46/c+b*k46/c,
- -k48+a*k48/b+a*k48/c-a**2*k48/(b*c),
- a**2*k49/c**2-2*a*b*k49/c**2+b**2*k49/c**2, k8, k11, -k15,
- k10-k18, -k17, k9, -k16, -k29, k14-k32, -k21+k23-k31,
- -k24-k30, -k35, k44, -k45, k36, k13-k23+k39, -k20+k38,
- k25+k37, b*k26/a-c*k26/a-k34+k42, -2*k44, k45, k46,
- b*k47/a-c*k47/a, k41, k44, -k46, -b*k47/a+c*k47/a,
- k12+k24, -k19-k25, -a*k27/b+c*k27/b-k33, k45, -k46,
- -a*k48/b+c*k48/b, a*k28/c-b*k28/c+k40, -k45, k46,
- a*k48/b-c*k48/b, a*k49/c-b*k49/c, -a*k49/c+b*k49/c,
- -k1, -k4, -k3, k15, k18-k2, k17, k16, k22, k25-k7,
- k24+k30, k21+k23-k31, k28, -k44, k45, -k30-k6, k20+k32,
- k27+b*k33/a-c*k33/a, k44, -k46, -b*k47/a+c*k47/a, -k36,
- k31-k39-k5, -k32-k38, k19-k37, k26-a*k34/b+c*k34/b-k42,
- k44, -2*k45, k46, a*k48/b-c*k48/b, a*k35/c-b*k35/c-k41,
- -k44, k46, b*k47/a-c*k47/a, -a*k49/c+b*k49/c, -k40, k45,
- -k46, -a*k48/b+c*k48/b, a*k49/c-b*k49/c, k1, k4, k3, -k8,
- -k11, -k10+k2, -k9, k37+k7, -k14-k38, -k22, -k25-k37, -k24+k6,
- -k13-k23+k39, -k28+b*k40/a-c*k40/a, k44, -k45, -k27, -k44,
- k46, b*k47/a-c*k47/a, k29, k32+k38, k31-k39+k5, -k12+k30,
- k35-a*k41/b+c*k41/b, -k44, k45, -k26+k34+a*k42/c-b*k42/c,
- k44, k45, -2*k46, -b*k47/a+c*k47/a, -a*k48/b+c*k48/b,
- a*k49/c-b*k49/c, k33, -k45, k46, a*k48/b-c*k48/b,
- -a*k49/c+b*k49/c },
- {k1, k2, k3, k4, k5, k6, k7, k8, k9, k10, k11, k12, k13, k14,
- k15, k16, k17, k18, k19, k20, k21, k22, k23, k24, k25, k26,
- k27, k28, k29, k30, k31, k32, k33, k34, k35, k36, k37, k38,
- k39, k40, k41, k42, k43, k44, k45, k46, k47, k48, k49});
- {{k1=0,
- k2=0,
- k3=0,
- k4=0,
- k5=0,
- k6=0,
- k7=0,
- k8=0,
- k9=0,
- k10=0,
- k11=0,
- k12=0,
- k13=0,
- k14=0,
- k15=0,
- k16=0,
- k17=0,
- k18=0,
- k19=0,
- k20=0,
- k21=0,
- k22=0,
- k23=arbcomplex(14),
- k24=0,
- k25=0,
- arbcomplex(15)*a
- k26=------------------,
- c
- k27=0,
- k28=0,
- k29=0,
- k30=0,
- k31=arbcomplex(14),
- k32=0,
- k33=0,
- arbcomplex(15)*b
- k34=------------------,
- c
- k35=0,
- k36=0,
- k37=0,
- k38=0,
- k39=arbcomplex(14),
- k40=0,
- k41=0,
- k42=arbcomplex(15),
- k43=arbcomplex(16),
- k44=0,
- k45=0,
- k46=0,
- k47=0,
- k48=0,
- k49=0}}
- off cramer;
- % Problem 5.
- solve ({2*a3*b3+a5*b3+a3*b5, a5*b3+2*a5*b5+a3*b5,
- a5*b5, a2*b2, a4*b4, a5*b1+b5+a4*b3+a3*b4,
- a5*b3+a5*b5+a3*b5+a3*b3, a0*b2+b2+a4*b2+a2*b4+c2+a2*b0+a2*b1,
- a0*b0+a0*b1+a0*b4+a3*b2+b0+b1+b4+a4*b0+a4*b1+a2*b5+a4*b4+c1+c4
- +a5*b2+a2*b3+c0,
- -1+a3*b0+a0*b3+a0*b5+a5*b0+b3+b5+a5*b4+a4*b3+a4*b5+a3*b4+a5*b1
- +a3*b1+c3+c5,
- b4+a4*b1, a5*b3+a3*b5, a2*b1+b2, a4*b5+a5*b4, a2*b4+a4*b2,
- a0*b5+a5*b0+a3*b4+2*a5*b4+a5*b1+b5+a4*b3+2*a4*b5+c5,
- a4*b0+2*a4*b4+a2*b5+b4+a4*b1+a5*b2+a0*b4+c4,
- c3+a0*b3+2*b3+b5+a4*b3+a3*b0+2*a3*b1+a5*b1+a3*b4,
- c1+a0*b1+2*b1+a4*b1+a2*b3+b0+a3*b2+b4});
- Unknowns: {a0,a2,a3,a4,a5,b0,b1,b2,b3,b4,b5,c0,c1,c2,c3,c4,c5}
- {{b5=0,
- b4=0,
- a5=0,
- a4=0,
- b3=0,
- b1=arbcomplex(23),
- - 1
- a3=------,
- b1
- b2=0,
- a2=0,
- c5=0,
- c4=0,
- b0=arbcomplex(24),
- b0 + 2*b1
- c3=-----------,
- b1
- a0=arbcomplex(25),
- c1= - a0*b1 - b0 - 2*b1,
- c2=0,
- c0= - a0*b0 + b1},
- {b5=0,
- b4=0,
- a5=0,
- a4=0,
- b3=-1,
- a3=0,
- b2=0,
- a2=0,
- c5=0,
- c4=0,
- a0=arbcomplex(17),
- c3=a0 + 2,
- b0=arbcomplex(18),
- b1=arbcomplex(19),
- c1= - a0*b1 - b0 - 2*b1,
- c2=0,
- c0= - a0*b0 + b1},
- {b5=0,
- b4=0,
- a5=0,
- a4=0,
- b3=-1,
- b1=0,
- a3=0,
- b2=0,
- c5=0,
- c4=0,
- a0=arbcomplex(20),
- c3=a0 + 2,
- a2=arbcomplex(21),
- b0=arbcomplex(22),
- c1=a2 - b0,
- c2= - a2*b0,
- c0= - a0*b0}}
- % Problem 6.
- solve({2*a3*b3+a5*b3+a3*b5, a5*b3+2*a5*b5+a3*b5,
- a4*b4, a5*b3+a5*b5+a3*b5+a3*b3, b1, a3*b3, a2*b2, a5*b5,
- a5*b1+b5+a4*b3+a3*b4, a0*b2+b2+a4*b2+a2*b4+c2+a2*b0+a2*b1,
- b4+a4*b1, b3+a3*b1, a5*b3+a3*b5, a2*b1+b2, a4*b5+a5*b4,
- a2*b4+a4*b2, a0*b0+a0*b1+a0*b4+a3*b2+b0+b1+b4+a4*b0+a4*b1
- +a2*b5+a4*b4+c1+c4+a5*b2+a2*b3+c0,-1+a3*b0+a0*b3+a0*b5+a5*b0
- +b3+b5+a5*b4+a4*b3+a4*b5+a3*b4+a5*b1+a3*b1+c3+c5,
- a0*b5+a5*b0+a3*b4+2*a5*b4+a5*b1+b5+a4*b3+2*a4*b5+c5,
- a4*b0+2*a4*b4+a2*b5+b4+a4*b1+a5*b2+a0*b4+c4,
- c3+a0*b3+2*b3+b5+a4*b3+a3*b0+2*a3*b1+a5*b1+a3*b4,
- c1+a0*b1+2*b1+a4*b1+a2*b3+b0+a3*b2+b4});
- Unknowns: {a0,a2,a3,a4,a5,b0,b1,b2,b3,b4,b5,c0,c1,c2,c3,c4,c5}
- {}
- % Example cited by Bruno Buchberger
- % in R.Janssen: Trends in Computer Algebra,
- % Springer, 1987
- % Geometry of a simple robot,
- % l1,l2 length of arms
- % ci,si cos and sin of rotation angles
- solve( { c1*c2 -cf*ct*cp + sf*sp,
- s1*c2 - sf*ct*cp - cf*sp,
- s2 + st*cp,
- -c1*s2 - cf*ct*sp + sf*cp,
- -s1*s2 + sf*ct*sp - cf*cp,
- c2 - st*sp,
- s1 - cf*st,
- -c1 - sf*st,
- ct,
- l2*c1*c2 - px,
- l2*s1*c2 - py,
- l2*s2 + l1 - pz,
- c1**2 + s1**2 -1,
- c2**2 + s2**2 -1,
- cf**2 + sf**2 -1,
- ct**2 + st**2 -1,
- cp**2 + sp**2 -1},
- {c1,c2,s1,s2,py,cf,ct,cp,sf,st,sp});
- 2 2 2
- sqrt( - l1 + 2*l1*pz + l2 - pz )
- {{c2=------------------------------------,
- l2
- st=1,
- 2 2 2
- sqrt( - l1 + 2*l1*pz + l2 - pz )
- sp=------------------------------------,
- l2
- 2 2 2
- sqrt( - l1 + 2*l1*pz + l2 - pz )*px
- sf=---------------------------------------,
- 2 2 2
- l1 - 2*l1*pz - l2 + pz
- l1 - pz
- cp=---------,
- l2
- 2 2 2 2
- sqrt(l1 - 2*l1*pz - l2 + px + pz )
- cf=---------------------------------------,
- 2 2 2
- sqrt(l1 - 2*l1*pz - l2 + pz )
- 2 2 2 2
- sqrt(l1 - 2*l1*pz - l2 + px + pz )
- s1=---------------------------------------,
- 2 2 2
- sqrt(l1 - 2*l1*pz - l2 + pz )
- 2 2 2
- - sqrt( - l1 + 2*l1*pz + l2 - pz )*px
- c1=------------------------------------------,
- 2 2 2
- l1 - 2*l1*pz - l2 + pz
- 2 2 2 2 2 2 2
- sqrt( - l1 + 2*l1*pz + l2 - pz )*sqrt(l1 - 2*l1*pz - l2 + px + pz )
- py=--------------------------------------------------------------------------,
- 2 2 2
- sqrt(l1 - 2*l1*pz - l2 + pz )
- - l1 + pz
- s2=------------,
- l2
- ct=0},
- 2 2 2
- sqrt( - l1 + 2*l1*pz + l2 - pz )
- {c2=------------------------------------,
- l2
- st=1,
- 2 2 2
- sqrt( - l1 + 2*l1*pz + l2 - pz )
- sp=------------------------------------,
- l2
- 2 2 2
- sqrt( - l1 + 2*l1*pz + l2 - pz )*px
- sf=---------------------------------------,
- 2 2 2
- l1 - 2*l1*pz - l2 + pz
- l1 - pz
- cp=---------,
- l2
- 2 2 2 2
- - sqrt(l1 - 2*l1*pz - l2 + px + pz )
- cf=------------------------------------------,
- 2 2 2
- sqrt(l1 - 2*l1*pz - l2 + pz )
- 2 2 2 2
- - sqrt(l1 - 2*l1*pz - l2 + px + pz )
- s1=------------------------------------------,
- 2 2 2
- sqrt(l1 - 2*l1*pz - l2 + pz )
- 2 2 2
- - sqrt( - l1 + 2*l1*pz + l2 - pz )*px
- c1=------------------------------------------,
- 2 2 2
- l1 - 2*l1*pz - l2 + pz
- py
- 2 2 2 2 2 2 2
- - sqrt( - l1 + 2*l1*pz + l2 - pz )*sqrt(l1 - 2*l1*pz - l2 + px + pz )
- =-----------------------------------------------------------------------------
- 2 2 2
- sqrt(l1 - 2*l1*pz - l2 + pz )
- ,
- - l1 + pz
- s2=------------,
- l2
- ct=0},
- 2 2 2
- sqrt( - l1 + 2*l1*pz + l2 - pz )
- {c2=------------------------------------,
- l2
- st=-1,
- 2 2 2
- - sqrt( - l1 + 2*l1*pz + l2 - pz )
- sp=---------------------------------------,
- l2
- 2 2 2
- - sqrt( - l1 + 2*l1*pz + l2 - pz )*px
- sf=------------------------------------------,
- 2 2 2
- l1 - 2*l1*pz - l2 + pz
- - l1 + pz
- cp=------------,
- l2
- 2 2 2 2
- sqrt(l1 - 2*l1*pz - l2 + px + pz )
- cf=---------------------------------------,
- 2 2 2
- sqrt(l1 - 2*l1*pz - l2 + pz )
- 2 2 2 2
- - sqrt(l1 - 2*l1*pz - l2 + px + pz )
- s1=------------------------------------------,
- 2 2 2
- sqrt(l1 - 2*l1*pz - l2 + pz )
- 2 2 2
- - sqrt( - l1 + 2*l1*pz + l2 - pz )*px
- c1=------------------------------------------,
- 2 2 2
- l1 - 2*l1*pz - l2 + pz
- py
- 2 2 2 2 2 2 2
- - sqrt( - l1 + 2*l1*pz + l2 - pz )*sqrt(l1 - 2*l1*pz - l2 + px + pz )
- =-----------------------------------------------------------------------------
- 2 2 2
- sqrt(l1 - 2*l1*pz - l2 + pz )
- ,
- - l1 + pz
- s2=------------,
- l2
- ct=0},
- 2 2 2
- sqrt( - l1 + 2*l1*pz + l2 - pz )
- {c2=------------------------------------,
- l2
- st=-1,
- 2 2 2
- - sqrt( - l1 + 2*l1*pz + l2 - pz )
- sp=---------------------------------------,
- l2
- 2 2 2
- - sqrt( - l1 + 2*l1*pz + l2 - pz )*px
- sf=------------------------------------------,
- 2 2 2
- l1 - 2*l1*pz - l2 + pz
- - l1 + pz
- cp=------------,
- l2
- 2 2 2 2
- - sqrt(l1 - 2*l1*pz - l2 + px + pz )
- cf=------------------------------------------,
- 2 2 2
- sqrt(l1 - 2*l1*pz - l2 + pz )
- 2 2 2 2
- sqrt(l1 - 2*l1*pz - l2 + px + pz )
- s1=---------------------------------------,
- 2 2 2
- sqrt(l1 - 2*l1*pz - l2 + pz )
- 2 2 2
- - sqrt( - l1 + 2*l1*pz + l2 - pz )*px
- c1=------------------------------------------,
- 2 2 2
- l1 - 2*l1*pz - l2 + pz
- 2 2 2 2 2 2 2
- sqrt( - l1 + 2*l1*pz + l2 - pz )*sqrt(l1 - 2*l1*pz - l2 + px + pz )
- py=--------------------------------------------------------------------------,
- 2 2 2
- sqrt(l1 - 2*l1*pz - l2 + pz )
- - l1 + pz
- s2=------------,
- l2
- ct=0},
- 2 2 2
- - sqrt( - l1 + 2*l1*pz + l2 - pz )
- {c2=---------------------------------------,
- l2
- st=1,
- 2 2 2
- - sqrt( - l1 + 2*l1*pz + l2 - pz )
- sp=---------------------------------------,
- l2
- 2 2 2
- - sqrt( - l1 + 2*l1*pz + l2 - pz )*px
- sf=------------------------------------------,
- 2 2 2
- l1 - 2*l1*pz - l2 + pz
- l1 - pz
- cp=---------,
- l2
- 2 2 2 2
- sqrt(l1 - 2*l1*pz - l2 + px + pz )
- cf=---------------------------------------,
- 2 2 2
- sqrt(l1 - 2*l1*pz - l2 + pz )
- 2 2 2 2
- sqrt(l1 - 2*l1*pz - l2 + px + pz )
- s1=---------------------------------------,
- 2 2 2
- sqrt(l1 - 2*l1*pz - l2 + pz )
- 2 2 2
- sqrt( - l1 + 2*l1*pz + l2 - pz )*px
- c1=---------------------------------------,
- 2 2 2
- l1 - 2*l1*pz - l2 + pz
- py
- 2 2 2 2 2 2 2
- - sqrt( - l1 + 2*l1*pz + l2 - pz )*sqrt(l1 - 2*l1*pz - l2 + px + pz )
- =-----------------------------------------------------------------------------
- 2 2 2
- sqrt(l1 - 2*l1*pz - l2 + pz )
- ,
- - l1 + pz
- s2=------------,
- l2
- ct=0},
- 2 2 2
- - sqrt( - l1 + 2*l1*pz + l2 - pz )
- {c2=---------------------------------------,
- l2
- st=1,
- 2 2 2
- - sqrt( - l1 + 2*l1*pz + l2 - pz )
- sp=---------------------------------------,
- l2
- 2 2 2
- - sqrt( - l1 + 2*l1*pz + l2 - pz )*px
- sf=------------------------------------------,
- 2 2 2
- l1 - 2*l1*pz - l2 + pz
- l1 - pz
- cp=---------,
- l2
- 2 2 2 2
- - sqrt(l1 - 2*l1*pz - l2 + px + pz )
- cf=------------------------------------------,
- 2 2 2
- sqrt(l1 - 2*l1*pz - l2 + pz )
- 2 2 2 2
- - sqrt(l1 - 2*l1*pz - l2 + px + pz )
- s1=------------------------------------------,
- 2 2 2
- sqrt(l1 - 2*l1*pz - l2 + pz )
- 2 2 2
- sqrt( - l1 + 2*l1*pz + l2 - pz )*px
- c1=---------------------------------------,
- 2 2 2
- l1 - 2*l1*pz - l2 + pz
- 2 2 2 2 2 2 2
- sqrt( - l1 + 2*l1*pz + l2 - pz )*sqrt(l1 - 2*l1*pz - l2 + px + pz )
- py=--------------------------------------------------------------------------,
- 2 2 2
- sqrt(l1 - 2*l1*pz - l2 + pz )
- - l1 + pz
- s2=------------,
- l2
- ct=0},
- 2 2 2
- - sqrt( - l1 + 2*l1*pz + l2 - pz )
- {c2=---------------------------------------,
- l2
- st=-1,
- 2 2 2
- sqrt( - l1 + 2*l1*pz + l2 - pz )
- sp=------------------------------------,
- l2
- 2 2 2
- sqrt( - l1 + 2*l1*pz + l2 - pz )*px
- sf=---------------------------------------,
- 2 2 2
- l1 - 2*l1*pz - l2 + pz
- - l1 + pz
- cp=------------,
- l2
- 2 2 2 2
- sqrt(l1 - 2*l1*pz - l2 + px + pz )
- cf=---------------------------------------,
- 2 2 2
- sqrt(l1 - 2*l1*pz - l2 + pz )
- 2 2 2 2
- - sqrt(l1 - 2*l1*pz - l2 + px + pz )
- s1=------------------------------------------,
- 2 2 2
- sqrt(l1 - 2*l1*pz - l2 + pz )
- 2 2 2
- sqrt( - l1 + 2*l1*pz + l2 - pz )*px
- c1=---------------------------------------,
- 2 2 2
- l1 - 2*l1*pz - l2 + pz
- 2 2 2 2 2 2 2
- sqrt( - l1 + 2*l1*pz + l2 - pz )*sqrt(l1 - 2*l1*pz - l2 + px + pz )
- py=--------------------------------------------------------------------------,
- 2 2 2
- sqrt(l1 - 2*l1*pz - l2 + pz )
- - l1 + pz
- s2=------------,
- l2
- ct=0},
- 2 2 2
- - sqrt( - l1 + 2*l1*pz + l2 - pz )
- {c2=---------------------------------------,
- l2
- st=-1,
- 2 2 2
- sqrt( - l1 + 2*l1*pz + l2 - pz )
- sp=------------------------------------,
- l2
- 2 2 2
- sqrt( - l1 + 2*l1*pz + l2 - pz )*px
- sf=---------------------------------------,
- 2 2 2
- l1 - 2*l1*pz - l2 + pz
- - l1 + pz
- cp=------------,
- l2
- 2 2 2 2
- - sqrt(l1 - 2*l1*pz - l2 + px + pz )
- cf=------------------------------------------,
- 2 2 2
- sqrt(l1 - 2*l1*pz - l2 + pz )
- 2 2 2 2
- sqrt(l1 - 2*l1*pz - l2 + px + pz )
- s1=---------------------------------------,
- 2 2 2
- sqrt(l1 - 2*l1*pz - l2 + pz )
- 2 2 2
- sqrt( - l1 + 2*l1*pz + l2 - pz )*px
- c1=---------------------------------------,
- 2 2 2
- l1 - 2*l1*pz - l2 + pz
- py
- 2 2 2 2 2 2 2
- - sqrt( - l1 + 2*l1*pz + l2 - pz )*sqrt(l1 - 2*l1*pz - l2 + px + pz )
- =-----------------------------------------------------------------------------
- 2 2 2
- sqrt(l1 - 2*l1*pz - l2 + pz )
- ,
- - l1 + pz
- s2=------------,
- l2
- ct=0}}
- % Steady state computation of a prototypical chemical
- % reaction network (the "Edelstein" network)
-
- solve(
- { alpha * c1 - beta * c1**2 - gamma*c1*c2 + epsilon*c3,
- -gamma*c1*c2 + (epsilon+theta)*c3 -eta *c2,
- gamma*c1*c2 + eta*c2 - (epsilon+theta) * c3},
- {c3,c2,c1});
- {{c1=arbcomplex(26),
- c1*( - c1*beta*epsilon - c1*beta*theta + alpha*epsilon + alpha*theta)
- c2=-----------------------------------------------------------------------,
- c1*gamma*theta - epsilon*eta
- 2
- c1*( - c1 *beta*gamma + c1*alpha*gamma - c1*beta*eta + alpha*eta)
- c3=-------------------------------------------------------------------}}
- c1*gamma*theta - epsilon*eta
- solve(
- {( - 81*y1**2*y2**2 + 594*y1**2*y2 - 225*y1**2 + 594*y1*y2**2 - 3492*
- y1*y2 - 750*y1 - 225*y2**2 - 750*y2 + 14575)/81,
- ( - 81*y2**2*y3**2 + 594*y2**2*y3 - 225*y2**2 + 594*y2*y3**2 - 3492*
- y2*y3 - 750*y2 - 225*y3**2 - 750*y3 + 14575)/81,
- ( - 81*y1**2*y3**2 + 594*y1**2*y3 - 225*y1**2 + 594*y1*y3**2 - 3492*
- y1*y3 - 750*y1 - 225*y3**2 - 750*y3 + 14575)/81,
- (2*(81*y1**2*y2**2*y3 + 81*y1**2*y2*y3**2 - 594*y1**2*y2*y3 - 225*y1
- **2*y2 - 225*y1**2*y3 + 1650*y1**2 + 81*y1*y2**2*y3**2 - 594*y1*
- y2**2*y3 - 225*y1*y2**2 - 594*y1*y2*y3**2 + 2592*y1*y2*y3 + 2550
- *y1*y2 - 225*y1*y3**2 + 2550*y1*y3 - 3575*y1 - 225*y2**2*y3 +
- 1650*y2**2 - 225*y2*y3**2 + 2550*y2*y3 - 3575*y2 + 1650*y3**2 -
- 3575*y3 - 30250))/81}, {y1,y2,y3,y4});
- {{y3=arbcomplex(28),
- 2
- y2=(99*y3 - 582*y3
- 4 3 2
- + 4*sqrt(243*y3 - 3348*y3 + 15282*y3 - 26100*y3 + 11875)*sqrt(2) - 125
- 2
- )/(3*(9*y3 - 66*y3 + 25)),
- 2
- y1=(99*y3 - 582*y3
- 4 3 2
- - 4*sqrt(243*y3 - 3348*y3 + 15282*y3 - 26100*y3 + 11875)*sqrt(2) - 125
- 2
- )/(3*(9*y3 - 66*y3 + 25))},
- {y3=arbcomplex(27),
- 2
- y2=(99*y3 - 582*y3
- 4 3 2
- - 4*sqrt(243*y3 - 3348*y3 + 15282*y3 - 26100*y3 + 11875)*sqrt(2) - 125
- 2
- )/(3*(9*y3 - 66*y3 + 25)),
- 2
- y1=(99*y3 - 582*y3
- 4 3 2
- + 4*sqrt(243*y3 - 3348*y3 + 15282*y3 - 26100*y3 + 11875)*sqrt(2) - 125
- 2
- )/(3*(9*y3 - 66*y3 + 25))},
- 11 11 11
- {y3=----,y2=----,y1=----},
- 3 3 3
- - 5 - 5 - 5
- {y3=------,y2=------,y1=------}}
- 3 3 3
- % Another nice nonlinear system.
- solve({y=x+t^2,x=y+u^2},{x,y,u,t});
- {{t=arbcomplex(31),
- u=t*i,
- y=arbcomplex(32),
- 2
- x=y - t },
- {t=arbcomplex(29),
- u= - t*i,
- y=arbcomplex(30),
- 2
- x=y - t }}
- % Example from Stan Kameny (relation between Gamma function values)
- % containing surds in the coefficients.
- solve({x54=x14/4,x54*x34=sqrt pi/sqrt 2*x32,x32=x12/2,
- x12=sqrt pi, x14*x34=pi*sqrt 2});
- Unknowns: {x12,x14,x32,x34,x54}
- {{x54=arbcomplex(33),
- sqrt(2)*pi
- x34=------------,
- 4*x54
- x12=sqrt(pi),
- x14=4*arbcomplex(33),
- sqrt(pi)
- x32=----------}}
- 2
- % A system given by J. Hietarinta with complex coefficients.
- on complex;
- apu := {2*a - a6,2*b*c3 - 1,i - 2*x + 1,2*x**2 - 2*x + 1,n1 + 1}$
- solve apu;
- Unknowns: {a,a6,b,c3,n1,x}
- {{c3=arbcomplex(34),
- 1
- b=------,
- 2*c3
- a6
- a=----,
- 2
- n1=-1,
- 1
- x=-------}}
- 1 - i
- clear apu;
- off complex;
- % More examples that can now be solved.
- solve({e^(x+y)-1,x-y},{x,y});
- {{y=log(-1),x=log(-1)},{y=0,x=0}}
- solve({e^(x+y)+sin x,x-y},{x,y});
- 2*y_
- {{y=root_of(e + sin(y_),y_,tag_14),x=y}}
- % no algebraic solution exists.
- solve({e^(x+y)-1,x-y**2},{x,y});
- 2 2
- {{y=0,x=y },{y=-1,x=y }}
- solve(e^(y^2) * e^y -1,y);
- {y=0}
- solve(e^(y^2 +y)-1,y);
- {y=0}
- solve(e^(y^2)-1,y);
- {y=0}
- solve(e^(y^2+1)-1,y);
- {y=i,y= - i}
- solve({e^(x+y+z)-1,x-y**2=1,x**2-z=2},{x,y,z});
- atanh(sqrt(5))
- {{y=2*cosh(----------------)*i,
- 3
- 4 2
- z=y + 2*y - 1,
- 2
- x=y + 1},
- atanh(sqrt(5)) atanh(sqrt(5))
- {y= - cosh(----------------)*i + sqrt(3)*sinh(----------------),
- 3 3
- 4 2
- z=y + 2*y - 1,
- 2
- x=y + 1},
- atanh(sqrt(5)) atanh(sqrt(5))
- {y= - (cosh(----------------)*i + sqrt(3)*sinh(----------------)),
- 3 3
- 4 2
- z=y + 2*y - 1,
- 2
- x=y + 1},
- 4 2 2
- {y=0,z=y + 2*y - 1,x=y + 1}}
- solve(e^(y^4+3y^2+y)-1,y);
- 2/3 1/3 1/3
- {y=(sqrt( - (sqrt(5) + 3) - 4*(sqrt(5) + 3) *2 + 2*sqrt(
- 2/3 2/3 1/3
- 3*(sqrt(5) + 3) *2 + (sqrt(5) + 3) *sqrt(5)
- 1/3 1/3 1/3 2/3
- + 7*(sqrt(5) + 3) + 2*2 *sqrt(5) + 8*2 ) - 2 )
- 1/3 1/3 1/6 1/6
- + (sqrt(5) + 3) - 2 )/(2*(sqrt(5) + 3) *2 )}
- % Transcendental equations proposed by Roger Germundsson
- % <roger@isy.liu.se>
- eq1 := 2*asin(x) + asin(2*x) - PI/2;
- 2*asin(2*x) + 4*asin(x) - pi
- eq1 := ------------------------------
- 2
- eq2 := 2*asin(x) - acos(3*x);
- eq2 := - acos(3*x) + 2*asin(x)
- eq3 := acos(x) - atan(x);
- eq3 := acos(x) - atan(x)
- eq4 := acos(2*x**2 - 4*x -x) - 2*asin(x);
- 2
- eq4 := acos(2*x - 5*x) - 2*asin(x)
- eq5 := 2*atan(x) - atan( 2*x/(1-x**2) );
- 2*x
- eq5 := atan(--------) + 2*atan(x)
- 2
- x - 1
- sol1 := solve(eq1,x);
- sqrt(3) - 1
- sol1 := {x=-------------}
- 2
- sol2 := solve(eq2,x);
- sqrt(17) - 3
- sol2 := {x=--------------}
- 4
- sol3 := solve(eq3,x);
- sqrt(sqrt(5) - 1)
- sol3 := {x=-------------------}
- sqrt(2)
- sol4 := solve(eq4,x);
- sol4 := {}
- sol5 := solve(eq5,x);
- sol5 := {x=arbcomplex(36)}
- % This solution should be the open interval
- % (-1,1).
- % Example 52 of M. Wester: the function has no real zero although
- % REDUCE 3.5 and Maple tend to return 3/4.
- if solve(sqrt(x^2 +1) - x +2,x) neq {} then rederr "Illegal result";
- % Using a root_of expression as an algebraic number.
- solve(x^5 - x - 1,x);
- 5
- {x=root_of(x_ - x_ - 1,x_,tag_20)}
- w:=rhs first ws;
- 5
- w := root_of(x_ - x_ - 1,x_,tag_20)
- w^5;
- 5
- root_of(x_ - x_ - 1,x_,tag_20) + 1
- w^5-w;
- 1
- clear w;
- % The following examples come from Daniel Lichtblau of WRI and were
- % communicated by Laurent.Bernardin from ETH Zuerich.
- solve(x-Pi/2 = cos(x+Pi),x);
- {x=root_of(2*cos(x_) - pi + 2*x_,x_,tag_22)}
- solve(exp(x^2+x+2)-1,x);
- sqrt(7)*i - 1
- {x=---------------}
- 2
- solve(log(sqrt(1+z)/sqrt(z-1))=x,z);
- 2*x
- e + 1
- {z=----------}
- 2*x
- e - 1
- solve({exp(x+3*y-2)=7,3^(2*x-y+4)=2},{x,y});
- x + 3*y 2
- {{e - 7*e =0},
- 2*x y
- {81*3 - 2*3 =0}}
- solve(a*3^(c*t)+b*3^((c+a)*t),t);
- - a
- log(------)
- b
- {t=-------------}
- log(3)*a
- solve(log(x+sqrt(x^2+a))=b,{x});
- 2*b
- e - a
- {x=----------}
- b
- 2*e
- solve(z=log(w)/log(2)+w^2,w);
- 2
- {w=root_of(log(w_) + log(2)*w_ - log(2)*z,w_,tag_25)}
- solve(w*2^(w^2)=5,w);
- 2
- w_
- {w=root_of(2 *w_ - 5,w_,tag_27)}
- solve(log(x/y)=1/y^2*(x+(1/x)),y);
- x 2 2
- {y=root_of(log(----)*x*y_ - x - 1,y_,tag_29)}
- y_
- solve(exp(z)=w*z^(-n),z);
- n z_
- {z=root_of(z_ *e - w,z_,tag_31)}
- solve(-log(3)+log(2+y/3)/2-log(y/3)/2=(-I)/2*Pi,y);
- - 3
- {y=------}
- 5
- solve(-log(x)-log(y/x)/2+log(2+y/x)/2=(-3*I)/2*Pi,y);
- - 2*x
- {y=--------}
- 2
- x + 1
- solve((I+1)*log(x)+(3*I+3)*log(x+3)=7,x);
- i 3*i 4 i 3*i 3 i 3*i 2
- {x=root_of(x_ *(x_ + 3) *x_ + 9*x_ *(x_ + 3) *x_ + 27*x_ *(x_ + 3) *x_
- i 3*i 7
- + 27*x_ *(x_ + 3) *x_ - e ,x_,tag_33)}
- solve(x+sqrt(x)=1,x);
- - sqrt(5) + 3
- {x=----------------}
- 2
- solve({cos(1/5+alpha+x)=5,cos(2/5+alpha-x)=6},{alpha,x});
- 5*alpha - 5*x + 2
- {{cos(-------------------) - 6=0},
- 5
- 5*alpha + 5*x + 1
- {cos(-------------------) - 5=0}}
- 5
- end;
- 4: 4: 4: 4: 4: 4: 4: 4: 4:
- Time for test: 28260 ms, plus GC time: 1890 ms
- 5: 5:
- Quitting
- Sun Jun 6 19:47:17 MET DST 1999
|