123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569 |
- % ----------------------------------------------------------------------
- % $Id: ofsfgs.red,v 1.9 1999/03/23 07:41:37 dolzmann Exp $
- % ----------------------------------------------------------------------
- % Copyright (c) 1995-1999 Andreas Dolzmann and Thomas Sturm
- % ----------------------------------------------------------------------
- % $Log: ofsfgs.red,v $
- % Revision 1.9 1999/03/23 07:41:37 dolzmann
- % Changed copyright information.
- %
- % Revision 1.8 1997/08/24 16:16:59 sturm
- % Call cl_sitheo instead of ofsf_gssimpltheo.
- % Added service rl_surep with black box rl_multsurep.
- % Added service rl_siaddatl.
- %
- % Revision 1.7 1996/10/07 12:03:24 sturm
- % Added fluids for CVS and copyright information.
- %
- % Revision 1.6 1996/09/26 11:55:42 dolzmann
- % Reformated source code.
- %
- % Revision 1.5 1996/09/05 11:37:47 dolzmann
- % Removed unused variable vl in procedure ofsf_gsmkradvar.
- %
- % Revision 1.4 1996/09/05 11:14:57 dolzmann
- % Removed unused variable curtorder in procedure ofsf_gsmkradvar.
- %
- % Revision 1.3 1996/07/13 11:19:09 dolzmann
- % Introduced new switches !*rlgsbnf, !*rlgsutord and related code.
- %
- % Revision 1.2 1996/07/07 14:44:10 sturm
- % Call cl_nnfnot instead of cl_nnf1.
- %
- % Revision 1.1 1996/03/22 12:14:07 sturm
- % Moved and split.
- %
- % ----------------------------------------------------------------------
- lisp <<
- fluid '(ofsf_gs_rcsid!* ofsf_gs_copyright!*);
- ofsf_gs_rcsid!* := "$Id: ofsfgs.red,v 1.9 1999/03/23 07:41:37 dolzmann Exp $";
- ofsf_gs_copyright!* := "Copyright (c) 1995-1999 by A. Dolzmann and T. Sturm"
- >>;
- module ofsfgs;
- % Ordered field standard form groebner simplifier. Submodule of [ofsf].
- %DS
- % <cimpl> ::= (<gp>, <prod1>, <prod2>, <other>)
- % <gp> ::= ((<gb> . <prod>) . <other>)
- % <gb> ::= (<sf>,...)
- % <prod> ::= <sf>
- % <prod1> ::= <sf>
- % <prod2> ::= <sf>
- % <other> ::= (<atomic_formula>,...)
- procedure ofsf_gsc(f,atl);
- % Ordered field standard form groebner simplification via
- % conjunctive normal form. [f] is an formula; [atl] is a list of
- % atomic formulas, which are considered to describe a theory. An
- % formula equivalent to [f] is returned. The returned formula is
- % somehow simpler than [f]. This procedure sets the switch [groebopt]
- % temporary off. The parameters defined by [torder] are temporarily
- % overloaded by a [torder({},revgradlex)] statement.
- begin scalar w,svrlgsvb;
- svrlgsvb := !*rlgsvb;
- if !*rlverbose and !*rlgsvb then on1 'rlgsvb else off1 'rlgsvb;
- w := ofsf_gsc1(f,atl);
- onoff('rlgsvb,svrlgsvb);
- return w
- end;
- procedure ofsf_gsc1(f,atl);
- % Ordered field standard form groebner simplification via
- % conjunctive normal form. [f] is an formula; [atl] is a list of
- % atomic formulas, which are considered to describe a theory. An
- % formula equivalent to [f] or ['inctheo] is returned. The
- % returned formula is somehow simpler than [f].
- begin scalar phi,!*rlsiexpla; % Hack, but otherwise phi is not a bnf!
- if !*rlgsbnf then <<
- if !*rlgsvb then ioto_prin2 "[CNF";
- phi := cl_simpl(cl_cnf cl_nnf f,atl,-1);
- if !*rlgsvb then ioto_prin2 "] "
- >> else
- phi := cl_simpl(f,atl,-1);
- if phi eq 'inctheo then return 'inctheo;
- if rl_tvalp phi then
- return phi;
- phi := ofsf_gssimplify0(phi,atl);
- if phi eq 'inctheo then return 'inctheo;
- return cl_simpl(phi,atl,-1)
- end;
- procedure ofsf_gsd(f,atl);
- % Ordered field standard form groebner simplification via
- % disjunctive normal form. [f] is an formula; [atl] is a list of
- % atomic formulas, which are considered to describe a theory. An
- % formula equivalent to [f] or ['inctheo] is returned. The
- % returned formula is somehow simpler than [f]. This procedure sets
- % the switch [groebopt] temporary off. The parameters defined by
- % [torder] are temporary overloaded by a [torder({},revgradlex)]
- % statement.
- begin scalar w,svrlgsvb;
- svrlgsvb := !*rlgsvb;
- if !*rlverbose and !*rlgsvb then on1 'rlgsvb else off1 'rlgsvb;
- w := ofsf_gsd1(f,atl);
- onoff('rlgsvb,svrlgsvb);
- return w
- end;
- procedure ofsf_gsd1(f,atl);
- % Ordered field standard form groebner simplification via
- % disjunctive normal form. [f] is an formula; [atl] is a list of
- % atomic formulas, which are considered to describe a theory. An
- % formula equivalent to [f] or ['inctheo] is returned. The
- % returned formula is somehow simpler than [f].
- begin scalar phi,!*rlsiexpla; % Hack, but otherwise phi is not a bnf!
- if !*rlgsbnf then <<
- if !*rlgsvb then ioto_prin2 "[DNF";
- phi := cl_simpl(cl_nnfnot cl_dnf f,atl,-1);
- if !*rlgsvb then ioto_prin2 "] ";
- >> else
- phi := cl_simpl(cl_nnfnot f,atl,-1);
- if phi eq 'inctheo then return 'inctheo;
- if rl_tvalp phi then
- return cl_nnfnot phi;
- phi := ofsf_gssimplify0(phi,atl);
- if phi eq 'inctheo then return 'inctheo;
- return cl_simpl(cl_nnfnot phi,atl,-1)
- end;
- procedure ofsf_gsn(f,atl);
- % Ordered field standard form groebner simplification via boolean
- % normal form. [f] is an formula; [atl] is a list of atomic
- % formulas, which are considered to describe a theory. An
- % formula equivalent to [f] or ['inctheo] is returned. The
- % returned formula is somehow simpler than [f]. This procedure sets
- % the switch [!*groebopt] temporary off. The parameters defined by
- % [torder] are temporary overloaded by a [torder({},revgradlex)]
- % statement. This procedure calls in dependency of the structure of
- % [f] either [ofsf_gsc] or [ofsf_gsd]. The following heuristic is
- % used: Is [f] a conjunction of atomic formulas or a disjunction of
- % formulas with at least one complex formula then [ofsf_gsd] is
- % called; in other cases [ofsf_gsc] is called.
- if rl_tvalp f then
- f
- else if cl_atflp(rl_argn f) then
- if rl_op(f) eq 'and then ofsf_gsd(f,atl) else ofsf_gsc(f,atl)
- else
- if rl_op(f) eq 'and then ofsf_gsc(f,atl) else ofsf_gsd(f,atl);
- procedure ofsf_gssimplify0(f,atl);
- % Ordered field standard form groebner simplify. [f] is a
- % conjunction over disjunctions of atomic formulas or a
- % disjunctions of atomic formulas or an atomic formula; [atl] is a
- % list of atomic formulas, which are considered to describe a
- % theory. A formula is returned. This procedure binds temporarily
- % some global variables of the groebner packages.
- begin scalar res,oldtorder,!*groebopt,svkord;
- svkord := kord!*;
- oldtorder := cdr torder('((list) revgradlex));
- if !*rlgsutord then
- torder(oldtorder);
- res := ofsf_gssimplify(f,atl);
- torder oldtorder;
- kord!* := svkord;
- return res;
- end;
- procedure ofsf_gssimplify(f,atl);
- % Ordered field standard form groebner simplify. [f] is a
- % conjunction over disjunctions of atomic formulas or a
- % disjunctions of atomic formulas or an atomic formula; [atl] is a
- % list of atomic formulas, which are considered to describe a
- % theory. A formula is returned.
- begin scalar al,gp,ipart,npart,w,gprem,gprodal,gatl;
- atl := cl_sitheo atl;
- if atl eq 'inctheo or ofsf_gsinctheop(atl) then
- return 'inctheo;
- if (cl_atfp f) or (rl_op f eq 'or) then % degenerated cnf
- al := ofsf_gssplit!-cnf {f}
- else
- al := ofsf_gssplit!-cnf rl_argn f;
- if w := lto_catsoc('gprem,al) then <<
- gp := ofsf_gsextract!-gp atl;
- gprem := ofsf_gsgprem(w,gp);
- if gprem eq 'false then return 'false;
- >>;
- gatl := append(atl,lto_catsoc('gprem,al));
- gp := ofsf_gsextract!-gp(gatl);
- caar gp := sfto_groebnerf(caar gp);
- ipart := lto_catsoc('impl,al);
- npart := lto_catsoc('noneq,al);
- if ipart then
- ipart := ofsf_gspart(ipart,gp);
- if npart and gatl then
- npart := ofsf_gspart(npart,gp);
- if gprem then <<
- if null !*rlgsprod then <<
- gprodal := lto_catsoc('gprodal,al);
- gprem := ofsf_gssimulateprod(gprem,gprodal)
- >>;
- return rl_smkn('and,gprem . nconc(ipart,npart))
- >>;
- return rl_smkn('and,nconc(ipart,npart))
- end;
- procedure ofsf_gsinctheop(atl);
- % Ordered field standard form groebner simplifier inconsistent
- % theory predicate. [atl] is a list of atomic formulas.
- % [T] or [nil] is returned.
- begin scalar w;
- if null atl then
- return nil;
- if !*rlgsvb then ioto_prin2 "Inctheop... ";
- w := cl_nnfnot ofsf_gsimplication(
- cl_nnfnot rl_smkn('and,atl),'((nil . 1) . nil));
- if !*rlgsvb then ioto_prin2t "done.";
- return w eq 'false
- end;
- procedure ofsf_gssplit!-cnf(f);
- % Ordered field standard form groebner simplifier split conjunctive
- % normal form. [f] is an list of disjunctions of atomic formulas.
- % An assoc list is returned. The returned assoc list have the
- % following items. [('impl . imp)] where [imp] is the list off all
- % disjunctions containing at least one inequation, [('gprem .
- % gprem)] where [gprem] is the list of all atomic formulas occuring
- % in [f] and atomic formulas equivalent to disjunctions of
- % inequalities occuring in [f], [('noneq . noneq)] where [noneq] is
- % a list of disjunctions of atomic formulas containing no
- % inequations, and [('gprodal . gprodal)]. The value [gprodal] is a
- % assoc list containing to each equation the product
- % representation, if the equation was extracted from a disjunction.
- begin scalar noneq,imp,prod,gprodal,gprem,w,x;
- for each phi in f do
- if rl_op phi memq '(and or) then % [phi] is not an atomic formula
- if (w := ofsf_gsdis!-type rl_argn phi) eq 'impl then
- imp := phi . imp
- else if w eq 'noneq then
- noneq := phi . noneq
- else << % [if w eq 'equal then]
- prod := 1;
- for each atf in rl_argn phi do
- prod := multf(prod,ofsf_arg2l atf);
- x := ofsf_0mk2('equal,prod);
- gprem := x . gprem;
- gprodal := (x . phi) . gprodal
- >>
- else
- gprem := phi . gprem;
- if !*rlgsvb then <<
- ioto_tprin2t {"global: ",length gprem,"; impl: ",length imp,
- "; no neq: ",length noneq, "; glob-prod-al: ",length gprodal,"."}
- >>;
- return { 'impl . imp, 'noneq . noneq, 'gprem . gprem, 'gprodal . gprodal}
- end;
- procedure ofsf_gsdis!-type(atl);
- % Ordered field standard form groebner simplifier disjunction type.
- % [atl] is a non null list of atomic formulas. ['equal],
- % ['impl], or ['noneq] is returned. ['equal] is returned if and
- % only if all atomic formulas have the relation [equal]; [impl] is
- % returned, if and only if one of the atomic formula is an
- % equality, otherwise [noneq] is returned.
- begin scalar op,w;
- if null atl then return 'equal;
- op := ofsf_op car atl;
- if op eq 'neq then return 'impl;
- w := ofsf_gsdis!-type cdr atl;
- if w eq 'impl then return 'impl;
- if op eq 'equal and w eq 'equal then return 'equal;
- return 'noneq
- end;
- procedure ofsf_gsextract!-gp(atl);
- % Ordered field standard form extract global premise. [atl] is a
- % list of atomic formulas. A GP is returned.
- begin scalar w;
- w := ofsf_gsdis2impl(for each at in atl collect ofsf_negateat(at));
- return ( (car w . multf(cadr w, caddr w)) . cadddr w)
- end;
- procedure ofsf_gsgprem(atl,gp);
- % Ordered field standard form groebner simplifier simplify global
- % premise. [atl] is a list of atomic formulas; [gp] is a GP. A
- % formula is returned.
- begin scalar w;
- if !*rlgsvb then ioto_prin2 "[GP";
- w := cl_nnfnot ofsf_gsimplication(cl_nnfnot rl_smkn('and,atl),gp);
- if !*rlgsvb then ioto_prin2 "] ";
- return w
- end;
- procedure ofsf_gspart(part,gp);
- % Ordered field standard form groebner simplify simplify part.
- % [part] is a list of disjunctions of atomic formulas and atomic
- % formulas. [gp] is a GP. A list [l] of disjunctions of
- % atomic formulas and atomic formulas is returned. The formula on
- % position $i$ in [l] is somehow simpler than the formula on the
- % position $i$ in part. Supposed that the formula
- % $\bigwedge(g_i=0)$ is true where $g_i$ are the terms in [gp] then
- % the positional corresponding fomulas in the two lists [part] and
- % [l] are equivalent.
- begin scalar w,curlen,res;
- if !*rlgsvb then curlen := length part;
- res := for each phi in part collect <<
- if !*rlgsvb then ioto_prin2 {"[",curlen};
- w := ofsf_gsimplication(phi,gp);
- if !*rlgsvb then << curlen := curlen - 1; ioto_prin2 {"] "} >>;
- w
- >>;
- if !*rlgsvb then ioto_cterpri();
- return res
- end;
- procedure ofsf_gsimplication(f,gp);
- % Ordered field standard form groebner simplification implication.
- % [f] is a disjunction of atomic formulas or an atomic formula.
- % [gp] is a GP. Returns a formula. It is a truth
- % value, an atomic formula or a disjunction of atomic formulas,
- % unless the simplification of an atomic formula yields a complex
- % formula.
- begin scalar prem,prod1,prod2,gprod,rprod,iprem,w,z,atl,natl;
- if cl_cxfp f then atl := rl_argn f else atl := {f};
- w := ofsf_gsdis2impl atl;
- iprem := car w;
- prod1 := cadr w;
- prod2 := caddr w;
- gprod := cdar gp;
- prem := append(iprem,caar gp);
- if null prem then return f;
- prem := sfto_groebnerf prem;
- z := numr simp ofsf_gsmkradvar();
- rprod := ofsf_gseqprod(prod1,prod2,gprod,prem,z);
- if rprod eq 'true then <<
- if !*rlgsvb then ioto_prin2 "!";
- return 'true
- >>;
- w := ofsf_gsusepremise(cdr gp,prem,z);
- if w eq 'true then <<
- if !*rlgsvb then ioto_prin2 "!";
- return 'true
- >>;
- natl := ofsf_gsredatl(atl,prem,z,rprod);
- if natl eq 'true then <<
- if !*rlgsvb then ioto_prin2 "!";
- return 'true
- >>;
- if rprod and rprod neq 'false then natl := rprod . natl;
- natl := nconc(natl,ofsf_gspremise(iprem,caar gp));
- return rl_smkn('or,natl)
- end;
- procedure ofsf_gsredatl(atl,prem,z,rprod);
- % Ordered field standard form reduce atomic formula list. [atl] is
- % a list of SF's; [prem] is a groebner basis; [z] is a kernel;
- % [rprod] is a flag. Returns ['true] or a list of atomic formulas.
- begin scalar a,w,natl;
- while atl do <<
- a := car atl;
- atl := cdr atl;
- w := ofsf_gsredat(a,prem,z,rprod);
- if w eq 'true then
- atl := nil
- else if w and w neq 'false then
- natl := w . natl
- >>;
- if w eq 'true then return 'true;
- return natl;
- end;
- procedure ofsf_gsusepremise(atl,prem,z);
- % Ordered field standard form use premise. [atl] is a list of
- % atomic formulas; [prem] is a groebner basis; [z] is a kernel.
- % returns [nil] or ['true].
- begin scalar w;
- while atl do <<
- w := ofsf_gsredat(car atl,prem,z,nil);
- if w eq 'true then
- atl := nil
- else
- atl := cdr atl;
- >>;
- if w eq 'true then return 'true;
- end;
- procedure ofsf_gseqprod(iprod1,iprod2,gprod,prem,z);
- % Ordered field standard form equation product. [iprod1], [iprod2],
- % and [prem] are SF's; [prem] is a list of SF's; [z] is a kernel.
- % Returns [nil] or a formula.
- begin scalar p,w;
- p := multf(iprod1,multf(iprod2,gprod));
- % Comment the test on [!*rlgsrad] out if the radical membership
- % test should always be performed for the equation product.
- if !*rlgsrad and
- (null sfto_greducef(1,addf(1,negf multf(p,z)) . prem))
- then
- return 'true;
- w := ofsf_gstryeval('equal,sfto_preducef(p,prem));
- if rl_tvalp w then return w;
- if null !*rlgsprod then return nil;
- if !*rlgsred then
- return ofsf_0mk2('equal,sfto_preducef(iprod1,prem));
- return ofsf_0mk2('equal,iprod1);
- end;
- procedure ofsf_gsmkradvar();
- % Ordered field standard form groebner simplifier make radical
- % memebership test variable. Returns an identifier that is not used
- % as an algebraic mode variable.
- begin scalar w; integer n;
- w := 'rlgsradmemv!*;
- while get(w,'avalue) do
- w := mkid(w,n := n+1);
- if !*rlgsutord then
- ofsf_gsupdtorder w;
- return w;
- end;
- procedure ofsf_gsupdtorder(v);
- % Ordered field standard form groebner simplifier update term
- % order. [v] is a kernel. Inserts the main variable [v] into the
- % variable list of the global fixed term order of the groebner
- % package. Not all torders are supported, if a variable list is
- % present. To get over this problem one can insert the tag
- % variable [v] in the variable list before calling the groebner
- % simplifier.
- begin scalar curtorder,vl,remain,mode;
- curtorder := cdr torder('((list) revgradlex));
- vl := cdar curtorder;
- if null vl or (v memq vl) then <<
- torder curtorder;
- return nil
- >>;
- mode := cadr curtorder;
- if not(mode memq '(lex gradlex revgradlex gradlexgradlex
- gradlexrevgradlex lexgradlex lexrevgradlex weighted))
- then
- rederr {"term order", mode, "not supported"};
- remain := cddr curtorder;
- vl := append(vl,{v});
- torder (('list . vl) . mode . remain);
- end;
- procedure ofsf_gstryeval(rel,lhs);
- % Ordered field standard form try evaluation. [rel] is an
- % ofsf-relation; [lhs] a SF. returns [nil], a truth value or an
- % atomic formula. In the first case the atomic formula $([lhs]
- % [rel] 0)$ cannot be evaluated or should be ignored. In the other
- % case the returned value is equivalent to the the atomic formula.
- begin scalar w,!*rlsiexpla;
- if !*rlgserf then <<
- w := cl_simplat(ofsf_0mk2(rel,lhs),nil);
- return if rl_tvalp w then w;
- >>;
- if domainp lhs then
- return cl_simplat(ofsf_0mk2(rel,lhs),nil);
- end;
- procedure ofsf_gsdis2impl(atl);
- % Ordered field standard form groebner simplifier disjunction to
- % implication. [atl] is a list of atomic formulas. A CIMPL is
- % returned. The classification of the atomic formulas in [atl] is
- % done by [ofsf_attype].
- begin scalar prem,prod1,prod2,other,w,a;
- prod1 := prod2 := 1;
- for each at in atl do <<
- w := ofsf_gsattype at;
- if w then <<
- a := car w;
- if a eq 'equal then
- prod1 := multf(cdr w,prod1)
- else if a eq 'cequal then
- prod2 := multf(cdr w,prod2)
- else if a eq 'neq then
- prem := cdr w . prem
- else
- rederr {"BUG IN OFSF_GSDIS2IMPL",car w}
- >>;
- if not (w memq '(equal neq)) then
- other := at . other
- >>;
- return {prem, prod1, prod2, other};
- end;
- procedure ofsf_gsattype(at);
- % Ordered field standard form groebner simplifier atomic formula
- % type. [at] is an atomic formula. [nil] or a pair $(\rho,p)$ is
- % returned. $\rho$ is either ['equal], ['neq], or ['cequal]; $p$ is
- % a SF.
- (if w eq 'equal then
- ('equal . ofsf_arg2l at)
- else if w memq '(geq leq) then
- ('cequal . ofsf_arg2l at)
- else if w eq 'neq then
- ('neq . ofsf_arg2l at)) where w=ofsf_op at;
- procedure ofsf_gsredat(at,gb,z,flag);
- % Ordered field standard form groebner simplifier reduce atomic
- % formula. [at] is an atomic formula; [gb] is a Groebner basis; [z]
- % is a variable; [flag] is a flag. [nil], a truth value or an
- % atomic formula is returned. The behavior of this procedure
- % depends on the switches [rl_gsred] and [rl_gsrad]. [nil] is
- % returned if the atomic formula belongs to the premise or [flag]
- % is [T] and [at] is an equation. Is [flag] is non [nil] then
- % equations can be ignored. In the other cases the returned value
- % is equivalent to [at]. The intention of this procedure is the
- % reduction of [at] wrt. the radical generated by [gb].
- begin scalar w,x,op,arg,nat;
- op := ofsf_op at;
- if (op eq 'neq) or (flag and op eq 'equal) then return nil;
- arg := ofsf_arg2l at;
- w := sfto_preducef(arg,gb);
- if !*rlgsred then
- nat := cl_simplat(ofsf_0mk2(op,w),nil)
- else
- if x := ofsf_gstryeval(op,w) then
- nat := x
- else
- nat := at;
- if (rl_tvalp nat) or (op eq 'equal) or (null !*rlgsrad) then
- return nat;
- if null sfto_greducef(1,addf(1,negf multf(w,z)) . gb) then
- return cl_simplat(ofsf_0mk2(op,nil),nil);
- return nat;
- end;
- procedure ofsf_gspremise(tl,gp);
- % Ordered field standard form groebner simplify premise. [tl] and
- % [gp] are lists of SF's. A list of atomic formulas is returned.
- % The behavior of this procedure depends on the switches [rl_gsred]
- % and [rl_gssub]. The conjunction over the returned formulas is
- % equivalent to the formula $\bigvee(t_i \neq 0)$ supposed that
- % $\bigwedge(g_j = 0)$, where $t_i$ are the terms in [tl] and $g_j$
- % are the terms in [gp]. If the switch [rl_gsred] is on then all
- % terms $t_i$ are reduced modulo Id([gp]). If the switch [!*rl_gssub]
- % is on, the term list is substituted by the reduced groebner base
- % of the term list.
- begin scalar gb,rtl,w;
- if !*rlgsred then <<
- gb := sfto_groebnerf gp;
- for each sf in tl do
- if w := sfto_preducef(sf,gb) then
- rtl := lto_insert(w,rtl);
- >> else
- rtl := tl;
- if !*rlgssub then
- return for each sf in sfto_groebnerf rtl collect
- ofsf_0mk2('neq,sf);
- return for each sf in rtl collect
- ofsf_0mk2('neq,sf)
- end;
- procedure ofsf_gssimulateprod(prem,prodal);
- % Ordered field standard form simulate rlprod switch. [prem] is a
- % quantifier free formula. [prodal] is an assoc list containing to
- % some equations its product representation. truth value or an
- begin scalar w,res;
- if rl_tvalp prem then return prem;
- if cl_atfp prem and (w := lto_cassoc(prem,prodal)) then
- return w;
- res := for each f in rl_argn prem collect
- if cl_atfp f and (w := lto_cassoc(f,prodal)) then w else f;
- return rl_mkn(rl_op prem,res)
- end;
- endmodule; % [ofsfgs]
- end; % of file
|