123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346 |
- module facform; % Factored form representation for standard form polys.
- % Author: Anthony C. Hearn.
- % Modifications by: Francis J. Wright.
- % Copyright (c) 1990 The RAND Corporation. All rights reserved.
- % INTEGER FACTORS?
- % SHOULDN'T SYMMETRIC TESTS ETC BE RUN RECURSIVELY?
- fluid '(!*exp !*ezgcd !*factor !*force!-prime !*gcd !*ifactor !*nopowers
- !*kernreverse !*limitedfactors !*sqfree !*trfac current!-modulus
- dmode!* m!-image!-variable ncmp!*);
- switch limitedfactors,nopowers;
- % switch sqfree;
- put('sqfree,'simpfg,'((t (rmsubs) (setq !*exp nil))
- (nil (rmsubs) (setq !*exp t))));
- comment In this module, we consider the manipulation of factored forms.
- These have the structure
- <monomial> . <form-power-list>
- where the monomial is a standard form (with numerator and
- denominator satisfying the KERNLP test) and a form-power is a
- dotted pair whose car is a standard form and cdr an integer>0.
- We have thus represented the form as a product of a monomial
- quotient and powers of non-monomial factors;
- symbolic procedure fac!-merge(u,v);
- % Returns the merge of the factored forms U and V.
- multf(car u,car v) . append(cdr u,cdr v);
- symbolic procedure factorize u;
- % Factorize the polynomial u, returning the factors found.
- (begin scalar x,y;
- x := simp!* u;
- y := denr x;
- if not domainp y then typerr(u,"polynomial");
- u := numr x;
- if u = 1 then return
- {'list, if !*nopowers then 1 else {'list,1,1}} % FJW
- else if fixp u then !*ifactor := t; % Factor an integer.
- if !*force!-prime and not primep !*force!-prime
- then typerr(!*force!-prime,"prime");
- u := if dmode!*
- then if get(dmode!*,'factorfn)
- then begin scalar !*factor;
- !*factor := t;
- return fctrf u
- end
- else rerror(poly,14,
- list("Factorization not supported over domain",
- get(dmode!*,'dname)))
- else fctrf u;
- return facform2list(u,y)
- end) where !*ifactor = !*ifactor;
- symbolic procedure facform2list(x,y);
- % x is a factored form.
- % y is a possible numerical (domain) denominator.
- begin scalar factor!-count,z;
- if null car x and null cdr x then return list 'list
- % car x is now expected to be a number.
- else if null !*nopowers then z := facform2list2 x
- else <<
- z:= (0 . car x) . nil;
- x := reversip!* cdr x; % This puts factors in better order.
- factor!-count:=0;
- for each fff in x do
- for i:=1:cdr fff do
- z := ((factor!-count:=factor!-count+1) .
- mk!*sq(car fff ./ 1)) . z;
- z := multiple!-result(z,nil);
- if atom z then typerr(z,"factor form") % old style input.
- else if numberp cadr z and cadr z<0 and cddr z
- then z := car z .
- (- cadr z) . mk!*sq negsq simp caddr z
- . cdddr z;
- % make numerical coefficient positive.
- z := cdr z;
- if car z = 1 then z := cdr z
- else if not fixp car z then z := prepd car z . cdr z
- else if !*ifactor
- then z := append(pairlist2list reversip zfactor car z,
- cdr z)>>;
- if y neq 1 then z := list('recip,prepd y) . z;
- return 'list . z
- end;
- symbolic procedure facform2list2 u;
- begin scalar bool,x;
- if !:minusp(x := car u) then <<bool := t; x := !:minus x>>;
- u := cdr u;
- if x neq 1
- then if !*ifactor and fixp x
- then u := append(reversip zfactor x,u)
- else u := (x . 1) . u;
- % Adjust for negative sign.
- x := nil;
- for each j in u do
- if bool and not evenp cdr j
- then <<bool := nil; x := (negf car j . cdr j) . x>>
- else x := j . x;
- % Convert terms to list form.
- u := nil;
- for each j in x do
- if fixp car j then u := {'list,car j,cdr j} . u
- else u := {'list,mk!*sq(car j ./ 1),cdr j} . u;
- return if bool then '(list -1 1) . u else u
- end;
- symbolic procedure old_factorize u; factorize u where !*nopowers=t;
- flag('(factorize old_factorize),'opfn);
- symbolic procedure pairlist2list u;
- for each x in u conc nlist(car x,cdr x);
- symbolic procedure fctrf u;
- % U is a standard form. Value is a factored form.
- % The function FACTORF is an assumed entry point to a more complete
- % factorization module. It returns a form power list.
- (begin scalar !*ezgcd,!*gcd,denom,x,y;
- if domainp u then return list u
- else if ncmp!* and not noncomfp u then ncmp!* := nil;
- !*gcd := t;
- if null !*limitedfactors and null dmode!* then !*ezgcd := t;
- if null !*mcd
- then rerror(poly,15,"Factorization invalid with MCD off")
- else if null !*exp
- then <<!*exp := t; u := !*q2f resimp !*f2q u>>;
- % Convert rationals to integers for factorization.
- if dmode!* eq '!:rn!:
- then <<dmode!* := nil; alglist!* := nil . nil;
- u := simp prepf u;
- denom := denr u; u := numr u>>;
- % Check for homogeneous polynomials. This can't be done with
- % current code though if non-commuting objects occur.
- if null ncmp!*
- then <<x := sf2ss u;
- if homogp x
- then <<if !*trfac
- then prin2t
- "This polynomial is homogeneous - variables scaled";
- y := caaar x . listsum caaadr x;
- x := fctrf1 ss2sf(car(x)
- . (reverse subs0 cadr x . 1));
- x := rconst(y,x);
- return car x . sort!-factors cdr x>>>>;
- u := fctrf1 u;
- if denom
- then <<alglist!* := nil . nil;
- dmode!* := '!:rn!:; car u := quotf(car u,denom)>>;
- return car u . sort!-factors cdr u
- end) where !*exp = !*exp, ncmp!* = ncmp!*;
- symbolic procedure fctrf1 u;
- begin scalar x,y,z;
- if domainp u then return list u; % Do this again just in case.
- if flagp(dmode!*,'field) and ((z := lnc u) neq 1)
- then u := multd(!:recip z,u)
- else if dmode!* and (y := get(dmode!*,'unitsfn))
- then <<x := apply2(y,1 . u,lnc u);
- u := cdr x;
- z := !:recip car x>>;
- x := comfac u;
- u := quotf(u,comfac!-to!-poly x);
- y := fctrf1 cdr x; % factor the content.
- if car x then y := car y . (!*k2f caar x . cdar x) . cdr y;
- if z and (z neq 1) then y := multd(z,car y) . cdr y;
- if domainp u then return multf(u,car y) . cdr y
- else if minusf u
- then <<u := negf u; y := negf car y . cdr y>>;
- return fac!-merge(factor!-prim!-f u,y)
- end;
- symbolic procedure factorize!-form!-recursion u;
- fctrf1 u;
- symbolic procedure factor!-prim!-f u;
- % U is a non-trivial form which is primitive in all its variables
- % and has a positive leading numerical coefficient. Result is a
- % form power list.
- begin scalar v,w,x,y;
- if ncmp!* then return list(1,u . 1);
- if dmode!* and (x := get(dmode!*,'sqfrfactorfn))
- then if !*factor then v := apply1(x,u) else v := list(1,u . 1)
- else if flagp(dmode!*,'field) and ((w := lnc u) neq 1)
- then v := w . sqfrf multd(!:recip w,u)
- else if (w := get(dmode!*,'units)) and (w := assoc(y := lnc u,w))
- then v := y . sqfrf multd(cdr w,u)
- else v := 1 . sqfrf u;
- if x and (x eq get(dmode!*,'factorfn))
- then return v; % No point in re-factorizing.
- w := list car v;
- for each x in cdr v
- do w := fac!-merge(factor!-prim!-sqfree!-f x,w);
- return w
- end;
- symbolic procedure factor!-prim!-sqfree!-f u;
- % U is of the form <square free poly> . <power>. Result is a factored
- % form.
- % Modified to work properly in rounded (real or complex),
- % rational and complex modes. SLK.
- begin scalar x,y,!*msg,r;
- r := !*rounded;
- if r or !*complex or !*rational then
- <<if r then on rational;
- u := numr resimp !*f2q car u . cdr u>>;
- if null !*limitedfactors
- then <<if null dmode!* then y := 'factorf
- else <<x := get(dmode!*,'sqfrfactorfn);
- y := get(dmode!*,'factorfn);
- if x and not(x eq y) then y := 'factorf>>;
- if y
- then <<y := apply1(y,car u);
- u := (car y . for each j in cdr y
- collect(car j . cdr u));
- go to ret>>>>;
- u := factor!-prim!-sqfree!-f!-1(car u,cdr u);
- ret: if r then
- <<on rounded;
- u := car u . for each j in cdr u collect
- (numr resimp !*f2q car j . cdr j)>>;
- return u
- end;
- symbolic procedure distribute!.multiplicity(factorlist,n);
- % Factorlist is a simple list of factors of a square free primitive
- % multivariate poly and n is their multiplicity in a square free
- % decomposition of another polynomial. result is a list of form:
- % ((f1 . n),(f2 . n),...) where fi are the factors.
- for each w in factorlist collect (w . n);
- symbolic procedure factorf u;
- % NOTE: This is not an entry point to be used by novice programmers.
- % Please used FCTRF instead.
- % There is an inefficiency in this procedure relating to ordering.
- % There is a final reordering done at every recursive level in order
- % to make sure final result has the right order. However, this only
- % need be done once at the top level, probably in fctrf. Since some
- % programmers still use this function however, it's safer for it to
- % return results in the correct order.
- (begin scalar m!-image!-variable,new!-korder,old!-korder,sign,v,w;
- if domainp u then return list u;
- new!-korder:=kernord(u,nil);
- if !*kernreverse then new!-korder:=reverse new!-korder;
- old!-korder:=setkorder new!-korder;
- u := reorder u; % Make var of lowest degree the main one.
- if minusf u then <<sign := not sign; u := negf u>>;
- v := comfac u; % Since new order may reveal more factors.
- u := quotf1(u,cdr v);
- if domainp u then errach list("Improper factors in factorf");
- % The example on rounded; solve(df(e^x/(e^(2*x)+1)^1.5,x),{x});
- % shows car v can be non-zero.
- w := car v;
- v := fctrf1 cdr v;
- if w then v := car v . (!*k2f car w . cdr w) . cdr v;
- m!-image!-variable := mvar u;
- u :=
- distribute!.multiplicity(factorize!-primitive!-polynomial u,1);
- setkorder old!-korder;
- if sign then u := (negf caar u . cdar u) . cdr u;
- u := fac!-merge(v,1 . u);
- return car u . for each w in cdr u collect (reorder car w . cdr w)
- end) where current!-modulus = current!-modulus;
- symbolic procedure factor!-prim!-sqfree!-f!-1(u,n);
- (exptf(car x,n) . for each j in cdr x collect (j . n))
- where x = prsqfrfacf u;
- symbolic procedure sqfrf u;
- % U is a non-trivial form which is primitive in all its variables
- % and has an overall numerical coefficient which should be a unit.
- % SQFRF performs square free factorization on U and returns a
- % form power list.
- % Modified to work properly in rounded (real or complex) modes. SLK.
- begin integer n; scalar !*gcd,units,v,w,x,y,z,!*msg,r;
- !*gcd := t;
- if (r := !*rounded) then
- <<on rational; u := numr resimp !*f2q u>>;
- n := 1;
- x := mvar u;
- v := gcdf(u,diff(u,x));
- u := quotf(u,v);
- % If domain is a field, or has non-trivial units, v can have a
- % spurious numerical factor.
- if flagp(dmode!*,'field) and ((y := lnc u) neq 1)
- then <<u := multd(!:recip y,u); v := multd(y,v)>>
- else if (units := get(dmode!*,'units))
- and (w := assoc(y:= lnc u,units))
- then <<u := multd(cdr w,u); v := multd(y,v)>>;
- while degr(v,x)>0 do
- <<w := gcdf(v,u);
- if u neq w then z := (quotf(u,w) . n) . z;
- % Don't add units to z.
- v := quotf(v,w);
- u := w;
- n := n + 1>>;
- if r then
- <<on rounded;
- u := numr resimp !*f2q u;
- z := for each j in z
- collect numr resimp !*f2q car j . cdr j>>;
- if v neq 1 and assoc(v,units) then v := 1;
- if v neq 1 then if n=1 then u := multf(v,u)
- else if (w := rassoc(1,z)) then rplaca(w,multf(v,car w))
- else if null z and not domainp v then z := {v . 1}
- else if null z and ((w := rootxf(v,n)) neq 'failed)
- then u := multf(w,u)
- else errach {"sqfrf failure",u,n,z};
- return (u . n) . z
- end;
- symbolic procedure sqfrf!* u; caar sqfrf u;
- symbolic procedure square_free u;
- 'list . for each v in sqfrf !*q2f simp!* u
- collect {'list,mk!*sq(car v . 1),cdr v};
- flag('(square_free),'opfn);
- symbolic procedure diff(u,v);
- % A polynomial differentation routine which does not check
- % indeterminate dependencies.
- if domainp u then nil
- else addf(addf(multpf(lpow u,diff(lc u,v)),
- multf(lc u,diffp1(lpow u,v))),
- diff(red u,v));
- symbolic procedure diffp1(u,v);
- if not( car u eq v) then nil
- else if cdr u=1 then 1
- else multd(cdr u,!*p2f(car u .** (cdr u-1)));
- endmodule;
- end;
|