123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213 |
- module resultnt;
- % Author: Eberhard Schruefer.
- % Modifications by: Anthony C. Hearn, Winfried Neun.
- %**********************************************************************
- % *
- % The resultant function defined here has the following properties: *
- % *
- % degr(p1,x)*degr(p2,x) *
- % resultant(p1,p2,x) = (-1) *resultant(p2,p1,x) *
- % *
- % degr(p2,x) *
- % resultant(p1,p2,x) = p1 if p1 free of x *
- % *
- % resultant(p1,p2,x) = 1 if p1 free of x and p2 free of x *
- % *
- %**********************************************************************
- %exports resultant;
- %imports reorder,setkorder,degr,addf,negf,multf,multpf;
- load_package polydiv;
- fluid '(!*bezout !*exp kord!*);
- switch bezout;
- put('resultant,'simpfn,'simpresultant);
- symbolic procedure simpresultant u;
- if length u neq 3
- then rerror(matrix,19,
- "Resultant called with wrong number of arguments")
- else resultantsq(simp!* car u,simp!* cadr u,!*a2k caddr u)
- where !*exp = t;
- symbolic procedure resultant(u,v,var);
- % Kept for compatibility with old code.
- if domainp u and domainp v then 1
- else begin scalar x;
- kord!* := var . kord!*; % updkorder can't be used here.
- % See sum test.
- if null domainp u and null(mvar u eq var) then u := reorder u;
- if null domainp v and null(mvar v eq var) then v := reorder v;
- x := if !*bezout then bezout_resultant(u,v,var)
- else !*a2f polyresultant(prepf u,prepf v,var);
- setkorder cdr kord!*;
- return x
- end;
- symbolic procedure resultantsq(u,v,var);
- if domainp numr u and domainp numr v and denr u = 1 and denr v = 1
- then 1 ./ 1
- else begin scalar x;
- kord!* := var . kord!*; % updkorder can't be used here.
- % See sum test.
- if null domainp numr u and null(mvar numr u eq var)
- then u := reordsq u;
- if null domainp numr v and null(mvar numr v eq var)
- then v := reordsq v;
- x := if !*bezout then !*f2q bezout_resultant(!*q2f u,!*q2f v,var)
- else simp polyresultant(prepsq u,prepsq v,var);
- setkorder cdr kord!*;
- return x
- end;
- algebraic (co_off := { co(0,~x) => x });
- % algebraic procedure notunivariatep(uu);
- % for i:=1:length uu sum if fixp part(uu,i) then 0 else 1;
-
- algebraic procedure notunivariatep uu;
- for each u in uu sum if fixp u then 0 else 1;
- algebraic procedure polyresultant(u,v,var);
- % See Zippel's book p 151, subresultant algorithm --
- % more or less the same.
- begin scalar g,h,delta,beta,temp,uu,vv;
- uu := coeff(u,var); vv := coeff(v,var);
- if length uu<length vv
- then return (-1 * polyresultant(v,u,var))
- else if (notunivariatep(uu) > 0) or (notunivariatep(vv)>0)
- then <<u := for i:=1:length uu sum
- (if fixp part(uu,i) then part(uu,i)
- else (co(0,part(uu,i))))*var^(i-1);
- v := for i:=1:length vv sum
- (if fixp part(vv,i) then part(vv,i)
- else (co(0,part(vv,i))))*var^(i-1)>>;
- % Change to nested domain.
- g := h := 1;
- while not (V=0) do
- <<delta := deg(u,var) - deg(v,var);
- beta := (-1)^(delta +1) * g * h^delta;
- h := h*(lcof(v,var)/h)^delta;
- temp := u;
- u := v;
- v := pseudo_remainder(temp,v,var)/beta;
- g := lcof(u,var)>>;
- if deg(u,var) = 0 then u := u^delta else return 0;
- let co_off; u := u; clearrules co_off;
- return u
- end;
- symbolic procedure lcoff(u,var);
- if domainp u or not(mvar u eq var) then 0 else lc u;
- symbolic procedure bezout_resultant(u,v,w);
- % U and v are standard forms. Result is resultant of u and v
- % w.r.t. kernel w. Method is Bezout's determinant using exterior
- % multiplication for its calculation.
- begin integer n,nm; scalar ap,ep,uh,ut,vh,vt;
- if domainp u or null(mvar u eq w)
- then return if not domainp v and mvar v eq w
- then exptf(u,ldeg v)
- else 1
- else if domainp v or null(mvar v eq w)
- then return if mvar u eq w then exptf(v,ldeg u) else 1;
- n := ldeg u - ldeg v;
- ep := 1;
- if n<0 then
- <<for j := (-n-1) step -1 until 1 do
- ep := b!:extmult(!*sf2exb(multpf(w to j,u),w),ep);
- ep := b!:extmult(!*sf2exb(multd((-1)**(-n*ldeg u),u),
- w),
- ep)>>
- else if n>0 then
- <<for j := (n-1) step -1 until 1 do
- ep := b!:extmult(!*sf2exb(multpf(w to j,v),w),ep);
- ep := b!:extmult(!*sf2exb(v,w),ep)>>;
- nm := max(ldeg u,ldeg v);
- uh := lc u;
- vh := lc v;
- ut := if n<0 then multpf(w to -n,red u)
- else red u;
- vt := if n>0 then multpf(w to n,red v)
- else red v;
- ap := addf(multf(uh,vt),negf multf(vh,ut));
- ep := if null ep then !*sf2exb(ap,w)
- else b!:extmult(!*sf2exb(ap,w),ep);
- for j := (nm - 1) step -1 until (abs n + 1) do
- <<if degr(ut,w) = j then
- <<uh := addf(lc ut,multf(!*k2f w,uh));
- ut := red ut>>
- else uh := multf(!*k2f w,uh);
- if degr(vt,w) = j then
- <<vh := addf(lc vt,multf(!*k2f w,vh));
- vt := red vt>>
- else vh := multf(!*k2f w,vh);
- ep := b!:extmult(!*sf2exb(addf(multf(uh,vt),
- negf multf(vh,ut)),w),ep)>>;
- return if null ep then nil else lc ep
- end;
- symbolic procedure !*sf2exb(u,v);
- %distributes s.f. u with respect to powers in v.
- if degr(u,v)=0 then if null u then nil
- else list 0 .* u .+ nil
- else list ldeg u .* lc u .+ !*sf2exb(red u,v);
- %**** Support for exterior multiplication ****
- % Data structure is lpow ::= list of degrees in exterior product
- % lc ::= standard form
- symbolic procedure b!:extmult(u,v);
- %Special exterior multiplication routine. Degree of form v is
- %arbitrary, u is a one-form.
- if null u or null v then nil
- else if v = 1 then u
- else (if x then cdr x .* (if car x then negf multf(lc u,lc v)
- else multf(lc u,lc v))
- .+ b!:extadd(b!:extmult(!*t2f lt u,red v),
- b!:extmult(red u,v))
- else b!:extadd(b!:extmult(red u,v),
- b!:extmult(!*t2f lt u,red v)))
- where x = b!:ordexn(car lpow u,lpow v);
- symbolic procedure b!:extadd(u,v);
- if null u then v
- else if null v then u
- else if lpow u = lpow v then
- (lambda x,y; if null x then y else lpow u .* x .+ y)
- (addf(lc u,lc v),b!:extadd(red u,red v))
- else if b!:ordexp(lpow u,lpow v) then lt u .+ b!:extadd(red u,v)
- else lt v .+ b!:extadd(u,red v);
- symbolic procedure b!:ordexp(u,v);
- if null u then t
- else if car u > car v then t
- else if car u = car v then b!:ordexp(cdr u,cdr v)
- else nil;
- symbolic procedure b!:ordexn(u,v);
- %u is a single integer, v a list. Returns nil if u is a member
- %of v or a dotted pair of a permutation indicator and the ordered
- %list of u merged into v.
- begin scalar s,x;
- a: if null v then return(s . reverse(u . x))
- else if u = car v then return nil
- else if u and u > car v then
- return(s . append(reverse(u . x),v))
- else <<x := car v . x;
- v := cdr v;
- s := not s>>;
- go to a
- end;
- endmodule;
- end;
|