123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510 |
- % ----------------------------------------------------------------------
- % $Id: sfto.red,v 1.8 1999/03/22 15:26:43 dolzmann Exp $
- % ----------------------------------------------------------------------
- % Copyright (c) 1995-1999 Andreas Dolzmann and Thomas Sturm
- % ----------------------------------------------------------------------
- % $Log: sfto.red,v $
- % Revision 1.8 1999/03/22 15:26:43 dolzmann
- % Changed copyright information.
- % Added and reformatted comments.
- %
- % Revision 1.7 1999/01/17 15:33:13 dolzmann
- % Added procedure sfto_sqfpartz for computing the square-free part of an
- % integer.
- %
- % Revision 1.6 1999/01/10 12:09:16 dolzmann
- % Added procedures sfto_zdeqn, sfto_zdgtn, sfto_zdgen for the decomposition of
- % integers.
- %
- % Revision 1.5 1996/10/08 13:54:59 dolzmann
- % Renamed "degree parity decomposition" to "parity decomposition".
- % Adapted names of procedures and switches accordingly.
- %
- % Revision 1.4 1996/09/05 11:17:48 dolzmann
- % Added procedure sfto_monfp.
- %
- % Revision 1.3 1996/07/07 12:56:12 dolzmann
- % Fixed a bug in sfto_preducef and sfto_greducef.
- %
- % Revision 1.2 1996/05/13 13:54:26 dolzmann
- % Added procedure sfto_sqrtf.
- %
- % Revision 1.1 1996/04/30 12:06:46 sturm
- % Merged ioto, lto, and sfto into rltools.
- %
- % Revision 1.2 1996/04/30 09:13:33 sturm
- % Added procedure sfto_gcdf implementing the Davenport test.
- %
- % Revision 1.1 1996/03/22 12:19:17 sturm
- % Moved.
- %
- % Revision 1.5 1996/03/04 17:15:46 sturm
- % Added procedure sfto_decdegf.
- % Moved sfto_reorder from module ofsf to this module.
- %
- % Revision 1.4 1996/03/04 13:09:54 dolzmann
- % Moved procedures sfto_groebnerf, sfto_preducef, sfto_greducef and
- % loading of groebner packages from module ofsfgs to this module.
- %
- % Revision 1.3 1995/08/30 08:26:45 sturm
- % Fixed a bug in procedure sfto_dprpartf.
- %
- % Revision 1.2 1995/08/30 07:35:19 sturm
- % Added procedures sfto_dprpartf and sfto_dprpartf1.
- %
- % Revision 1.1 1995/05/29 14:47:23 sturm
- % Initial check-in.
- %
- % ----------------------------------------------------------------------
- lisp <<
- fluid '(sfto_rcsid!* sfto_copyright!*);
- sfto_rcsid!* := "$Id: sfto.red,v 1.8 1999/03/22 15:26:43 dolzmann Exp $";
- sfto_copyright!* := "Copyright (c) 1995-1999 by A. Dolzmann and T. Sturm"
- >>;
- module sfto;
- % Standard form tools.
- load!-package 'groebner;
- load!-package 'groebnr2;
- fluid '(!*ezgcd !*gcd !*rldavgcd);
- switch sfto_yun,sfto_tobey,sfto_musser;
- !*sfto_yun := T;
- put('sqfpart,'polyfn,'sfto_sqfpartf);
- put('tsqsum,'psopfn,'sfto_tsqsum!$);
- put('sqfdec,'psopfn,'sfto_sqfdec!$);
- put('pdec,'psopfn,'sfto_pdec!$);
- put('sfto_yun,'simpfg,
- '((T (setq !*sfto_tobey nil) (setq !*sfto_musser nil))));
- put('sfto_tobey,'simpfg,
- '((T (setq !*sfto_yun nil) (setq !*sfto_musser nil))));
- put('sfto_musser,'simpfg,
- '((T (setq !*sfto_tobey nil) (setq !*sfto_yun nil))));
- procedure sfto_dcontentf(u);
- % Standard form tools domain content standard form. [u] is an SF.
- % Returns a domain element, which is the content of [u] as a
- % multivariate polynomial over the current domain.
- sfto_dcontentf1(u,nil);
- procedure sfto_dcontentf1(u,g);
- % Standard form tools domain content standard form subroutine. [u]
- % is a term; [g] is a domain element. Returns the gcd of the
- % content of [u] and [g], which is a domain element.
- if g = 1 then
- g
- else if domainp u then
- sfto_gcdf(absf u,g)
- else
- sfto_dcontentf1(red u,sfto_dcontentf1(lc u,g));
- procedure sfto_dprpartf(u);
- % Standard form tools domain primitive part standard form. [u] is
- % an SF. Returns an SF which is the primitive part of [u] as a
- % multivariate polynomial over the current domain.
- sfto_dprpartf1(u,sfto_dcontentf u);
- procedure sfto_dprpartf1(u,c);
- % Standard form tools domain primitive part standard form
- % subroutine. [u] and [c] are SF's. Returns an SF which is the
- % primitive part of [u] as a multivariate polynomial over the
- % current domain.
- (if minusf w then negf w else w) where w = quotf(u,c);
- procedure sfto_sqfpartf(u);
- % Standard form tools square-free part. [u] is a non-zero SF.
- % Returns an SF which is the square-free part of [u] as a
- % multivariate polynomial. The (domain) content is dropped.
- begin scalar c,pp;
- if domainp u then return 1;
- c := sfto_ucontentf u;
- pp := quotf(u,c);
- return multf(sfto_sqfpartf(c),quotf(pp,sfto_gcdf!*(pp,diff(pp,mvar u))))
- end;
- procedure sfto_ucontentf(u);
- % Standard form tools univariate content standard form. [u] is an
- % SF. Returns the content of [u] as a univariate polynomial in its
- % [mvar] over the polynomial ring in all other contained variables.
- if domainp u then u else sfto_ucontentf1(u,mvar u);
- procedure sfto_ucontentf1(u,v);
- % Standard form tools univariate content standard form subroutine.
- % [v] is a kernel; [u] is an SF with main variable [v]. Returns an
- % SF which is the content of [u] as an univariate polynomial in [v]
- % over the polynomial ring in all other contained variables.
- if domainp u or mvar u neq v then u else
- sfto_gcdf!*(lc u,sfto_ucontentf1(red u,v));
- procedure sfto_uprpartf(u);
- % Standard form tools univariate primitive part. [u] is an SF.
- % Returns the primitive part of [u] as a univariate polynomial in
- % its [mvar] over the polynomial ring in all other contained
- % variables.
- quotf(u,sfto_ucontentf u);
- procedure sfto_tsqsumf(u);
- % Standard form tools trivial square sum standard form. [u] is an
- % SF. Returns one of [nil], ['stsq], or ['tsq]. ['stsq] means that
- % in the sparse distributive representation of [u] all exponents
- % are even and all coefficients are positive. ['tsq] means that all
- % exponents are even and all coefficients are positive except for
- % that there is no absolute summand.
- if domainp u then
- (if null u then 'tsq else if not minusf u then 'stsq)
- else
- evenp ldeg u and sfto_tsqsumf lc u and sfto_tsqsumf red u;
- procedure sfto_tsqsum!$(argl);
- sfto_tsqsumf(numr simp car argl);
- procedure sfto_sqfdecf(u);
- % Standard form tools multivariate square-free decomposition
- % standard form. [u] is an SF. Returns a (dense) list $((q_1 .
- % 1),(q_2 . 2),...,(q_n . n))$ such that $\prod q_i^i = u$ with the
- % $q_i$ square-free and pairwise relatively prime. The (integer)
- % content of u is dropped. Decomposition is performed by merging
- % univariate decompositions. The univariate decomposition method is
- % selected by turning on one of the switches [sfto_yun] (default),
- % [sfto_tobey], or [sfto_musser].
- begin scalar c,pp;
- if domainp u then return {1 . 1};
- c := sfto_ucontentf u;
- pp := quotf(u,c);
- return sfto_sqdmerge(sfto_sqfdecf(c),sfto_usqfdecf(pp))
- end;
- procedure sfto_sqfdec!$(argl);
- % Standard form tools square free decomposition. [argl] is an
- % argument list. Returns an AM list of AM lists of the form
- % $(p_i,m_i)$, where the $p_i$ are polynomials represented as a
- % Lisp-prefix-form and the $m_i$ are integers.
- begin scalar w;
- return 'list . for each x in sfto_sqfdecf numr simp car argl join
- if (w := prepf car x) neq 1 then {{'list,w,cdr x}}
- end;
- procedure sfto_usqfdecf(u);
- if !*sfto_yun then
- sfto_yun!-usqfdecf u
- else if !*sfto_musser then
- sfto_musser!-usqfdecf u
- else if !*sfto_tobey then
- sfto_tobey!-usqfdecf u
- else
- rederr {"sfto_usqfdecf: select a decomposition method"};
- procedure sfto_yun!-usqfdecf(p);
- % Standard form tools univariate square-free decomposition after
- % Yun. [p] is a an SF that is viewed a univariate Polynomial in its
- % [mvar] over the polynomial ring in all other variables; in this
- % sense, [p] must be primitive. Returns the square-free
- % decomposition of [p] as a (dense) list $((q_1 . 1),(q_2 .
- % 2),...,(q_n . n))$ such that $\prod q_i^i = u$ with the $q_i$
- % square-free and pairwise relatively prime.
- begin scalar !*gcd,x,g,c,d,w,l; integer n;
- !*gcd := T;
- x := mvar p;
- g := sfto_gcdf(p,w := diff(p,x));
- c := quotf(p,g);
- d := addf(quotf(w,g),negf(diff(c,x)));
- repeat <<
- p := sfto_gcdf(c,d);
- l := (p . (n := n+1)) . l;
- c := quotf(c,p);
- d := addf(quotf(d,p),negf(diff(c,x)))
- >> until domainp c;
- return reversip l
- end;
- procedure sfto_musser!-usqfdecf(u);
- % Standard form tools univariate square-free decomposition after
- % Musser. [p] is a an SF that is viewed a univariate Polynomial in
- % its [mvar] over the polynomial ring in all other variables; in
- % this sense, [p] must be primitive. Returns the square-free
- % decomposition of [p] as a (dense) list $((q_1 . 1),(q_2 .
- % 2),...,(q_n . n))$ such that $\prod q_i^i = u$ with the $q_i$
- % square-free and pairwise relatively prime.
- begin scalar !*gcd,v,u1,sqfp,sqfp1,l; integer n;
- !*gcd := T;
- v := mvar u;
- u1 := sfto_gcdf(u,diff(u,v));
- sqfp := quotf(u,u1);
- while degr(u1,v)>0 do <<
- sqfp1 := sfto_gcdf(sqfp,u1);
- l := (quotf(sqfp,sqfp1) . (n := n+1)) . l;
- u1 := quotf(u1,sqfp1);
- sqfp := sqfp1
- >>;
- l := (sqfp . (n := n+1)) . l;
- return reversip l
- end;
- procedure sfto_tobey!-usqfdecf(u);
- % Standard form tools univariate square-free decomposition after
- % Tobey and Horowitz. [p] is a an SF that is viewed a univariate
- % Polynomial in its [mvar] over the polynomial ring in all other
- % variables; in this sense, [p] must be primitive. Returns the
- % square-free decomposition of [p] as a (dense) list $((q_1 .
- % 1),(q_2 . 2),...,(q_n . n))$ such that $\prod q_i^i = u$ with the
- % $q_i$ square-free and pairwise relatively prime.
- begin scalar !*gcd,v,h,q1,q2,l; integer n;
- !*gcd := T;
- v := mvar u;
- h := sfto_gcdf(u,diff(u,v));
- q2 := quotf(u,h);
- while degr(u,v)>0 do <<
- u := h;
- q1 := q2;
- h := sfto_gcdf(u,diff(u,v));
- q2 := quotf(u,h);
- l := (quotf(q1,q2) . (n := n+1)) . l
- >>;
- return reversip l
- end;
- procedure sfto_sqdmerge(l1,l2);
- % Standard form tools square-free decomposition merge
- begin scalar l;
- l := l1;
- while l1 and l2 do <<
- caar l1 := multf(caar l1,caar l2);
- l1 := cdr l1;
- l2 := cdr l2
- >>;
- if l2 then l := nconc(l,l2);
- return l
- end;
- procedure sfto_pdecf(u);
- % Standard form tools multivariate parity decomposition. [u] is an
- % SF. Returns a consed pair $a . d$ such that $a$ is the product of
- % all square-free factors with an odd multiplicity in [u] and $d$
- % is that of the even multiplicity square-free factors. The
- % (integer) content of u is dropped. Decomposition is performed by
- % merging univariate decompositions. The univariate decomposition
- % method is selected by turning on one of the switches [sfto_yun]
- % (default), [sfto_musser].
- begin scalar c,dpdc,dpdpp;
- if domainp u then return 1 . 1;
- c := sfto_ucontentf u;
- dpdc := sfto_pdecf c;
- dpdpp := sfto_updecf quotf(u,c);
- return multf(car dpdc,car dpdpp) . multf(cdr dpdc,cdr dpdpp)
- end;
- procedure sfto_updecf(u);
- if !*sfto_yun then
- sfto_yun!-updecf u
- else if !*sfto_musser then
- sfto_musser!-updecf u
- else
- rederr {"sfto_updecf: select a decomposition method"};
- procedure sfto_yun!-updecf(p);
- begin scalar !*gcd,x,g,c,d,w,l,od;
- !*gcd := T;
- l := 1 . 1;
- x := mvar p;
- g := sfto_gcdf(p,w := diff(p,x));
- c := quotf(p,g);
- d := addf(quotf(w,g),negf(diff(c,x)));
- repeat <<
- od := not od;
- p := sfto_gcdf(c,d);
- if od then car l := multf(car l,p) else cdr l := multf(cdr l,p);
- c := quotf(c,p);
- d := addf(quotf(d,p),negf(diff(c,x)))
- >> until domainp c;
- return l
- end;
- procedure sfto_musser!-updecf(u);
- begin scalar !*gcd,od,v,u1,sqfp,sqfp1,l;
- !*gcd := T;
- od := T;
- l := 1 . 1;
- v := mvar u;
- u1 := sfto_gcdf(u,diff(u,v));
- sqfp := quotf(u,u1);
- while degr(u1,v)>0 do <<
- sqfp1 := sfto_gcdf(sqfp,u1);
- if od then
- car l := multf(car l,quotf(sqfp,sqfp1))
- else
- cdr l := multf(cdr l,quotf(sqfp,sqfp1));
- u1 := quotf(u1,sqfp1);
- sqfp := sqfp1;
- od := not od
- >>;
- if od then
- car l := multf(car l,sqfp)
- else
- cdr l := multf(cdr l,sqfp);
- return l
- end;
- procedure sfto_pdec!$(argl);
- {'list,prepf car w,prepf cdr w}
- where w=sfto_pdecf numr simp car argl;
- procedure sfto_decdegf(u,k,n);
- % Standard form tools decrement degree standard form. [u] is an SF;
- % [k] is a variable; [n] is an integer. Returns an SF. Replace each
- % occurence of $[k]^d$ by $k^(d/n)$.
- reorder sfto_decdegf1(sfto_reorder(u,k),k,n);
- procedure sfto_decdegf1(u,k,n);
- % Standard form tools decrement degree standard form. [u] is an SF
- % with main variable [k]; [k] is a variable; [n] is an integer.
- % Returns an SF. Replace each occurence of $[k]^d$ by $k^(d/n)$.
- if degr(u,k)=0 then
- u
- else
- mvar u .** (ldeg u / n) .* lc u .+ sfto_decdegf1(red u,k,n);
- procedure sfto_reorder(u,v);
- % Standard form tools reorder. [u] is an SF; [v] is a kernel.
- % Returns the SF [u] reorderd wrt. [{v}].
- begin scalar w;
- w := setkorder {v};
- u := reorder u;
- setkorder w;
- return u
- end;
- procedure sfto_groebnerf(l);
- % Standard form tools Groebner calculation standard form. [l] is a
- % list of SF's. Returns a list of SF's. The returned list is the
- % reduced Groebner basis of [l] wrt. the current term order.
- begin scalar w;
- if null l then return nil;
- w := groebnereval {'list . for each sf in l collect prepf sf};
- return for each x in cdr w collect
- numr simp x
- end;
- procedure sfto_preducef(f,gl);
- % Standard form tools polynomial reduction standard form. [f] is an
- % SF and [gl] a list of SF's. Returns the SF [f] reduced wrt. [gl].
- if null gl then
- f
- else if (null cdr gl) and (domainp car gl) then
- nil
- else
- numr simp preduceeval {
- prepf f,'list . for each sf in gl collect prepf sf};
- procedure sfto_greducef(f,gl);
- % Standard form tools polynomial reduction standard form. [f] is an
- % SF and [gl] a list of SF's. Returns the SF [f] reduced wrt. a
- % Groebner basis of [gl].
- if null gl then
- f
- else if (null cdr gl) and (domainp car gl) then
- nil
- else
- numr simp greduceeval {
- prepf f,'list . for each sf in gl collect prepf sf};
- procedure sfto_gcdf!*(f,g);
- % Standard form tools greatest common divisor of standard forms.
- % [f] and [g] are SF's. Returns an SF, the GCD of [f] and [g].
- % Compute the GCD of [f] and [g] via [gcdf!*] or [ezgcdf] according
- % to Davenport's criterion: If, in one polynomial, the number of
- % variables of a degree greater than 2 is greater than 1, then use
- % [ezgcd].
- sfto_gcdf(f,g) where !*gcd=T;
- procedure sfto_gcdf(f,g);
- % Standard form tools greatest common divisor of standard forms.
- % [f] and [g] are SF's. Returns an SF, the GCD of [f] and [g].
- % Compute the GCD of [f] and [g] via [gcdf!*] or [ezgcdf] according
- % to Davenport's criterion: If, in one polynomial, the number of
- % variables of a degree greater than 2 is greater than 1, then use
- % [ezgcd]. For computing the real gcd of [f] ang [g] this
- % procedures require, that [!*gcd] is set to [T].
- if null !*rldavgcd then
- gcdf(f,g)
- else if sfto_davp(f,nil) or sfto_davp(g,nil) then
- gcdf(f,g) where !*ezgcd=nil
- else
- ezgcdf(f,g);
- procedure sfto_davp(f,badv);
- % Standard form tools Davenport predicate. [f] is an SF; [v] is a
- % kernel or [nil]. Returns Boolean. [T] means [gcdf] can be used.
- if domainp f then
- T
- else if ldeg f > 2 then
- if badv and mvar f neq badv then
- nil
- else
- sfto_davp(lc f,mvar f) and sfto_davp(red f,mvar f)
- else
- sfto_davp(lc f,badv) and sfto_davp(red f,badv);
- procedure sfto_sqrtf(f);
- % Standard form tools square root standard form. Returns [nil] or
- % an SF $g$, such that $g**2=[f]$.
- begin scalar a,c,w,sd,result;
- c := sfto_dcontentf(f);
- result := fix sqrt c;
- if result**2 neq c then
- return nil;
- sd := sfto_sqfdecf(f);
- w := sd;
- while sd do <<
- a := car sd;
- sd := cdr sd;
- if not(evenp cdr a) and car a neq 1 then <<
- sd := nil;
- a := 'break
- >> else
- result := multf(result,exptf(car a,cdr a / 2 ))
- >>;
- if a neq 'break and exptf(result,2) = f then
- return result
- end;
- procedure sfto_monfp(sf);
- % Standard form tools monomial predicate. [f] is an SF. Returns an
- % SF. Check if [sf] is of the form $a x_1 \dots x_n$ for a domain
- % element $a$ and kernels $x_i$.
- domainp sf or (null red sf and sfto_monfp lc sf);
- procedure sfto_sqfpartz(z);
- % Standard form tools square free part of an integer. [z] is an
- % integer with prime decomposition $p_1^{e_1}\cdots p_n^{e_n}$.
- % Returns $\prod \{p_i\}$.
- sfto_zdgen(z,0);
- procedure sfto_zdeqn(z,n);
- % Standard form tools z decomposition equal n. [z] is an integer
- % with prime decomposition $p_1^{e_1}\cdots p_n^{e_n}$; [n] is a
- % positive integer. Returns $\prod \{p_i:e_i=n\}$.
- for each x in zfactor z product
- if cdr x = n then car x else 1;
- procedure sfto_zdgtn(z,n);
- % Standard form tools z decomposition greater than n. [z] is an
- % integer with prime decomposition $p_1^{e_1}\cdots p_n^{e_n}$; [n]
- % is a positive integer. Returns $\prod \{p_i:e_i>n\}$.
- for each x in zfactor z product
- if cdr x > n then car x else 1;
- procedure sfto_zdgen(z,n);
- % Standard form tools z decomposition greater than or equal to n.
- % [z] is an integer with prime decomposition $p_1^{e_1}\cdots
- % p_n^{e_n}$; [n] is a positive integer. Returns $\prod
- % \{p_i:e_i\geq n\}$.
- for each x in zfactor z product
- if cdr x >= n then car x else 1;
- endmodule; % [sfto]
- end; % of file
|