123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141 |
- off echo, dfprint$ % FJW
- % You need crack.red and applysym.red to run this demo.
- % To use other contents of the program applysym, not demonstrated
- % in this demo you need the program liepde.red.
- %
- % To run this demo you read in files with
- % in "crack"$
- % in "applysym.red"$
- % or, to speed up the calculation you compile them before with
- % faslout "crack"$
- % in "crack"$
- % faslend$
- % faslout "applysym"$
- % in "applysym.red"$
- % faslend$
- % and then load them with
- % load crack,applysym$
- lisp(depl!*:=nil)$ % clearing of all dependences
- setcrackflags()$
- lisp(print_:=nil)$
- lisp <<
- write"-------------------------------------------------------"$terpri()$
- write"This file is supposed to provide an automatic test of"$terpri()$
- write"the program APPLYSYM. On the other hand the application"$terpri()$
- write"of APPLYSYM is an interactive process, therefore the"$terpri()$
- write"interested user should inspect the example described"$terpri()$
- write"in APPLYSYM.TEX which demonstrates the application"$terpri()$
- write"of symmetries to integrate a 2nd order ODE."$terpri()$
- write"Here the program QUASILINPDE for integrating first"$terpri()$
- write"order quasilinear PDE is demonstrated."$terpri()$terpri()$
- write"The following equation comes up in the elimination"$terpri()$
- write"of resonant terms in normal forms of singularities"$terpri()$
- write"of vector fields (C.Herssens, P.Bonckaert, Limburgs"$terpri()$
- write"Universitair Centrum/Belgium, private communication)."$terpri()$
- write"-------------------------------------------------------"$terpri()$
- >>$
- depend w,x,y,z$
- QUASILINPDE( df(w,x)*x+df(w,y)*y+2*df(w,z)*z-2*w-x*y, w, {x,y,z} )$
- nodepend w,x,y,z$
- lisp <<terpri()$
- write"-------------------------------------------------------"$terpri()$
- write"Comment:"$terpri()$
- write"The result means that w is defined implicitly through "$terpri()$
- terpri()$
- write" x*y - log(z)*x*y + 2*w y "$terpri()$
- write"0 = ff(-----,---------------------,---------) "$terpri()$
- write" z z sqrt(z) "$terpri()$
- terpri()$
- write"with an arbitrary function ff of 3 arguments. As the PDE"$terpri()$
- write"was linear, the arguments of ff are such that we can "$terpri()$
- write"solve for w: "$terpri()$
- terpri()$
- write" x*y y "$terpri()$
- write"w = log(z)*x*y/2 + z*f(-----,---------) "$terpri()$
- write" z sqrt(z) "$terpri()$
- terpri()$
- write"with an arbitrary function f of 2 arguments."$terpri()$terpri()$
- write"-------------------------------------------------------"$terpri()$
- write"The following PDEs are taken from E. Kamke,"$terpri()$
- write"Loesungsmethoden und Loesungen von Differential-"$terpri()$
- write"gleichungen, Partielle Differentialgleichungen"$terpri()$
- write"erster Ordnung, B.G. Teubner, Stuttgart (1979)."$terpri()$
- >>$
- write"------------------- equation 1.4 ----------------------"$
- lisp(depl!*:=nil);
- depend z,x,y$
- QUASILINPDE( x*df(z,x)-y, z, {x,y})$
- write"------------------- equation 2.5 ----------------------"$
- lisp(depl!*:=nil);
- depend z,x,y$
- QUASILINPDE( x**2*df(z,x)+y**2*df(z,y), z, {x,y})$
- write"------------------- equation 2.6 ----------------------"$
- lisp(depl!*:=nil);
- depend z,x,y$
- QUASILINPDE( (x**2-y**2)*df(z,x)+2*x*y*df(z,y), z, {x,y})$
- write"------------------- equation 2.7 ----------------------"$
- lisp(depl!*:=nil);
- depend z,x,y$
- QUASILINPDE( (a0*x-a1)*df(z,x)+(a0*y-a2)*df(z,y), z, {x,y})$
- write"------------------- equation 2.14 ---------------------"$
- lisp(depl!*:=nil);
- depend z,x,y$
- QUASILINPDE( a*df(z,x)+b*df(z,y)-x**2+y**2, z, {x,y})$
- write"------------------- equation 2.16 ---------------------"$
- lisp(depl!*:=nil);
- depend z,x,y$
- QUASILINPDE( x*df(z,x)+y*df(z,y)-a*x, z, {x,y})$
- write"------------------- equation 2.20 ---------------------"$
- lisp(depl!*:=nil);
- depend z,x,y$
- QUASILINPDE( df(z,x)+df(z,y)-a*z, z, {x,y})$
- write"------------------- equation 2.21 ---------------------"$
- lisp(depl!*:=nil);
- depend z,x,y$
- QUASILINPDE( df(z,x)-y*df(z,y)+z, z, {x,y})$
- write"------------------- equation 2.22 ---------------------"$
- lisp(depl!*:=nil);
- depend z,x,y$
- QUASILINPDE( 2*df(z,x)-y*df(z,y)+z, z, {x,y})$
- write"------------------- equation 2.23 ---------------------"$
- lisp(depl!*:=nil);
- depend z,x,y$
- QUASILINPDE( a*df(z,x)+y*df(z,y)-b*z, z, {x,y})$
- write"------------------- equation 2.24 ---------------------"$
- lisp(depl!*:=nil);
- depend z,x,y$
- QUASILINPDE( x*(df(z,x)-df(z,y))-y*df(z,y), z,{x,y})$
- write"------------------- equation 2.25 ---------------------"$
- lisp(depl!*:=nil);
- depend z,x,y$
- QUASILINPDE( x*df(z,x)+y*df(z,y)-az, z, {x,y})$
- write"------------------- equation 2.26 ---------------------"$
- lisp(depl!*:=nil);
- depend z,x,y$
- QUASILINPDE( x*df(z,x)+y*df(z,y)-z+x**2+y**2-1, z, {x,y})$
- write"------------------- equation 2.39 ---------------------"$
- lisp(depl!*:=nil);
- depend z,x,y$
- QUASILINPDE( a*x**2*df(z,x)+b*y**2*df(z,y)-c*z**2, z, {x,y})$
- write"------------------- equation 2.40 ---------------------"$
- lisp(depl!*:=nil);
- depend z,x,y$
- QUASILINPDE( x*y**2*df(z,x)+2*y**3*df(z,y)-2*(y*z-x**2)**2, z,
- {x,y})$
- write"------------------- equation 3.12 ---------------------"$
- lisp(depl!*:=nil);
- depend w,x,y,z$
- QUASILINPDE( x*df(w,x)+(a*x+b*y)*df(w,y)+(c*x+d*y+f*z)*df(w,z), w,
- {x,y,z})$
- write"------------------------ end --------------------------"$
- lisp(depl!*:=nil);
- end;
|