123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351 |
- module intfix$ % Further fixes to the integration package.
- if lisp !*comp then apply1('load!-package, 'int)$
- fluid '(!*depend !*nolnr !*failhard)$
- % die folgende Aenderung verhindert das Erzeugen von int* ...
- remd('simpint!*)$
- symbolic procedure simpint!* u$
- begin scalar x$
- return if (x := opmtch('int . u)) then simp x
- else simpiden('int . u)
- % statt else simpiden('int!* . u)
- end$
- % ein Patch fuer das REDUCE 3.5 EZGCD
- %symbolic procedure simpexpt u$
- % % We suppress reordering during exponent evaluation, otherwise
- % % internal parts (as in e^(a*b)) can have wrong order.
- % begin scalar expon;
- % expon := simpexpon carx(cdr u,'expt) where kord!*=nil;
- % expon := resimp expon; % We still need right order. <--- change.
- % return simpexpt1(car u,expon,nil)
- % end$
- % Zum Integrieren
- % put('int, 'simpfn, 'SimpIntPatch)$
- %algebraic <<
- % % fuer reelle Rechnungen:
- % let {abs(~r)**(~n) => r**n when (fixp(n) and evenp(n))}$
- % let {
- % int(1/~x^(~n),~x) => -x/(x^n*(n-1)) when numberp n,
- % ~x^(~m/~n)*~x => x**((m+n)/n) when (numberp n and numberp m),
- % int(~z/~y,~x) => log(y) when z = df(y,x)}$
- %
- % if sin(!%x)**2+cos(!%x)**2 neq 1 then
- % let {sin(~x)**2 => 1-cos(x)**2}$
- %
- % if cosh(!%x)**2 neq (sinh(!%x)**2 + 1) then
- % let {cosh(~x)**2 => (sinh(x)**2 + 1)}$
- %
- % if sin(!%x)*tan(!%x/2)+cos(!%x) neq 1 then
- % let {tan(~x/2) => (1-cos(x))/sin(x)}$
- %
- % if sin(!%x)*cot(!%x/2)-cos(!%x) neq 1 then
- % let {cot(~x/2) => (1+cos(x))/sin(x)}$
- %
- % if sqrt(!%x**2-!%y**2)-sqrt(!%x-!%y)*sqrt(!%x+!%y) neq 0 then
- % let {sqrt(~x)*sqrt(~y) => sqrt(x*y)}
- %>>$
- endmodule$
- module dfint$
- % Patch to improve differentiation, mainly of integrals.
- % This version specifically for use by the crack package.
- % Francis J. Wright <F.J.Wright@QMW.ac.uk>, 27 December 1997
- fluid '(!*fjwflag)$ !*fjwflag := t$
- switch allowdfint, dfint$ % dfint OFF by default
- deflist('((dfint ((t (rmsubs))))
- (allowdfint ((t (progn (put 'int 'dfform 'dfform_int) (rmsubs)))
- (nil (remprop 'int 'dfform))))), 'simpfg)$
- % There is no code to reverse the df-int commutation,
- % so no reason to call rmsubs when the switch is turned off.
- !*allowdfint := t$ % allowdfint ON by default
- put('int, 'dfform, 'dfform_int)$
- % The switch allowdfint ALLOWS differentiation under the integral sign
- % provided the result simplies, and should normally be on.
- % The switch dfint FORCES differentiation under the integral sign,
- % PROVIDED ALLOWDFINT IS ALSO ON, and should normally be turned on
- % only when required.
- symbolic procedure diffp(u,v);
- % U is a standard power, V a kernel.
- % Value is the standard quotient derivative of U wrt V.
- begin scalar n,w,x,y,z; integer m;
- n := cdr u; % integer power.
- u := car u; % main variable.
- if u eq v and (w := 1 ./ 1) then go to e
- else if atom u then go to f
- %else if (x := assoc(u,dsubl!*)) and (x := atsoc(v,cdr x))
- % and (w := cdr x) then go to e % deriv known.
- % DSUBL!* not used for now.
- else if (not atom car u and (w:= difff(u,v)))
- or (car u eq '!*sq and (w:= diffsq(cadr u,v)))
- then go to c % extended kernel found.
- else if x := get(car u,'dfform) then return apply3(x,u,v,n)
- else if x:= get(car u,dfn_prop u) then nil
- else if car u eq 'plus and (w := diffsq(simp u,v))
- then go to c
- else go to h; % unknown derivative.
- y := x;
- z := cdr u;
- a: w := diffsq(simp car z,v) . w;
- if caar w and null car y then go to h; % unknown deriv.
- y := cdr y;
- z := cdr z;
- if z and y then go to a
- else if z or y then go to h; % arguments do not match.
- y := reverse w;
- z := cdr u;
- w := nil ./ 1;
- b: % computation of kernel derivative.
- if caar y
- then w := addsq(multsq(car y,simp subla(pair(caar x,z),
- cdar x)),
- w);
- x := cdr x;
- y := cdr y;
- if y then go to b;
- c: % save calculated deriv in case it is used again.
- % if x := atsoc(u,dsubl!*) then go to d
- % else x := u . nil;
- % dsubl!* := x . dsubl!*;
- % d: rplacd(x,xadd(v . w,cdr x,t));
- e: % allowance for power.
- % first check to see if kernel has weight.
- if (x := atsoc(u,wtl!*))
- then w := multpq('k!* .** (-cdr x),w);
- m := n-1;
- % Evaluation is far more efficient if results are rationalized.
- return rationalizesq if n=1 then w
- else if flagp(dmode!*,'convert)
- and null(n := int!-equiv!-chk
- apply1(get(dmode!*,'i2d),n))
- then nil ./ 1
- else multsq(!*t2q((u .** m) .* n),w);
- f: % Check for possible unused substitution rule.
- if not depends(u,v)
- and (not (x:= atsoc(u,powlis!*))
- or not depends(cadddr x,v))
- and null !*depend
- then return nil ./ 1;
- w := list('df,u,v);
- w := if x := opmtch w then simp x else mksq(w,1);
- go to e;
- h: % Final check for possible kernel deriv.
- if car u eq 'df % multiple derivative
- then if depends(cadr u,v)
- % FJW - my version of above test was simply as follows. Surely, inner
- % derivative will already have simplied to 0 unless v depends on A!
- and not(cadr u eq v)
- % (df (df v A) v) ==> 0
- %% and not(cadr u eq v and not depends(v,caddr u))
- %% % (df (df v A) v) ==> 0 unless v depends on A.
- then
- <<if !*fjwflag and eqcar(cadr u, 'int) then
- % (df (df (int F x) A) v) ==> (df (df (int F x) v) A) ?
- % Commute the derivatives to differentiate the integral?
- if caddr cadr u eq v then
- % Evaluating (df u v) where u = (df (int F v) A)
- % Just return (df F A) - derivative absorbed
- << w := 'df . cadr cadr u . cddr u; go to j >>
- else if !*allowdfint and
- % Evaluating (df u v) where u = (df (int F x) A)
- % (If dfint is also on then this will not arise!)
- % Commute only if the result simplifies:
- not_df_p(w := diffsq(simp!* cadr cadr u, v))
- then <<
- % Generally must re-evaluate the integral (carefully!)
- % FJW. Bug fix!
- % w := aeval{'int, mk!*sq w, caddr cadr u} . cddr u;
- w := 'df . reval{'int, mk!*sq w, caddr cadr u} . cddr u;
- go to j >>; % derivative absorbed
- if (x := find_sub_df(w:= cadr u . derad(v,cddr u),
- get('df,'kvalue)))
- then <<w := simp car x;
- for each el in cdr x do
- for i := 1:cdr el do
- w := diffsq(w,car el);
- go to e>>
- else w := 'df . w
- >>
- else if null !*depend then return nil ./ 1
- else w := {'df,u,v}
- else w := {'df,u,v};
- j: if (x := opmtch w) then w := simp x
- else if not depends(u,v) and null !*depend then return nil ./ 1
- else w := mksq(w,1);
- go to e
- end$
- % Author: Francis J. Wright <F.J.Wright@QMW.ac.uk>
- % Last revised: 27 December 1997
- symbolic procedure dfform_int(u, v, n);
- % Simplify a SINGLE derivative of an integral.
- % u = '(int y x) [as main variable of SQ form]
- % v = kernel
- % n = integer power
- % Return SQ form of df(u**n, v) = n*u**(n-1)*df(u, v)
- % This routine is called by diffp via the hook
- % "if x := get(car u,'dfform) then return apply3(x,u,v,n)".
- % It does not necessarily need to use this hook, but it needs to be
- % called as an alternative to diffp so that the linearity of
- % differentiation has already been applied.
- begin scalar result, x, y;
- y := simp!* cadr u; % SQ form integrand
- x := caddr u; % kernel
- result :=
- if v eq x then y
- % df(int(y,x), x) -> y replacing the let rule in INT.RED
- else if not !*intflag!* and % not in the integrator
- % If used in the integrator it can cause infinite loops,
- % e.g. in df(int(int(f,x),y),x) and df(int(int(f,x),y),y)
- !*allowdfint and % must be on for dfint to work
- << y := diffsq(y, v); !*dfint or not_df_p y >>
- % it has simplified
- then simp{'int, mk!*sq y, x} % MUST re-simplify it!!!
- % i.e. differentiate under the integral sign
- % df(int(y, x), v) -> int(df(y, v), x).
- % (Perhaps I should use prepsq - kernels are normally true prefix?)
- else !*kk2q{'df, u, v}; % remain unchanged
- if not(n eq 1) then
- result := multsq( (((u .** (n-1)) .* n) .+ nil) ./ 1, result);
- return result
- end$
- symbolic procedure not_df_p y;
- % True if the SQ form y is not a df kernel.
- not(denr y eq 1 and
- not domainp (y := numr y) and eqcar(mvar y, 'df))$
- endmodule$
- module intdf$
- % Patch to simpint1 in src/int/trans/driver.red to provide better
- % simplification of integrals of derivatives. (I think -- hope --
- % this is the right place to hook this patch into the integrator!)
- % This patch was motivated by the needs of crack.
- % F.J.Wright@Maths.QMW.ac.uk, 31 December 1997
- %% load_package int$
- %apply1('load!-package, 'int)$ % not at compile time!
- switch PartialIntDf$ % off by default
- deflist('((PartialIntDf ((t (rmsubs))))), 'simpfg)$
- % If the switch PartialIntDf is turned on then integration by parts is
- % performed if the result simplifies in the sense that it integrates a
- % symbolic derivative and does not introduce new symbolic derivatives.
- % However, because the initial integral contains an unevaluated
- % derivative then the result must still contain an unevaluated
- % integral.
- symbolic procedure simpint1 u;
- % Varstack* rebound, since FORMLNR use can create recursive
- % evaluations. (E.g., with int(cos(x)/x**2,x)).
- begin scalar !*keepsqrts,v,varstack!*;
- u := 'int . prepsq car u . cdr u;
- if (v := formlnr u) neq u
- then if !*nolnr
- then <<v := simp subst('int!*,'int,v);
- return remakesf numr v ./ remakesf denr v>>
- else <<!*nolnr := nil . !*nolnr;
- v:=errorset!*(list('simp,mkquote v),!*backtrace);
- if pairp v then v := car v else v := simp u;
- !*nolnr := cdr !*nolnr;
- return v>>;
- % FJW: At this point linearity has been applied.
- return if (v := opmtch u) then simp v
- % FJW: Check for a directly integrable derivative:
- else if (v := NestedIntDf(cadr u, caddr u)) then mksq(v,1)
- else if !*failhard then rerror(int,4,"FAILHARD switch set")
- % FJW: Integrate by parts if the result simplifies:
- else if !*PartialIntDf and
- (v := PartialIntDf(cadr u, caddr u)) then mksq(v,1)
- else mksq(u,1)
- end$
- symbolic procedure NestedIntDf(y, x);
- %% int( ... df(f,A,x,B) ..., x) -> ... df(f,A,B) ...
- %% Find a df(f,A,x,B) among possibly nested int's and df's within
- %% the integrand y in int(y,x), and return the whole structure y
- %% but with the derivative integrated; otherwise return nil.
- %% [A,B are arbitrary sequences of kernels.]
- not atom y and
- begin scalar car_y, nested;
- return
- if (car_y := car y) eq 'df and memq(x, cddr y) then
- %% int( df(f, A, x, B), x ) -> df(f, A, B)
- 'df . cadr y . delete(x, cddr y)
- %% use delete for portability!
- %% deleq is defined in CSL, delq in PSL -- oops!
- else if memq(car_y, '(df int)) and
- (nested := NestedIntDf(cadr y, x)) then
- %% int( df(int(df(f, A, x, B), c), C), x ) ->
- %% df(int(df(f, A, B), c), C)
- %% int( int(df(f, A, x, B), c), x ) ->
- %% int(df(f, A, B), c)
- car_y . nested . cddr y
- end$
- symbolic procedure PartialIntDf(y, x);
- %% int(u(x)*df(v(x),x), x) -> u(x)*v(x) - int(df(u(x),x)*v(x), x)
- %% Integrate by parts if the resulting integral simplifies [to
- %% avoid infinite loops], which means that df(u(x),x) may not
- %% contain any unevaluated derivatives; otherwise return nil.
- not atom y and
- begin scalar denlist, facs, df, u, v;
- if car y eq 'quotient then <<
- denlist := cddr y;
- % y := numerator:
- if atom(y := cadr y) then return % no derivative
- >>;
- % y := list of factors:
- if car y eq 'times then y := cdr y
- else if denlist then y := y . nil
- else return;
- % Find an integrable derivative among the factors:
- facs := y;
- while facs and not
- (eqcar(df := car facs, 'df) and memq(x, cddr df)) do
- facs := cdr facs;
- if null facs then return; % no integrable derivative
- % Construct u(x) and v(x) [v(x) may still be a derivative]:
- u := delete(df, y); % list of factors
- u := if null u then 1 else if cdr u then 'times . u else car u;
- if denlist then u := 'quotient . u . denlist;
- v := cadr df; % kernel being differentiated
- if (df := delete(x, cddr df)) then v := 'df . v . df;
- % Check that df(u(x),x) simplifies:
- if smemq('df, df := reval {'df,u,x}) then return;
- return reval {'difference,
- {'times,u,v}, {'int, {'times, df, v}, x}}
- end$
- endmodule$
- end$
|