1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283 |
- % polydiv.tst -*- REDUCE -*-
- % Test and demonstration file for enhanced polynomial division
- % file polydiv.red.
- % F.J.Wright@Maths.QMW.ac.uk, 7 Nov 1995.
- % The example from "Computer Algebra" by Davenport, Siret & Tournier,
- % first edition, section 2.3.3.
- % First check that remainder still works as before.
- % Compute the gcd of the polynomials a and b by Euclid's algorithm:
- a := aa := x^8 + x^6 - 3x^4 - 3x^3 + 8x^2 + 2x - 5;
- b := bb := 3x^6 + 5x^4 - 4x^2 - 9x + 21;
- on rational; off allfac;
- c := remainder(a, b); a := b$ b := c$
- c := remainder(a, b); a := b$ b := c$
- c := remainder(a, b); a := b$ b := c$
- c := remainder(a, b); a := b$ b := c$
- c := remainder(a, b);
- off rational;
- % Repeat using pseudo-remainders, to avoid rational arithmetic:
- a := aa;
- b := bb;
- c := pseudo_remainder(a, b); a := b$ b := c$
- c := pseudo_remainder(a, b); a := b$ b := c$
- c := pseudo_remainder(a, b); a := b$ b := c$
- c := pseudo_remainder(a, b); a := b$ b := c$
- c := pseudo_remainder(a, b);
- % Example from Chris Herssens <herc@sulu.luc.ac.be>
- % involving algebraic numbers in the coefficient ring
- % (for which naive pseudo-division fails in REDUCE):
- factor x;
- a:=8*(15*sqrt(2)*x**3 + 18*sqrt(2)*x**2 + 10*sqrt(2)*x + 12*sqrt(2) -
- 5*x**4 - 6*x**3 - 30*x**2 - 36*x);
- b:= - 16320*sqrt(2)*x**3 - 45801*sqrt(2)*x**2 - 50670*sqrt(2)*x -
- 26534*sqrt(2) + 15892*x**3 + 70920*x**2 + 86352*x + 24780;
- pseudo_remainder(a, b, x);
- % Note: We must specify the division variable even though the
- % polynomials are apparently univariate:
- pseudo_remainder(a, b);
- % Confirm that quotient * b + remainder = constant * a:
- pseudo_divide(a, b, x);
- first ws * b + second ws;
- ws / a; % is this constant?
- on rationalize;
- ws; % yes, it is constant
- off rationalize;
- on allfac; remfac x;
- procedure test_pseudo_division(a, b, x);
- begin scalar qr, L;
- qr := pseudo_divide(a, b, x);
- L := lcof(b,x);
- %% For versions of REDUCE prior to 3.6 use:
- %% L := if b freeof x then b else lcof(b,x);
- if first qr * b + second qr =
- L^(deg(a,x)-deg(b,x)+1) * a then
- write "Pseudo-division OK"
- else
- write "Pseudo-division failed"
- end;
- a := 5x^4 + 4x^3 + 3x^2 + 2x + 1;
- test_pseudo_division(a, x, x);
- test_pseudo_division(a, x^3, x);
- test_pseudo_division(a, x^5, x);
- test_pseudo_division(a, x^3 + x, x);
- test_pseudo_division(a, 0, x); % intentional error!
- test_pseudo_division(a, 1, x);
- test_pseudo_division(5x^3 + 7y^2, 2x - y, x);
- test_pseudo_division(5x^3 + 7y^2, 2x - y, y);
- end;
|