defint.rlg 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137
  1. Mon Jan 4 00:07:13 MET 1999
  2. REDUCE 3.7, 15-Jan-99 ...
  3. 1: 1:
  4. 2: 2: 2: 2: 2: 2: 2: 2: 2:
  5. *** ci already defined as operator
  6. *** si already defined as operator
  7. 3: 3: % Test cases for definite integration.
  8. int(x/(x+2),x,2,6);
  9. 2*( - log(2) + 2)
  10. int(sin x,x,0,pi/2);
  11. 1
  12. int(log(x),x,1,5);
  13. 5*log(5) - 4
  14. int((1+x**2/p**2)**(1/2),x,0,p);
  15. p*(sqrt(2) + log(sqrt(2) + 1))
  16. --------------------------------
  17. 2
  18. int(x**9+y+y**x+x,x,0,2);
  19. 2
  20. 10*log(y)*y + 522*log(y) + 5*y - 5
  21. -------------------------------------
  22. 5*log(y)
  23. % Collected by Kerry Gaskell, ZIB, 1993/94.
  24. int(x^2*log(1+x),x,0,infinity);
  25. 2
  26. int(x *log(1 + x),x,0,infinity)
  27. int(x*e^(-1/2x),x,0,infinity);
  28. 4
  29. int(x/4*e^(-1/2x),x,0,infinity);
  30. 1
  31. int(sqrt(2)*x^(1/2)*e^(-1/2x),x,0,infinity);
  32. 2*sqrt(pi)
  33. int(x^(3/2)*e^(-x),x,0,infinity);
  34. 3*sqrt(pi)
  35. ------------
  36. 4
  37. int(sqrt(pi)*x^(3/2)*e^(-x),x,0,infinity);
  38. 3*pi
  39. ------
  40. 4
  41. int(x*log(1+1/x),x,0,infinity);
  42. 1
  43. int(x*log(1 + ---),x,0,infinity)
  44. x
  45. int(si(1/x),x,0,infinity);
  46. 1
  47. int(si(---),x,0,infinity)
  48. x
  49. int(cos(1/x),x,0,infinity);
  50. 1
  51. int(cos(---),x,0,infinity)
  52. x
  53. int(sin(x^2),x,0,infinity);
  54. sqrt(pi)*sqrt(2)
  55. ------------------
  56. 4
  57. int(sin(x^(3/2)),x,0,infinity);
  58. 2/3 5
  59. sqrt(pi)*2 *gamma(---)
  60. 6
  61. --------------------------
  62. 2
  63. 3*gamma(---)
  64. 3
  65. int(besselj(2,x),x,0,infinity);
  66. 1
  67. int(besselj(2,y^(5/4)),y,0,infinity);
  68. 4/5 7
  69. 2*2 *gamma(---)
  70. 5
  71. -------------------
  72. 8
  73. 5*gamma(---)
  74. 5
  75. int(x^(-1)*besselj(2,sqrt(x)),x,0,infinity);
  76. 1
  77. int(bessely(2,x),x,0,infinity);
  78. int(bessely(2,x),x,0,infinity)
  79. int(x*besseli(2,x),x,0,infinity);
  80. int(x*besseli(2,x),x,0,infinity)
  81. int(besselk(0,x),x,0,infinity);
  82. pi
  83. ----
  84. 2
  85. int(x^2*besselk(2,x),x,0,infinity);
  86. 3*pi
  87. ------
  88. 2
  89. int(sinh(x),x,0,infinity);
  90. int(sinh(x),x,0,infinity)
  91. int(cosh(2*x),x,0,infinity);
  92. int(cosh(2*x),x,0,infinity)
  93. int(-3*ei(-x),x,0,infinity);
  94. 3
  95. int(x*shi(x),x,0,infinity);
  96. int(x*shi(x),x,0,infinity)
  97. int(x*fresnel_c(x),x,0,infinity);
  98. int(x*fresnel_c(x),x,0,infinity)
  99. int(x^3*e^(-2*x),x,0,infinity);
  100. 3
  101. ---
  102. 8
  103. int(x^(-1)*sin(x/3),x,0,infinity);
  104. pi
  105. ----
  106. 2
  107. int(x^(-1/2)*sin(x),x,0,infinity);
  108. sqrt(pi)*sqrt(2)
  109. ------------------
  110. 2
  111. int(2*x^(-1/2)*cos(x),x,0,infinity);
  112. sqrt(pi)*sqrt(2)
  113. int(sin x + cos x,x,0,infinity);
  114. int(sin(x) + cos(x),x,0,infinity)
  115. int(ei(-x) + sin(x^2),x,0,infinity);
  116. sqrt(pi)*sqrt(2) - 4
  117. ----------------------
  118. 4
  119. int(x^(-1)*(sin (-2*x) + sin(x^2)),x,0,infinity);
  120. - pi
  121. -------
  122. 4
  123. int(x^(-1)*(cos(x/2) - cos(x/3)),x,0,infinity);
  124. 3
  125. - log(---)
  126. 2
  127. int(x^(-1)*(cos x - cos(2*x)),x,0,infinity);
  128. log(2)
  129. int(x^(-1)*(cos(x) - cos(x)),x,0,infinity);
  130. 0
  131. int(2,x,0,infinity);
  132. int(2,x,0,infinity)
  133. int(cos(x)*si(x),x,0,infinity);
  134. int(cos(x)*si(x),x,0,infinity)
  135. int(2*cos(x)*e^(-x),x,0,infinity);
  136. 1
  137. int(x/2*cos(x)*e^(-x),x,0,infinity);
  138. 0
  139. int(x^2/4*cos(x)*e^(-2*x),x,0,infinity);
  140. 1
  141. -----
  142. 125
  143. int(1/(2*x)*sin(x)*e^(-3*x),x,0,infinity);
  144. 1
  145. atan(---)
  146. 3
  147. -----------
  148. 2
  149. int(3/x^2*sin(x)*e^(-x),x,0,infinity);
  150. 3 - x
  151. int(----*sin(x)*e ,x,0,infinity)
  152. 2
  153. x
  154. int(cos(sqrt(x))*e^(-x),x,0,infinity);
  155. i 1/4
  156. sqrt( - pi)*erf(---) + 2*e
  157. 2
  158. -------------------------------
  159. 1/4
  160. 2*e
  161. int(e^(-x)*besselj(2,x),x,0,infinity);
  162. - 2*sqrt(2) + 3
  163. ------------------
  164. sqrt(2)
  165. int(cos(x^2)*e^(-x),x,0,infinity);
  166. 1 1 1 1 1
  167. (pi*( - 2*cos(---)*fresnel_s(---) + cos(---) + 2*fresnel_c(---)*sin(---)
  168. 4 4 4 4 4
  169. 1
  170. - sin(---)))/(2*sqrt(pi)*sqrt(2))
  171. 4
  172. int(erf(x)*e^(-x),x,0,infinity);
  173. 1/4 1
  174. e *( - erf(---) + 1)
  175. 2
  176. int(besseli(2,x)*e^(-x),x,0,infinity);
  177. - 1 1
  178. 2*hypergeometric({------},{},1) + hypergeometric({---},{},1) - 2
  179. 2 2
  180. int(e^(-x^2)*cos(x),x,0,infinity);
  181. sqrt(pi)
  182. ----------
  183. 1/4
  184. 2*e
  185. int(x^(-1)*sin(x)*cos(x),x,0,infinity);
  186. pi
  187. ----
  188. 4
  189. int(x^(-1)*sin(x)*cos(2*x),x,0,infinity);
  190. 0
  191. int(x^(-1)*sin(x)*cos(x/2),x,0,infinity);
  192. pi
  193. ----
  194. 2
  195. int(e^x,x,0,infinity);
  196. x
  197. int(e ,x,0,infinity)
  198. int(e^(-x^2 - x),x,0,infinity);
  199. 1/4 1
  200. e *pi*( - erf(---) + 1)
  201. 2
  202. ---------------------------
  203. 2*sqrt(pi)
  204. int(e^(-(x+x^2+1)),x,0,infinity);
  205. 1/4 1
  206. e *pi*( - erf(---) + 1)
  207. 2
  208. ---------------------------
  209. 2*sqrt(pi)*e
  210. int(e^(-(x+1/x)^2),x,0,infinity);
  211. sqrt(pi)
  212. ----------
  213. 4
  214. 2*e
  215. int(e^(-(x+2))*sin(x),x,0,infinity);
  216. 1
  217. ------
  218. 2
  219. 2*e
  220. int(-3*x*e^(-1/2x),x,0,infinity);
  221. -12
  222. int(x*e^(-1/2*x^2),x,0,infinity);
  223. 1
  224. int(x^2*besselj(2,x),x,0,infinity);
  225. 2
  226. int(x *besselj(2,x),x,0,infinity)
  227. int(x*besselk(1,x),x,0,infinity);
  228. pi
  229. ----
  230. 2
  231. int(-3*ei(-x),x,0,infinity);
  232. 3
  233. int(x^3*e^(-2*x^2),x,0,infinity);
  234. 1
  235. ---
  236. 8
  237. int(sqrt(2)/2*x^(-3/2)*sin x,x,0,infinity);
  238. sqrt(pi)
  239. int(x^(-1)*(sin(-2*x) + sin(x^2)),x,0,infinity);
  240. - pi
  241. -------
  242. 4
  243. int(x^(-1)*(cos(3*x) - cos(x/2)),x,0,infinity);
  244. - log(6)
  245. int(x^(-1)*(sin x - sin(2*x)),x,0,infinity);
  246. 0
  247. int(1/x*sin(x)*e^(-3*x),x,0,infinity);
  248. 1
  249. atan(---)
  250. 3
  251. int(sin(x)*e^(-x),x,0,infinity);
  252. 1
  253. ---
  254. 2
  255. int(x^(-1)*sin(x)*cos(x),x,0,infinity);
  256. pi
  257. ----
  258. 4
  259. int(e^(1-x)*e^(2-x^2),x,0,infinity);
  260. 1/4 3 1
  261. e *e *pi*( - erf(---) + 1)
  262. 2
  263. ------------------------------
  264. 2*sqrt(pi)
  265. int(e^(-1/2x),x,0,y);
  266. y/2
  267. 2*(e - 1)
  268. --------------
  269. y/2
  270. e
  271. int(si(x),x,0,y);
  272. si(y)*y - 1 + cos(y)
  273. int(besselj(2,x^(1/4)),x,0,y);
  274. 1/4 1/4
  275. - 2*((8*sqrt(y) - y)*besselj(0,y ) - besselj(2,y )*y
  276. 1/4 1/4 1/4 1/4
  277. + 4*y *(y + 2)*(y - 2)*besselj(1,y ))
  278. int(x*besseli(2,x),x,0,y);
  279. - (2*(besseli(0,y) - 1) - besseli(1,y)*y)
  280. int(x^(3/2)*e^(-x),x,0,y);
  281. y
  282. 3*sqrt(pi)*e *erf(sqrt(y)) - 4*sqrt(y)*y - 6*sqrt(y)
  283. ------------------------------------------------------
  284. y
  285. 4*e
  286. int(sinh(x),x,0,y);
  287. y 2
  288. (e - 1)
  289. -----------
  290. y
  291. 2*e
  292. int(cosh(2*x),x,0,y);
  293. 2*y y y
  294. (e + 1)*(e + 1)*(e - 1)
  295. ------------------------------
  296. 2*y
  297. 4*e
  298. int(x*shi(x),x,0,y);
  299. y y 2
  300. - (e *(e *(y - 1) - 2*shi(y)*y ) + y + 1)
  301. --------------------------------------------
  302. y
  303. 4*e
  304. int(x^2*e^(-x^2),x,0,y);
  305. 2
  306. y
  307. sqrt(pi)*e *erf(y) - 2*y
  308. ---------------------------
  309. 2
  310. y
  311. 4*e
  312. int(x^(-1)/2*sin(x),x,0,y);
  313. si(y)
  314. -------
  315. 2
  316. int(sin x + cos x,x,0,y);
  317. sin(y) + 1 - cos(y)
  318. int(sin x + sin(-2*x),x,0,y);
  319. - (2*cos(y) - 1 - cos(2*y))
  320. ------------------------------
  321. 2
  322. int(sin(n*x),x,0,y);
  323. - (cos(n*y) - 1)
  324. -------------------
  325. n
  326. int(heaviside(x-1),x,0,y);
  327. (y - 1)*heaviside(y - 1)
  328. % Tests of transformations defined in defint package.
  329. laplace_transform(1,x);
  330. 1
  331. ---
  332. s
  333. laplace_transform(x,x);
  334. 1
  335. ----
  336. 2
  337. s
  338. laplace_transform(x^a/factorial(a),x);
  339. 1
  340. ------
  341. a
  342. s *s
  343. laplace_transform(x,e^(-a*x),x);
  344. 1
  345. -----------------
  346. 2 2
  347. a + 2*a*s + s
  348. laplace_transform(x^k,e^(-a*x),x);
  349. gamma(k + 1)
  350. -------------------------
  351. k k
  352. (a + s) *a + (a + s) *s
  353. laplace_transform(cosh(a*x),x);
  354. - s
  355. ---------
  356. 2 2
  357. a - s
  358. laplace_transform(1/(2*a^3),sinh(a*x)-sin(a*x),x);
  359. - 1
  360. ---------
  361. 4 4
  362. a - s
  363. laplace_transform(1/(a^2),1-cos(a*x),x);
  364. 1
  365. -----------
  366. 2 3
  367. a *s + s
  368. laplace_transform(1/(b^2-a^2),cos(a*x)-cos(b*x),x);
  369. s
  370. ----------------------------
  371. 2 2 2 2 2 2 4
  372. a *b + a *s + b *s + s
  373. laplace_transform(besselj(0,2*sqrt(k*x)),x);
  374. 1
  375. --------
  376. k/s
  377. e *s
  378. laplace_transform(Heaviside(x-1),x);
  379. 1
  380. ------
  381. s
  382. e *s
  383. laplace_transform(1/x,sin(k*x),x);
  384. k
  385. atan(---)
  386. s
  387. laplace_transform(1/(k*sqrt(pi)),e^(-x^2/(4*k^2)),x);
  388. 2 2 2 2
  389. k *s k *s
  390. - e *erf(k*s) + e
  391. laplace_transform(1/k,e^(-k^2/(4*x)),x);
  392. besselk(1,sqrt(s)*k)
  393. ----------------------
  394. sqrt(s)
  395. laplace_transform(2/(sqrt(pi*x)),besselk(0,2*sqrt(2*k*x)),x);
  396. k/s k
  397. e *besselk(0,---)
  398. s
  399. ---------------------
  400. sqrt(s)
  401. hankel_transform(x,x);
  402. n + 4
  403. gamma(-------)
  404. 2
  405. -------------------
  406. n - 2 2
  407. gamma(-------)*s
  408. 2
  409. Y_transform(x,x);
  410. - n + 4 n + 4
  411. gamma(----------)*gamma(-------)
  412. 2 2
  413. -------------------------------------
  414. - n + 3 n - 1 2
  415. gamma(----------)*gamma(-------)*s
  416. 2 2
  417. K_transform(x,x);
  418. - n + 4 n + 4
  419. gamma(----------)*gamma(-------)
  420. 2 2
  421. ----------------------------------
  422. 2
  423. 2*s
  424. struveh_transform(x,x);
  425. - n - 3 n + 5
  426. gamma(----------)*gamma(-------)
  427. 2 2
  428. -------------------------------------
  429. - n - 2 n - 2 2
  430. gamma(----------)*gamma(-------)*s
  431. 2 2
  432. fourier_sin(e^(-x),x);
  433. s
  434. --------
  435. 2
  436. s + 1
  437. fourier_sin(sqrt(x),e^(-1/2*x),x);
  438. 3*atan(2*s)
  439. 2*sin(-------------)*pi
  440. 2
  441. --------------------------------
  442. 2 3/4
  443. sqrt(pi)*(4*s + 1) *sqrt(2)
  444. fourier_sin(1/x,e^(-a*x),x);
  445. s
  446. atan(---)
  447. a
  448. fourier_sin(x^k,x);
  449. k/2 - k k
  450. 4 *gamma(------)*gamma(---)*k
  451. 2 2
  452. ---------------------------------
  453. k k
  454. 4*s *2 *gamma( - k)*s
  455. fourier_sin(1/(b-a),(e^(-a*x)-e^(-b*x)),x);
  456. a*s + b*s
  457. ----------------------------
  458. 2 2 2 2 2 2 4
  459. a *b + a *s + b *s + s
  460. fourier_sin(besselj(0,a*x),x);
  461. 2 2
  462. - a + s
  463. heaviside(------------)
  464. 2
  465. a
  466. -------------------------
  467. 2 2
  468. sqrt( - a + s )
  469. fourier_sin(1/sqrt(pi*x),cos(2*sqrt(k*x)),x);
  470. k k
  471. sqrt(s)*sqrt(2)*cos(---) - sqrt(s)*sqrt(2)*sin(---)
  472. s s
  473. -----------------------------------------------------
  474. 2*s
  475. fourier_sin(1/(k*sqrt(pi)),e^(-x^2/(4*k^2)),x);
  476. erf(i*k*s)*i
  477. --------------
  478. 2 2
  479. k *s
  480. e
  481. fourier_cos(e^(-1/2x),x);
  482. 2
  483. ----------
  484. 2
  485. 4*s + 1
  486. fourier_cos(x,e^(-x),x);
  487. 2
  488. - s + 1
  489. ---------------
  490. 4 2
  491. s + 2*s + 1
  492. fourier_cos(x,e^(-1/2*x^2),x);
  493. 2
  494. i*s s /2
  495. sqrt(pi)*erf(---------)*i*s + e *sqrt(2)
  496. sqrt(2)
  497. ---------------------------------------------
  498. 2
  499. s /2
  500. e *sqrt(2)
  501. fourier_cos(2*x^2,e^(-1/2x),x);
  502. 2
  503. - 384*s + 32
  504. ---------------------------
  505. 6 4 2
  506. 64*s + 48*s + 12*s + 1
  507. fourier_cos(x,e^(-a*x),x);
  508. 2 2
  509. a - s
  510. -------------------
  511. 4 2 2 4
  512. a + 2*a *s + s
  513. fourier_cos(x^n,e^(-a*x),x);
  514. s s
  515. cos(atan(---)*n + atan(---))*gamma(n + 1)
  516. a a
  517. -------------------------------------------
  518. 2 2 (n + 1)/2
  519. (a + s )
  520. fourier_cos(1/x,sin(k*x),x);
  521. 2 2
  522. sign(k - s )*pi + pi
  523. -----------------------
  524. 4
  525. fourier_cos(1/sqrt(pi*x),cos(2*sqrt(k*x)),x);
  526. k k
  527. sqrt(s)*sqrt(2)*cos(---) + sqrt(s)*sqrt(2)*sin(---)
  528. s s
  529. -----------------------------------------------------
  530. 2*s
  531. fourier_cos(1/(k*sqrt(pi)),e^(-x^2/(4*k^2)),x);
  532. 1
  533. --------
  534. 2 2
  535. k *s
  536. e
  537. fourier_cos(1/(pi*x),sin(2*k*sqrt(x)),x);
  538. 2 2
  539. k k
  540. intfc(----) + intfs(----)
  541. s s
  542. fourier_cos(1/(sqrt(pi*x)),e^(-2*k*sqrt(x)),x);
  543. 2 2 2
  544. k k k
  545. ( - 2*sqrt(s)*cos(----)*fresnel_s(----) + sqrt(s)*cos(----)
  546. s s s
  547. 2 2 2
  548. k k k
  549. + 2*sqrt(s)*fresnel_c(----)*sin(----) - sqrt(s)*sin(----))/(sqrt(2)*s)
  550. s s s
  551. laplace_transform(x^n/factorial(n)*e^(-a*x),x);
  552. 1
  553. -------------------------
  554. n n
  555. (a + s) *a + (a + s) *s
  556. laplace_transform(1/(2*a^2)*(cosh(a*x)-cos(a*x)),x);
  557. - s
  558. ---------
  559. 4 4
  560. a - s
  561. laplace_transform(k*a^k/x*besselj(k,a*x),x);
  562. 2*k
  563. a
  564. ----------------------
  565. 2 2 k
  566. (sqrt(a + s ) + s)
  567. fourier_sin(1/x*e^(-3*x),x);
  568. s
  569. atan(---)
  570. 3
  571. fourier_sin(1/(pi*x)*sin(2*k*sqrt(x)),x);
  572. 2 2
  573. k k
  574. intfc(----) - intfs(----)
  575. s s
  576. fourier_cos(x^n*e^(-a*x),x);
  577. s s
  578. cos(atan(---)*n + atan(---))*gamma(n + 1)
  579. a a
  580. -------------------------------------------
  581. 2 2 (n + 1)/2
  582. (a + s )
  583. fourier_cos(1/(k*sqrt(pi))*e^(-x^2/(4*k^2)),x);
  584. 1
  585. --------
  586. 2 2
  587. k *s
  588. e
  589. end;
  590. 4: 4: 4: 4: 4: 4: 4: 4: 4:
  591. Time for test: 12880 ms, plus GC time: 1650 ms
  592. 5: 5:
  593. Quitting
  594. Mon Jan 4 00:07:44 MET 1999