123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220 |
- Fri Feb 12 00:06:04 MET 1999
- REDUCE 3.7, 15-Jan-99 ...
- 1: 1:
- 2: 2: 2: 2: 2: 2: 2: 2: 2:
- 3: 3: if lisp !*rounded then rounded_was_on := t
- else rounded_was_on := nil;
- mat1 := mat((1,2,3,4,5),(2,3,4,5,6),(3,4,5,6,7),(4,5,6,7,8),(5,6,7,8,9));
- [1 2 3 4 5]
- [ ]
- [2 3 4 5 6]
- [ ]
- mat1 := [3 4 5 6 7]
- [ ]
- [4 5 6 7 8]
- [ ]
- [5 6 7 8 9]
- mat2 := mat((1,1,1,1),(2,2,2,2),(3,3,3,3),(4,4,4,4));
- [1 1 1 1]
- [ ]
- [2 2 2 2]
- mat2 := [ ]
- [3 3 3 3]
- [ ]
- [4 4 4 4]
- mat3 := mat((x),(x),(x),(x));
- [x]
- [ ]
- [x]
- mat3 := [ ]
- [x]
- [ ]
- [x]
- mat4 := mat((3,3),(4,4),(5,5),(6,6));
- [3 3]
- [ ]
- [4 4]
- mat4 := [ ]
- [5 5]
- [ ]
- [6 6]
-
- mat5 := mat((1,2,1,1),(1,2,3,1),(4,5,1,2),(3,4,5,6));
- [1 2 1 1]
- [ ]
- [1 2 3 1]
- mat5 := [ ]
- [4 5 1 2]
- [ ]
- [3 4 5 6]
- mat6 := mat((i+1,i+2,i+3),(4,5,2),(1,i,0));
- [i + 1 i + 2 i + 3]
- [ ]
- mat6 := [ 4 5 2 ]
- [ ]
- [ 1 i 0 ]
- mat7 := mat((1,1,0),(1,3,1),(0,1,1));
- [1 1 0]
- [ ]
- mat7 := [1 3 1]
- [ ]
- [0 1 1]
- mat8 := mat((1,3),(-4,3));
- [1 3]
- mat8 := [ ]
- [-4 3]
- mat9 := mat((1,2,3,4),(9,8,7,6));
- [1 2 3 4]
- mat9 := [ ]
- [9 8 7 6]
- poly := x^7+x^5+4*x^4+5*x^3+12;
- 7 5 4 3
- poly := x + x + 4*x + 5*x + 12
- poly1 := x^2+x*y^3+x*y*z^3+y*x+2+y*3;
- 2 3 3
- poly1 := x + x*y + x*y*z + x*y + 3*y + 2
- on errcont;
- % Basis matrix manipulations.
- add_columns(mat1,1,2,5*y);
- [1 5*y + 2 3 4 5]
- [ ]
- [2 10*y + 3 4 5 6]
- [ ]
- [3 15*y + 4 5 6 7]
- [ ]
- [4 5*(4*y + 1) 6 7 8]
- [ ]
- [5 25*y + 6 7 8 9]
- add_rows(mat1,1,2,x);
- [ 1 2 3 4 5 ]
- [ ]
- [x + 2 2*x + 3 3*x + 4 4*x + 5 5*x + 6]
- [ ]
- [ 3 4 5 6 7 ]
- [ ]
- [ 4 5 6 7 8 ]
- [ ]
- [ 5 6 7 8 9 ]
- add_to_columns(mat1,3,1000);
- [1 2 1003 4 5]
- [ ]
- [2 3 1004 5 6]
- [ ]
- [3 4 1005 6 7]
- [ ]
- [4 5 1006 7 8]
- [ ]
- [5 6 1007 8 9]
- add_to_columns(mat1,{1,2,3},y);
- [y + 1 y + 2 y + 3 4 5]
- [ ]
- [y + 2 y + 3 y + 4 5 6]
- [ ]
- [y + 3 y + 4 y + 5 6 7]
- [ ]
- [y + 4 y + 5 y + 6 7 8]
- [ ]
- [y + 5 y + 6 y + 7 8 9]
- add_to_rows(mat1,2,1000);
- [ 1 2 3 4 5 ]
- [ ]
- [1002 1003 1004 1005 1006]
- [ ]
- [ 3 4 5 6 7 ]
- [ ]
- [ 4 5 6 7 8 ]
- [ ]
- [ 5 6 7 8 9 ]
- add_to_rows(mat1,{1,2,3},x);
- [x + 1 x + 2 x + 3 x + 4 x + 5]
- [ ]
- [x + 2 x + 3 x + 4 x + 5 x + 6]
- [ ]
- [x + 3 x + 4 x + 5 x + 6 x + 7]
- [ ]
- [ 4 5 6 7 8 ]
- [ ]
- [ 5 6 7 8 9 ]
- augment_columns(mat1,2);
- [2]
- [ ]
- [3]
- [ ]
- [4]
- [ ]
- [5]
- [ ]
- [6]
-
- augment_columns(mat1,{1,2,5});
- [1 2 5]
- [ ]
- [2 3 6]
- [ ]
- [3 4 7]
- [ ]
- [4 5 8]
- [ ]
- [5 6 9]
- stack_rows(mat1,3);
- [3 4 5 6 7]
-
- stack_rows(mat1,{1,3,5});
- [1 2 3 4 5]
- [ ]
- [3 4 5 6 7]
- [ ]
- [5 6 7 8 9]
-
- char_poly(mat1,x);
- 3 2
- x *(x - 25*x - 50)
- column_dim(mat2);
- 4
- row_dim(mat1);
- 5
- copy_into(mat7,mat1,2,3);
- [1 2 3 4 5]
- [ ]
- [2 3 1 1 0]
- [ ]
- [3 4 1 3 1]
- [ ]
- [4 5 0 1 1]
- [ ]
- [5 6 7 8 9]
- copy_into(mat7,mat1,5,5);
- ***** Error in copy_into: the matrix
- [1 1 0]
- [ ]
- [1 3 1]
- [ ]
- [0 1 1]
- does not fit into
- [1 2 3 4 5]
- [ ]
- [2 3 4 5 6]
- [ ]
- [3 4 5 6 7]
- [ ]
- [4 5 6 7 8]
- [ ]
- [5 6 7 8 9]
- at position 5,5.
- diagonal(3);
- [3]
- % diagonal can take both a list of arguments or just the arguments.
- diagonal({mat2,mat6});
- [1 1 1 1 0 0 0 ]
- [ ]
- [2 2 2 2 0 0 0 ]
- [ ]
- [3 3 3 3 0 0 0 ]
- [ ]
- [4 4 4 4 0 0 0 ]
- [ ]
- [0 0 0 0 i + 1 i + 2 i + 3]
- [ ]
- [0 0 0 0 4 5 2 ]
- [ ]
- [0 0 0 0 1 i 0 ]
- diagonal(mat1,mat2,mat5);
- [1 2 3 4 5 0 0 0 0 0 0 0 0]
- [ ]
- [2 3 4 5 6 0 0 0 0 0 0 0 0]
- [ ]
- [3 4 5 6 7 0 0 0 0 0 0 0 0]
- [ ]
- [4 5 6 7 8 0 0 0 0 0 0 0 0]
- [ ]
- [5 6 7 8 9 0 0 0 0 0 0 0 0]
- [ ]
- [0 0 0 0 0 1 1 1 1 0 0 0 0]
- [ ]
- [0 0 0 0 0 2 2 2 2 0 0 0 0]
- [ ]
- [0 0 0 0 0 3 3 3 3 0 0 0 0]
- [ ]
- [0 0 0 0 0 4 4 4 4 0 0 0 0]
- [ ]
- [0 0 0 0 0 0 0 0 0 1 2 1 1]
- [ ]
- [0 0 0 0 0 0 0 0 0 1 2 3 1]
- [ ]
- [0 0 0 0 0 0 0 0 0 4 5 1 2]
- [ ]
- [0 0 0 0 0 0 0 0 0 3 4 5 6]
- extend(mat1,3,2,x);
- [1 2 3 4 5 x x]
- [ ]
- [2 3 4 5 6 x x]
- [ ]
- [3 4 5 6 7 x x]
- [ ]
- [4 5 6 7 8 x x]
- [ ]
- [5 6 7 8 9 x x]
- [ ]
- [x x x x x x x]
- [ ]
- [x x x x x x x]
- [ ]
- [x x x x x x x]
- find_companion(mat5,x);
- 2
- x - 2*x - 2
- get_columns(mat1,1);
- {
- [1]
- [ ]
- [2]
- [ ]
- [3]
- [ ]
- [4]
- [ ]
- [5]
- }
- get_columns(mat1,{1,2});
- {
- [1]
- [ ]
- [2]
- [ ]
- [3]
- [ ]
- [4]
- [ ]
- [5]
- ,
- [2]
- [ ]
- [3]
- [ ]
- [4]
- [ ]
- [5]
- [ ]
- [6]
- }
- get_rows(mat1,3);
- {
- [3 4 5 6 7]
- }
- get_rows(mat1,{1,3});
- {
- [1 2 3 4 5]
- ,
- [3 4 5 6 7]
- }
- hermitian_tp(mat6);
- [ - i + 1 4 1 ]
- [ ]
- [ - i + 2 5 - i]
- [ ]
- [ - i + 3 2 0 ]
- % matrix_augment and matrix_stack can take both a list of arguments
- % or just the arguments.
- matrix_augment({mat1,mat2});
- ***** Error in matrix_augment:
- ***** all input matrices must have the same row dimension.
- matrix_augment(mat4,mat2,mat4);
- [3 3 1 1 1 1 3 3]
- [ ]
- [4 4 2 2 2 2 4 4]
- [ ]
- [5 5 3 3 3 3 5 5]
- [ ]
- [6 6 4 4 4 4 6 6]
- matrix_stack(mat1,mat2);
- ***** Error in matrix_stack:
- ***** all input matrices must have the same column dimension.
- matrix_stack({mat6,mat((z,z,z)),mat7});
- [i + 1 i + 2 i + 3]
- [ ]
- [ 4 5 2 ]
- [ ]
- [ 1 i 0 ]
- [ ]
- [ z z z ]
- [ ]
- [ 1 1 0 ]
- [ ]
- [ 1 3 1 ]
- [ ]
- [ 0 1 1 ]
- minor(mat1,2,3);
- [1 2 4 5]
- [ ]
- [3 4 6 7]
- [ ]
- [4 5 7 8]
- [ ]
- [5 6 8 9]
- mult_columns(mat1,3,y);
- [1 2 3*y 4 5]
- [ ]
- [2 3 4*y 5 6]
- [ ]
- [3 4 5*y 6 7]
- [ ]
- [4 5 6*y 7 8]
- [ ]
- [5 6 7*y 8 9]
- mult_columns(mat1,{2,3,4},100);
- [1 200 300 400 5]
- [ ]
- [2 300 400 500 6]
- [ ]
- [3 400 500 600 7]
- [ ]
- [4 500 600 700 8]
- [ ]
- [5 600 700 800 9]
- mult_rows(mat1,2,x);
- [ 1 2 3 4 5 ]
- [ ]
- [2*x 3*x 4*x 5*x 6*x]
- [ ]
- [ 3 4 5 6 7 ]
- [ ]
- [ 4 5 6 7 8 ]
- [ ]
- [ 5 6 7 8 9 ]
- mult_rows(mat1,{1,3,5},10);
- [10 20 30 40 50]
- [ ]
- [2 3 4 5 6 ]
- [ ]
- [30 40 50 60 70]
- [ ]
- [4 5 6 7 8 ]
- [ ]
- [50 60 70 80 90]
- pivot(mat1,3,3);
- [ - 4 - 2 2 4 ]
- [------ ------ 0 --- --- ]
- [ 5 5 5 5 ]
- [ ]
- [ - 2 - 1 1 2 ]
- [------ ------ 0 --- --- ]
- [ 5 5 5 5 ]
- [ ]
- [ 3 4 5 6 7 ]
- [ ]
- [ 2 1 - 1 - 2 ]
- [ --- --- 0 ------ ------]
- [ 5 5 5 5 ]
- [ ]
- [ 4 2 - 2 - 4 ]
- [ --- --- 0 ------ ------]
- [ 5 5 5 5 ]
- rows_pivot(mat1,3,3,{1,5});
- [ - 4 - 2 2 4 ]
- [------ ------ 0 --- --- ]
- [ 5 5 5 5 ]
- [ ]
- [ 2 3 4 5 6 ]
- [ ]
- [ 3 4 5 6 7 ]
- [ ]
- [ 4 5 6 7 8 ]
- [ ]
- [ 4 2 - 2 - 4 ]
- [ --- --- 0 ------ ------]
- [ 5 5 5 5 ]
- remove_columns(mat1,3);
- [1 2 4 5]
- [ ]
- [2 3 5 6]
- [ ]
- [3 4 6 7]
- [ ]
- [4 5 7 8]
- [ ]
- [5 6 8 9]
- remove_columns(mat1,{2,3,4});
- [1 5]
- [ ]
- [2 6]
- [ ]
- [3 7]
- [ ]
- [4 8]
- [ ]
- [5 9]
- remove_rows(mat1,2);
- [1 2 3 4 5]
- [ ]
- [3 4 5 6 7]
- [ ]
- [4 5 6 7 8]
- [ ]
- [5 6 7 8 9]
- remove_rows(mat1,{1,3});
- [2 3 4 5 6]
- [ ]
- [4 5 6 7 8]
- [ ]
- [5 6 7 8 9]
- remove_rows(mat1,{1,2,3,4,5});
- ***** Warning in remove_rows:
- all the rows have been removed. Returning nil.
- swap_columns(mat1,2,4);
- [1 4 3 2 5]
- [ ]
- [2 5 4 3 6]
- [ ]
- [3 6 5 4 7]
- [ ]
- [4 7 6 5 8]
- [ ]
- [5 8 7 6 9]
- swap_rows(mat1,1,2);
- [2 3 4 5 6]
- [ ]
- [1 2 3 4 5]
- [ ]
- [3 4 5 6 7]
- [ ]
- [4 5 6 7 8]
- [ ]
- [5 6 7 8 9]
- swap_entries(mat1,{1,1},{5,5});
- [9 2 3 4 5]
- [ ]
- [2 3 4 5 6]
- [ ]
- [3 4 5 6 7]
- [ ]
- [4 5 6 7 8]
- [ ]
- [5 6 7 8 1]
- % Constructors - functions that create matrices.
- band_matrix(x,5);
- [x 0 0 0 0]
- [ ]
- [0 x 0 0 0]
- [ ]
- [0 0 x 0 0]
- [ ]
- [0 0 0 x 0]
- [ ]
- [0 0 0 0 x]
- band_matrix({x,y,z},6);
- [y z 0 0 0 0]
- [ ]
- [x y z 0 0 0]
- [ ]
- [0 x y z 0 0]
- [ ]
- [0 0 x y z 0]
- [ ]
- [0 0 0 x y z]
- [ ]
- [0 0 0 0 x y]
- block_matrix(1,2,{mat1,mat2});
- ***** Error in block_matrix: row dimensions of
- ***** matrices into block_matrix are not compatible
- block_matrix(2,3,{mat2,mat3,mat2,mat3,mat2,mat2});
- [1 1 1 1 x 1 1 1 1]
- [ ]
- [2 2 2 2 x 2 2 2 2]
- [ ]
- [3 3 3 3 x 3 3 3 3]
- [ ]
- [4 4 4 4 x 4 4 4 4]
- [ ]
- [x 1 1 1 1 1 1 1 1]
- [ ]
- [x 2 2 2 2 2 2 2 2]
- [ ]
- [x 3 3 3 3 3 3 3 3]
- [ ]
- [x 4 4 4 4 4 4 4 4]
- char_matrix(mat1,x);
- [x - 1 -2 -3 -4 -5 ]
- [ ]
- [ -2 x - 3 -4 -5 -6 ]
- [ ]
- [ -3 -4 x - 5 -6 -7 ]
- [ ]
- [ -4 -5 -6 x - 7 -8 ]
- [ ]
- [ -5 -6 -7 -8 x - 9]
- cfmat := coeff_matrix({x+y+4*z=10,y+x-z=20,x+y+4});
- cfmat := {
- [4 1 1]
- [ ]
- [-1 1 1]
- [ ]
- [0 1 1]
- ,
- [z]
- [ ]
- [y]
- [ ]
- [x]
- ,
- [10]
- [ ]
- [20]
- [ ]
- [-4]
- }
- first cfmat * second cfmat;
- [x + y + 4*z]
- [ ]
- [ x + y - z ]
- [ ]
- [ x + y ]
- third cfmat;
- [10]
- [ ]
- [20]
- [ ]
- [-4]
- companion(poly,x);
- [0 0 0 0 0 0 -12]
- [ ]
- [1 0 0 0 0 0 0 ]
- [ ]
- [0 1 0 0 0 0 0 ]
- [ ]
- [0 0 1 0 0 0 -5 ]
- [ ]
- [0 0 0 1 0 0 -4 ]
- [ ]
- [0 0 0 0 1 0 -1 ]
- [ ]
- [0 0 0 0 0 1 0 ]
- hessian(poly1,{w,x,y,z});
- [0 0 0 0 ]
- [ ]
- [ 2 3 2 ]
- [0 2 3*y + z + 1 3*y*z ]
- [ ]
- [ 2 3 2 ]
- [0 3*y + z + 1 6*x*y 3*x*z ]
- [ ]
- [ 2 2 ]
- [0 3*y*z 3*x*z 6*x*y*z]
- hilbert(4,1);
- [ 1 1 1 ]
- [ 1 --- --- ---]
- [ 2 3 4 ]
- [ ]
- [ 1 1 1 1 ]
- [--- --- --- ---]
- [ 2 3 4 5 ]
- [ ]
- [ 1 1 1 1 ]
- [--- --- --- ---]
- [ 3 4 5 6 ]
- [ ]
- [ 1 1 1 1 ]
- [--- --- --- ---]
- [ 4 5 6 7 ]
- hilbert(3,y+x);
- [ - 1 - 1 - 1 ]
- [----------- ----------- -----------]
- [ x + y - 2 x + y - 3 x + y - 4 ]
- [ ]
- [ - 1 - 1 - 1 ]
- [----------- ----------- -----------]
- [ x + y - 3 x + y - 4 x + y - 5 ]
- [ ]
- [ - 1 - 1 - 1 ]
- [----------- ----------- -----------]
- [ x + y - 4 x + y - 5 x + y - 6 ]
- jacobian({x^4,x*y^2,x*y*z^3},{w,x,y,z});
- [ 3 ]
- [0 4*x 0 0 ]
- [ ]
- [ 2 ]
- [0 y 2*x*y 0 ]
- [ ]
- [ 3 3 2]
- [0 y*z x*z 3*x*y*z ]
- jordan_block(x,5);
- [x 1 0 0 0]
- [ ]
- [0 x 1 0 0]
- [ ]
- [0 0 x 1 0]
- [ ]
- [0 0 0 x 1]
- [ ]
- [0 0 0 0 x]
- make_identity(11);
- [1 0 0 0 0 0 0 0 0 0 0]
- [ ]
- [0 1 0 0 0 0 0 0 0 0 0]
- [ ]
- [0 0 1 0 0 0 0 0 0 0 0]
- [ ]
- [0 0 0 1 0 0 0 0 0 0 0]
- [ ]
- [0 0 0 0 1 0 0 0 0 0 0]
- [ ]
- [0 0 0 0 0 1 0 0 0 0 0]
- [ ]
- [0 0 0 0 0 0 1 0 0 0 0]
- [ ]
- [0 0 0 0 0 0 0 1 0 0 0]
- [ ]
- [0 0 0 0 0 0 0 0 1 0 0]
- [ ]
- [0 0 0 0 0 0 0 0 0 1 0]
- [ ]
- [0 0 0 0 0 0 0 0 0 0 1]
- on rounded;
- % makes things a bit easier to read.
- random_matrix(3,3,100);
- [ - 8.11911717343 - 75.7167729277 30.62058083 ]
- [ ]
- [ - 50.0325962624 47.1655452861 35.8674263384 ]
- [ ]
- [ - 49.3715543826 - 97.5563670864 - 18.8861862756]
- on not_negative;
- random_matrix(3,3,100);
- [43.8999853223 33.7140980286 33.75065406 ]
- [ ]
- [49.7333355117 98.9642944905 58.5331568816]
- [ ]
- [39.9146060895 67.7954727837 24.8684367642]
- on only_integer;
- random_matrix(3,3,100);
- [16 77 49]
- [ ]
- [28 84 51]
- [ ]
- [84 56 57]
- on symmetric;
- random_matrix(3,3,100);
- [89 74 91]
- [ ]
- [74 95 41]
- [ ]
- [91 41 87]
- off symmetric;
- on upper_matrix;
- random_matrix(3,3,100);
- [41 3 8 ]
- [ ]
- [0 31 80]
- [ ]
- [0 0 12]
- off upper_matrix;
- on lower_matrix;
- random_matrix(3,3,100);
- [69 0 0 ]
- [ ]
- [34 87 0 ]
- [ ]
- [78 72 13]
- off lower_matrix;
- on imaginary;
- off not_negative;
- random_matrix(3,3,100);
- [ - 95*i - 72 - 57*i + 59 52*i + 46]
- [ ]
- [ - 40*i - 54 70*i 39*i + 28]
- [ ]
- [ - 40*i + 45 28*i - 81 9*i + 74 ]
- off rounded;
- % toeplitz and vandermonde can take both a list of arguments or just
- % the arguments.
- toeplitz({1,2,3,4,5});
- [1 2 3 4 5]
- [ ]
- [2 1 2 3 4]
- [ ]
- [3 2 1 2 3]
- [ ]
- [4 3 2 1 2]
- [ ]
- [5 4 3 2 1]
- toeplitz(x,y,z);
- [x y z]
- [ ]
- [y x y]
- [ ]
- [z y x]
- vandermonde({1,2,3,4,5});
- [1 1 1 1 1 ]
- [ ]
- [1 2 4 8 16 ]
- [ ]
- [1 3 9 27 81 ]
- [ ]
- [1 4 16 64 256]
- [ ]
- [1 5 25 125 625]
- vandermonde(x,y,z);
- [ 2]
- [1 x x ]
- [ ]
- [ 2]
- [1 y y ]
- [ ]
- [ 2]
- [1 z z ]
- % kronecker_product
- a1 := mat((1,2),(3,4),(5,6));
- [1 2]
- [ ]
- a1 := [3 4]
- [ ]
- [5 6]
- a2 := mat((1,x,1),(2,2,2),(3,3,3));
- [1 x 1]
- [ ]
- a2 := [2 2 2]
- [ ]
- [3 3 3]
- kronecker_product(a1,a2);
- [1 x 1 2 2*x 2 ]
- [ ]
- [2 2 2 4 4 4 ]
- [ ]
- [3 3 3 6 6 6 ]
- [ ]
- [3 3*x 3 4 4*x 4 ]
- [ ]
- [6 6 6 8 8 8 ]
- [ ]
- [9 9 9 12 12 12]
- [ ]
- [5 5*x 5 6 6*x 6 ]
- [ ]
- [10 10 10 12 12 12]
- [ ]
- [15 15 15 18 18 18]
- clear a1,a2;
- % High level algorithms.
- on rounded;
- % makes output easier to read.
- ch := cholesky(mat7);
- ch := {
- [1 0 0 ]
- [ ]
- [1 1.41421356237 0 ]
- [ ]
- [0 0.707106781187 0.707106781187]
- ,
- [1 1 0 ]
- [ ]
- [0 1.41421356237 0.707106781187]
- [ ]
- [0 0 0.707106781187]
- }
- tp first ch - second ch;
- [0 0 0]
- [ ]
- [0 0 0]
- [ ]
- [0 0 0]
- tmp := first ch * second ch;
- [1 1 0]
- [ ]
- tmp := [1 3.0 1]
- [ ]
- [0 1 1]
- tmp - mat7;
- [0 0 0]
- [ ]
- [0 0 0]
- [ ]
- [0 0 0]
- off rounded;
- gram_schmidt({1,0,0},{1,1,0},{1,1,1});
- {{1,0,0},{0,1,0},{0,0,1}}
- gram_schmidt({1,2},{3,4});
- 1 2 2*sqrt(5) - sqrt(5)
- {{---------,---------},{-----------,------------}}
- sqrt(5) sqrt(5) 5 5
- on rounded;
- % again, makes large quotients a bit more readable.
- % The algorithm used for lu_decom sometimes swaps the rows of the input
- % matrix so that (given matrix A, lu_decom(A) = {L,U,vec}), we find L*U
- % does not equal A but a row equivalent of it. The call convert(A,vec)
- % will return this row equivalent (ie: L*U = convert(A,vec)).
- lu := lu_decom(mat5);
- lu := {
- [4 0 0 0 ]
- [ ]
- [1 0.75 0 0 ]
- [ ]
- [1 0.75 2.0 0 ]
- [ ]
- [3 0.25 4.0 4.33333333333]
- ,
- [1 1.25 0.25 0.5 ]
- [ ]
- [0 1 1 0.666666666667]
- [ ]
- [0 0 1 0 ]
- [ ]
- [0 0 0 1 ]
- ,
- [3,3,3,4]}
-
- mat5;
- [1 2 1 1]
- [ ]
- [1 2 3 1]
- [ ]
- [4 5 1 2]
- [ ]
- [3 4 5 6]
- tmp := first lu * second lu;
- [4 5.0 1 2.0]
- [ ]
- [1 2.0 1 1 ]
- tmp := [ ]
- [1 2.0 3.0 1 ]
- [ ]
- [3 4.0 5.0 6.0]
- tmp1 := convert(mat5,third lu);
- [4 5 1 2]
- [ ]
- [1 2 1 1]
- tmp1 := [ ]
- [1 2 3 1]
- [ ]
- [3 4 5 6]
- tmp - tmp1;
- [0 0 0 0]
- [ ]
- [0 0 0 0]
- [ ]
- [0 0 0 0]
- [ ]
- [0 0 0 0]
- % and the complex case...
- lu1 := lu_decom(mat6);
- lu1 := {
- [ 1 0 0 ]
- [ ]
- [ 4 - 4*i + 5 0 ]
- [ ]
- [i + 1 3 0.414634146341*i + 2.26829268293]
- ,
- [1 i 0 ]
- [ ]
- [0 1 0.19512195122*i + 0.243902439024]
- [ ]
- [0 0 1 ]
- ,
- [3,2,3]}
- mat6;
- [i + 1 i + 2 i + 3]
- [ ]
- [ 4 5 2 ]
- [ ]
- [ 1 i 0 ]
- tmp := first lu1 * second lu1;
- [ 1 i 0 ]
- [ ]
- tmp := [ 4 5 2.0 ]
- [ ]
- [i + 1 i + 2 i + 3.0]
- tmp1 := convert(mat6,third lu1);
- [ 1 i 0 ]
- [ ]
- tmp1 := [ 4 5 2 ]
- [ ]
- [i + 1 i + 2 i + 3]
- tmp - tmp1;
- [0 0 0]
- [ ]
- [0 0 0]
- [ ]
- [0 0 0]
- mat9inv := pseudo_inverse(mat9);
- [ - 0.199999999996 0.100000000013 ]
- [ ]
- [ - 0.0499999999988 0.0500000000037 ]
- mat9inv := [ ]
- [ 0.0999999999982 - 5.57816640101e-12]
- [ ]
- [ 0.249999999995 - 0.0500000000148 ]
- mat9 * mat9inv;
- [ 0.999999999982 - 0.0000000000557817125824]
- [ ]
- [5.5409010713e-12 1.00000000002 ]
- simplex(min,2*x1+14*x2+36*x3,{-2*x1+x2+4*x3>=5,-x1-2*x2-3*x3<=2});
- {45.0,{x1=0,x2=0,x3=1.25}}
- simplex(max,10000 x1 + 1000 x2 + 100 x3 + 10 x4 + x5,{ x1 <= 1, 20 x1 +
- x2 <= 100, 200 x1 + 20 x2 + x3 <= 10000, 2000 x1 + 200 x2 + 20 x3 + x4
- <= 1000000, 20000 x1 + 2000 x2 + 200 x3 + 20 x4 + x5 <= 100000000});
- {100000000,{x1=0,x2=0,x3=0,x4=0,x5=1.0e+08}}
- simplex(max, 5 x1 + 4 x2 + 3 x3,
- { 2 x1 + 3 x2 + x3 <= 5,
- 4 x1 + x2 + 2 x3 <= 11,
- 3 x1 + 4 x2 + 2 x3 <= 8 });
- {13.0,{x1=2.0,x2=0,x3=1.0}}
- simplex(min,3 x1 + 5 x2,{ x1 + 2 x2 >= 2, 22 x1 + x2 >= 3});
- {5.04651162791,{x1=0.0930233,x2=0.953488}}
- simplex(max,10x+5y+5.5z,{5x+3z<=200,0.2x+0.1y+0.5z<=12,0.1x+0.2y+0.3z<=9,
- 30x+10y+50z<=1500});
- {525.0,{x=40.0,y=25.0,z=0}}
- %example of extra variables (>=0) being added.
- simplex(min,x-y,{x>=-3});
- *** Warning: variable y not defined in input. Has been defined as >=0.
- ***** Error in simplex: The problem is unbounded.
- % unfeasible as simplex algorithm implies all x>=0.
- simplex(min,x,{x<=-100});
- ***** Error in simplex: Problem has no feasible solution.
- % three error examples.
- simplex(maxx,x,{x>=5});
- ***** Error in simplex(first argument): must be either max or min.
- simplex(max,x,x>=5);
- ***** Error in simplex(third argument}: must be a list.
- simplex(max,x,{x<=y});
- ***** Error in simplex(third argument):
- ***** right hand side of each inequality must be a number
- simplex(max, 346 X11 + 346 X12 + 248 X21 + 248 X22 + 399 X31 + 399 X32 +
- 200 Y11 + 200 Y12 + 75 Y21 + 75 Y22 + 2.35 Z1 + 3.5 Z2,
- {
- 4 X11 + 4 X12 + 2 X21 + 2 X22 + X31 + X32 + 250 Y11 + 250 Y12 + 125 Y21 +
- 125 Y22 <= 25000,
- X11 + X12 + X21 + X22 + X31 + X32 + 2 Y11 + 2 Y12 + Y21 + Y22 <= 300,
- 20 X11 + 15 X12 + 30 Y11 + 20 Y21 + Z1 <= 1500,
- 40 X12 + 35 X22 + 50 X32 + 15 Y12 + 10 Y22 + Z2 = 5000,
- X31 = 0,
- Y11 + Y12 <= 50,
- Y21 + Y22 <= 100
- });
- {99250.0,
- {y21=0,
- y22=0,
- x31=0,
- x11=75.0,
- z1=0,
- x21=225.0,
- z2=5000.0,
- x32=0,
- x22=0,
- x12=0,
- y12=0,
- y11=0}}
- % from Marc van Dongen. Finding the first feasible solution for the
- % solution of systems of linear diophantine inequalities.
- simplex(max,0,{
- 3*X259+4*X261+3*X262+2*X263+X269+2*X270+3*X271+4*X272+5*X273+X229=2,
- 7*X259+11*X261+8*X262+5*X263+3*X269+6*X270+9*X271+12*X272+15*X273+X229=4,
- 2*X259+5*X261+4*X262+3*X263+3*X268+4*X269+5*X270+6*X271+7*X272+8*X273=1,
- X262+2*X263+5*X268+4*X269+3*X270+2*X271+X272+2*X229=1,
- X259+X262+2*X263+4*X268+3*X269+2*X270+X271-X273+3*X229=2,
- X259+2*X261+2*X262+2*X263+3*X268+3*X269+3*X270+3*X271+3*X272+3*X273+X229=1,
- X259+X261+X262+X263+X268+X269+X270+X271+X272+X273+X229=1});
- {0,
- {x229=0.5,
- x259=0.5,
- x261=0,
- x262=0,
- x263=0,
- x268=0,
- x269=0,
- x270=0,
- x271=0,
- x272=0,
- x273=0}}
- svd_ans := svd(mat8);
- svd_ans := {
- [ 0.289784137735 0.957092029805]
- [ ]
- [ - 0.957092029805 0.289784137735]
- ,
- [5.1491628629 0 ]
- [ ]
- [ 0 2.9130948854]
- ,
- [ - 0.687215403194 0.726453707825 ]
- [ ]
- [ - 0.726453707825 - 0.687215403194]
- }
- tmp := tp first svd_ans * second svd_ans * third svd_ans;
- [ 0.99999998509 2.9999999859 ]
- tmp := [ ]
- [ - 4.00000004924 2.99999995342]
- tmp - mat8;
- [ - 0.0000000149096013313 - 0.0000000141042812984]
- [ ]
- [ - 0.0000000492430638488 - 0.0000000465832745711]
- mat9inv := pseudo_inverse(mat9);
- [ - 0.199999999996 0.100000000013 ]
- [ ]
- [ - 0.0499999999988 0.0500000000037 ]
- mat9inv := [ ]
- [ 0.0999999999982 - 5.57816640101e-12]
- [ ]
- [ 0.249999999995 - 0.0500000000148 ]
- mat9 * mat9inv;
- [ 0.999999999982 - 0.0000000000557817125824]
- [ ]
- [5.5409010713e-12 1.00000000002 ]
- % triang_adjoint(in_mat) calculates the
- % triangularizing adjoint of in_mat
- triang_adjoint(mat1);
- [1 0 0 0 0]
- [ ]
- [-2 1 0 0 0]
- [ ]
- [-1 2 -1 0 0]
- [ ]
- [0 0 0 0 0]
- [ ]
- [0 0 0 0 0]
- triang_adjoint(mat2);
- [1 0 0 0]
- [ ]
- [-2 1 0 0]
- [ ]
- [0 0 0 0]
- [ ]
- [0 0 0 0]
- triang_adjoint(mat5);
- [1 0 0 0]
- [ ]
- [-1 1 0 0]
- [ ]
- [-3 3 0 0]
- [ ]
- [10 -12 -4 6]
- triang_adjoint(mat6);
- [ 1 0 0 ]
- [ ]
- [ -4 i + 1 0 ]
- [ ]
- [4*i - 5 3 i - 3]
- triang_adjoint(mat7);
- [1 0 0]
- [ ]
- [-1 1 0]
- [ ]
- [1 - 1 2]
- triang_adjoint(mat8);
- [1 0]
- [ ]
- [4 1]
- triang_adjoint(mat9);
- ***** Error in triang_adjoint: input matrix should be square.
- % testing triang_adjoint with random matrices
- % the range of the integers is in one case from
- % -1000 to 1000. in the other case it is from
- % -1 to 1 so that the deteminant of the i-th
- % submatrix equals very often to zero.
- % random matrix contains arbitrary real values
- off only_integer;
- tmp:=random_matrix(5,5,1000);
- tmp := mat(( - 558.996086656*i + 1.71931812953,76.9987188735*i + 1.19004104683,
- - 739.283479439*i - 1.32534106204,742.101952123*i + 1.35926854848,
- 680.515777254*i + 1.56403177895),
- ( - 689.196170962*i + 1.49289170118,
- - 232.584493916*i - 1.38227180395,280.109305836*i + 1.38865247861,
- 298.151479065*i - 1.19035182389, - 602.312143386*i - 1.82183796879),
- ( - 739.195910955*i - 1.45944960213,859.293884826*i + 1.70488070379,
- 359.856032683*i - 1.2966991869, - 105.409833087*i - 1.9360631701,
- 234.350529301*i - 1.15598520849),
- (155.629059348*i + 1.09264385739, - 16.1559469072*i - 1.9425176505,
- 725.11578405*i - 1.05760723025,783.020942195*i - 1.28625265346,
- - 544.129360355*i + 1.74790906085),
- (373.562370318*i - 1.95218354686, - 722.109349973*i + 1.56309793677,
- - 746.664959169*i - 1.9915755693,186.154794517*i - 1.09842189916,
- 435.90998986*i - 1.46175649496))
- triang_adjoint tmp;
- mat((1,0,0,0,0),
- (689.196170962*i - 1.49289170118, - 558.996086656*i + 1.71931812953,0,0,0),
- ( - 1253.37955588*i + 7.64148089854e+5, - 1516.42713845*i - 4.23429448803e+5
- ,1078.01877642*i - 1.830851973e+5,0,0),
- 102791325687.0*i + 7.3752778526e+8
- (------------------------------------,
- i - 169.834887206
- - 3.66748178757e+10*i - 6.62162769101e+6
- -------------------------------------------,
- i - 169.834887206
- 9.85957444629e+7*i - 1.01033337718e+6,
- - 7.49414742893e+8*i - 2.25311577415e+6,0),
- - 547052849318.0*i + 4.06181988045e+13
- (-----------------------------------------,
- i - 112.974983172
- - 141265342333.0*i + 4.13350560163e+12
- -----------------------------------------,
- i - 112.974983172
- 845804392649.0*i - 9.62488227345e+13
- --------------------------------------,
- i - 112.974983172
- 876106032577.0*i - 2.66464796763e+13
- --------------------------------------,
- i - 112.974983172
- 1.47617976407e+12*i - 1.66771384004e+14
- -----------------------------------------))
- i - 169.834887206
- tmp:=random_matrix(1,1,1000);
- tmp := [ - 463.860434427*i + 1.35500571348]
- triang_adjoint tmp;
- [1]
- % random matrix contains complex real values
- on imaginary;
- tmp:=random_matrix(5,5,1000);
- tmp := mat((107.345792105*i - 1.98704739339,188.868545358*i + 1.22417796742,
- - 630.485915434*i + 1.32195292724,
- - 542.510039297*i - 1.94318764036,359.860945563*i - 1.69174206177),
- ( - 469.501213476*i - 1.17375946319, - 62.2197820375*i - 1.4051578261
- , - 98.6604380996*i + 1.64691610034,
- - 216.296595937*i + 1.56809020199,797.19877393*i - 1.31894550853),
- (2.07054207792*i + 1.3891068942,393.038868455*i - 1.60894498437,
- - 215.390393738*i - 1.00068640594,
- - 195.674928032*i + 1.22123114986,211.921323796*i - 1.42499533273),
- ( - 750.357435524*i - 1.19871674827,
- - 792.333836712*i - 1.63151974094, - 494.87049225*i + 1.99554801527
- ,638.173945822*i + 1.23793954612,111.418959978*i - 1.96273029328),
- ( - 255.359922267*i + 1.99035939892,
- - 575.376389757*i - 1.03533681609,463.961589382*i - 1.86476410547,
- 83.8856338571*i + 1.10369785887, - 129.597812786*i - 1.4917934624))
- triang_adjoint tmp;
- mat((1,0,0,0,0),
- (469.501213476*i + 1.17375946319,107.345792105*i - 1.98704739339,0,0,0),
- (383.407897912*i + 1.84407237435e+5,1218.59364331*i + 41798.5118562,
- 769.235159465*i - 81990.7504399,0,0),
- - 1.411092405e+10*i - 1.91497165215e+8
- (-----------------------------------------,
- i - 106.587367245
- - 2.06157034475e+10*i + 1.09218575639e+8
- -------------------------------------------,
- i - 106.587367245
- - 2.4008888901e+8*i + 13175.2571592,
- - 1.02728261373e+8*i + 9.22309484944e+5,0),
- - 203213290519.0*i - 3.07405185302e+12
- (-----------------------------------------,
- i - 184.764270765
- 311149245317.0*i + 2.05618234856e+13
- --------------------------------------,
- i - 184.764270765
- 212889617996.0*i - 4.13210409411e+13
- --------------------------------------,
- i - 184.764270765
- - 7.79955805661e+10*i - 5.10418442965e+12
- --------------------------------------------,
- i - 184.764270765
- 7.62835257557e+10*i - 1.40944700076e+13
- -----------------------------------------))
- i - 106.587367245
- tmp:=random_matrix(1,1,1000);
- tmp := [276.278111177*i + 1.74724262616]
- triang_adjoint tmp;
- [1]
- off imaginary;
- % random matrix contains rounded real values
- on rounded;
- tmp:=random_matrix(5,5,1000);
- tmp := mat(( - 293.224093687, - 99.023221037, - 819.400851656,796.020234589,
- 593.862087611),
- ( - 137.84203019,354.3234619, - 852.314261681, - 217.485901759,
- 256.139775139),
- (324.37828726, - 56.5718498235, - 118.293003834,108.279501424,
- 23.2385400299),
- ( - 976.556156754,684.207160793,146.328625386,502.848132905,
- 312.766816689),
- (211.783458501,166.556239469,175.715904944,251.57997022,280.123720131
- ))
- triang_adjoint tmp;
- mat((1,0,0,0,0),
- (137.84203019, - 293.224093687,0,0,0),
- ( - 1.07136859076e+5, - 48709.2122316, - 1.17545737812e+5,0,0),
- (1.27980020917e+8, - 1.64635380167e+8,4.76863677307e+8,1.43208428244e+8,0),
- (5.82963241185e+10,3.9383738062e+10, - 437637051137.0, - 111757830528.0,
- 261327212376.0))
- tmp:=random_matrix(1,1,1000);
- tmp := [406.584701921]
- triang_adjoint tmp;
- [1]
- off rounded;
- % random matrix contains only integer values
- on only_integer;
- tmp:=random_matrix(7,7,1000);
- [969 210 8 244 -887 -39 -916]
- [ ]
- [-774 296 -475 -694 -909 560 89 ]
- [ ]
- [-390 -559 -551 -567 241 -306 -655]
- [ ]
- tmp := [-478 809 181 -987 -144 929 -886]
- [ ]
- [188 267 -778 660 374 590 30 ]
- [ ]
- [ 73 971 -946 -43 -215 386 -365]
- [ ]
- [-792 -852 558 -797 343 219 110 ]
- triang_adjoint tmp;
- mat((1,0,0,0,0,0,0),
- (774,969,0,0,0,0,0),
- (548106,459771,449364,0,0,0,0),
- (-108937808,399369604,-497500435,-461605941,0,0,0),
- (-386678984240,-1001551613816,454549593485,637690866447,433944480084,0,0),
- (-604165739229705,-320961967400919,-165015285307395,-1008712187269380,
- -1670995725485274,1433408878792557,0),
- (-181830640557070260,295390292387079435,816541226477288004,
- 850494616785589377,458176543109779557,-1709784109660828152,
- -1475366833406131953))
- tmp:=random_matrix(7,7,1);
- [0 0 0 0 0 0 0]
- [ ]
- [0 0 0 0 0 0 0]
- [ ]
- [0 0 0 0 0 0 0]
- [ ]
- tmp := [0 0 0 0 0 0 0]
- [ ]
- [0 0 0 0 0 0 0]
- [ ]
- [0 0 0 0 0 0 0]
- [ ]
- [0 0 0 0 0 0 0]
- triang_adjoint tmp;
- [1 0 0 0 0 0 0]
- [ ]
- [0 0 0 0 0 0 0]
- [ ]
- [0 0 0 0 0 0 0]
- [ ]
- [0 0 0 0 0 0 0]
- [ ]
- [0 0 0 0 0 0 0]
- [ ]
- [0 0 0 0 0 0 0]
- [ ]
- [0 0 0 0 0 0 0]
- % random matrix contains only complex integer
- % values
- on imaginary;
- tmp:=random_matrix(5,5,1000);
- tmp := mat((12*(38*i + 83),3*(153*i - 305),2*(141*i + 427), - 553*i + 617,
- 3*(83*i + 157)),
- (164*i - 635, - 133*i + 991, - 373*i + 210,965*i - 608,2*(358*i - 55)
- ),
- ( - 230*i + 227,32*i + 339,2*(485*i - 219),707*i - 767, - 985*i - 51)
- ,
- ( - 609*i + 647, - 441*i + 187,930*i - 349,250*i - 211,274*i - 451),
- ( - 374*i - 135,793*i + 592, - 81*i - 1,89*i + 26,3*( - 40*i + 201)))
- triang_adjoint tmp;
- mat((1,0,0,0,0),
- ( - 164*i + 635,12*(38*i + 83),0,0,0),
- (293397*i - 414880,9*(14243*i - 47243),3*(253651*i + 180645),0,0),
- - 253324472288717*i + 71265413812547
- (---------------------------------------,
- 253651*i + 180645
- 2*( - 220885726602145*i - 1441709355714)
- ------------------------------------------, - 1436348339*i + 1393250309,
- 253651*i + 180645
- 511458435*i - 1454012933,0),
- 13983048003979950612955437881*i - 71498490838832832842693585028
- (-----------------------------------------------------------------,
- 65634686423804933*i - 9174596297286164
- 89295323223054915316808489269*i - 37624299403809895760446255007
- -----------------------------------------------------------------,
- 65634686423804933*i - 9174596297286164
- 2*( - 71881165390656818494884812727*i - 25318671134083617432051412624)
- ------------------------------------------------------------------------,
- 65634686423804933*i - 9174596297286164
- 134577377248105484011524135103*i + 3495516738012600790097438251
- -----------------------------------------------------------------,
- 65634686423804933*i - 9174596297286164
- 6*(65634686423804933*i - 9174596297286164)
- --------------------------------------------))
- 253651*i + 180645
- tmp:=random_matrix(5,5,2);
- [i - 1 i i 0 - (i + 1)]
- [ ]
- [ 0 i -1 - i + 1 i + 1 ]
- [ ]
- tmp := [ -1 0 0 - i + 1 -1 ]
- [ ]
- [ -1 - i - i - i i + 1 ]
- [ ]
- [i - 1 0 i + 1 -1 0 ]
- triang_adjoint tmp;
- [ 1 0 0 0 0 ]
- [ ]
- [ 0 i - 1 0 0 0 ]
- [ ]
- [ - (i + 1) i + 1 ]
- [------------ ------- - (i + 1) 0 0 ]
- [ i - 1 i - 1 ]
- [ ]
- [ - (i + 1) 2*(2*i + 1) - 2*i ]
- [------------ 0 ------------- -------- 0 ]
- [ i i - 1 i - 1 ]
- [ ]
- [ 2*(3*i - 4) 2*(i + 2) 5*(3*i + 1) - 7*i + 1 2*(i + 2) ]
- [------------- ----------- ------------- ------------ -----------]
- [ 4*i + 3 i - 1 4*i + 3 4*i + 3 i - 1 ]
- % Predicates.
- matrixp(mat1);
- t
- matrixp(poly);
- squarep(mat2);
- t
- squarep(mat3);
- symmetricp(mat1);
- t
- symmetricp(mat3);
- if not rounded_was_on then off rounded;
- END;
- 4: 4: 4: 4: 4: 4: 4: 4: 4:
- Time for test: 1460 ms, plus GC time: 60 ms
- 5: 5:
- Quitting
- Fri Feb 12 00:06:12 MET 1999
|