123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236 |
- % test of DUMMY package version 1.1 running in REDUCE 3.6 and 3.7
- % DATE: 15 September 1998
- % Authors: H. Caprasse <hubert.caprasse@ulg.ac.be>
- %
- % Case of commuting operator:
- %
- operator co1,co2;
- % declare dummy indices
- % first syntax : base <name>
- %
- dummy_base dv;
- % dummy indices are dv1, dv2, dv3, ...
- exp := co2(dv2)*co2(dv2)$
- c_exp := canonical(exp);
- exp := dv2*co2(dv2)*co2(dv2)$
- c_exp := canonical(exp);
- exp := c_exp * co1(dv3);
- c_exp := canonical(exp);
- %
- operator a,aa,dd,te;
- clear_dummy_base;
- dummy_names a1,a2,b1,b2,mu1,mu2,nu1,nu2;
- es1:=a(a1,b1)*a(a2,b2);
- asn14:=aa(mu1,a1)*aa(nu2,b2)*dd(nu1,b1,mu2,a2)
- *te(mu1,mu2,nu1,nu2);
- asn17:=aa(mu1,a1)*aa(mu2,a2)*dd(nu1,b1,nu2,b2)
- *te(mu1,mu2,nu1,nu2);
-
- esn14:=es1*asn14;
- esn17:=es1*asn17;
- esn:=es1*(asn14+asn17);
- canonical esn;
- % that the next result is correct is not trivial
- % to show.
- % for esn14 changes of names are
- %
- % nu1 -> nu1
- % b1 -> b2 -> a2
- % mu2 -> nu2 -> mu1 -> mu2
- %
- % for esn17 they are
- %
- % nu1 -> nu1
- % nu2 -> nu2
- % b1 -> b2 -> a2 -> a1 -> b1
- %
- % the last result should be zero
- canonical esn -(canonical esn14 +canonical esn17);
- % remove dummy_names and operators.
- clear_dummy_names;
- clear a,aa,dd,te;
- %
- % Case of anticommuting operators
- %
- operator ao1, ao2;
- anticom ao1, ao2;
- % product of anticommuting operators with FREE indices
- a_exp := ao1(s1)*ao1(s2) - ao1(s2)*ao1(s1);
- a_exp := canonical(a_exp);
- % the indices are summed upon, i.e. are DUMMY indices
- clear_dummy_names;
- dummy_base dv;
- a_exp := ao1(dv1)*ao1(dv2)$
- canonical(a_exp);
- a_exp := ao1(dv1)*ao1(dv2) - ao1(dv2)*ao1(dv1);
- a_exp := canonical(a_exp);
- a_exp := ao1(dv2,dv3)*ao2(dv1,dv2)$
- a_exp := canonical(a_exp);
- a_exp := ao1(dv1)*ao1(dv3)*ao2(dv3)*ao2(dv1)$
- a_exp := canonical(a_exp);
- % Case of non commuting operators
- %
- operator no1, no2, no3;
- noncom no1, no2, no3;
- n_exp := no3(dv2)*no2(dv3)*no1(dv1) + no3(dv3)*no2(dv1)*no1(dv2)
- + no3(dv1)*no2(dv2)*no1(dv3);
- n_exp:=canonical n_exp;
- % ***
- % The example below displays a restriction of the package i.e
- % The non commuting operators are ASSUMED to COMMUTE with the
- % anticommuting operators.
- % ***
- exp := co1(dv1)*ao1(dv2,dv1,dv4)*no1(dv1,dv5)*co2(dv3)*ao1(dv1,dv3);
- canonical(exp);
- exp := c_exp * a_exp * no3(dv2)*no2(dv3)*no1(dv1);
- can_exp := canonical(exp);
- % Case where some operators have a symmetry.
- %
- operator as1, as2;
- antisymmetric as1, as2;
- dummy_base s;
- % With commuting and antisymmetric:
- asc_exp:=as1(s1,s2)*as1(s1,s3)*as1(s3,s4)*co1(s3)*co1(s4)+
- 2*as1(s1,s2)*as1(s1,s3)*as1(s3,s4)*co1(s2)*co1(s4)$
- canonical asc_exp;
- % Indeed: the second term is identically zero as one sees
- % if the substitutions s2->s4, s4->s2 and
- % s1->s3, s3->s1 are sucessively done.
- %
- % With anticommuting and antisymmetric operators:
- dummy_base dv;
- exp1 := ao1(dv1)*ao1(dv2)$
- canonical(exp1);
- exp2 := as1(dv1,dv2)$
- canonical(exp2);
- canonical(exp1*exp2);
- canonical(as1(dv1,dv2)*as2(dv2,dv1));
- % With symmetric and antisymmetric operators:
- operator ss1, ss2;
- symmetric ss1, ss2;
- exp := ss1(dv1,dv2)*ss2(dv1,dv2) - ss1(dv2,dv3)*ss2(dv2,dv3);
- canonical(exp);
- exp := as1(dv1,dv2)*as1(dv3,dv4)*as1(dv1,dv4);
- canonical(exp);
- % The last result is equal to half the sum given below:
- %
- exp + sub(dv2 = dv3, dv3 = dv2, dv1 = dv4, dv4 = dv1, exp);
- exp1 := as2(dv3,dv2)*as1(dv3,dv4)*as1(dv1,dv2)*as1(dv1,dv4);
- canonical(exp1);
- exp2 := as2(dv1,dv4)*as1(dv1,dv3)*as1(dv2,dv4)*as1(dv2,dv3);
- canonical(exp2);
- canonical(exp1-exp2);
- % Indeed:
- %
- exp2 - sub(dv1 = dv3, dv2 = dv1, dv3 = dv4, dv4 = dv2, exp1);
- % Case where mixed or incomplete symmetries for operators are declared.
- % Function 'symtree' can be used to declare an operator symmetric
- % or antisymmetric:
- operator om;
- symtree(om,{!+,1,2,3});
- exp:=om(dv1,dv2,dv3)+om(dv2,dv1,dv3)+om(dv3,dv2,dv1);
- canonical exp;
- % Declare om to be antisymmetric in the two last indices ONLY:
- symtree(om,{!*,{!*,1},{!-,2,3}});
- canonical exp;
- % With an antisymmetric operator m:
- operator m;
- dummy_base s;
- exp := om(nu,s3,s4)*i*psi*(m(s1,s4)*om(mu,s1,s3)
- + m(s2,s3)*om(mu,s4,s2) - m(s1,s3)*om(mu,s1,s4)
- - m(s2,s4)*om(mu,s3,s2))$
- canonical exp;
- % Case of the Riemann tensor
- %
- operator r;
- symtree (r, {!+, {!-, 1, 2}, {!-, 3, 4}});
- % Without anty dummy indices.
- clear_dummy_base;
- exp := r(dv1, dv2, dv3, dv4) * r(dv2, dv1, dv4, dv3)$
- canonical(exp);
- % With dummy indices:
-
- dummy_base dv;
- canonical( r(x,y,z,t) );
- canonical( r(x,y,t,z) );
- canonical( r(t,z,y,x) );
- exp := r(dv1, dv2, dv3, dv4) * r(dv2, dv1, dv4, dv3)$
- canonical(exp);
- exp := r(dv1, dv2, dv3, dv4) * r(dv1, dv3, dv2, dv4)$
- canonical(exp);
- clear_dummy_base;
- dummy_names i,j,k,l;
- exp := r(i,j,k,l)*ao1(i,j)*ao1(k,l)$
- canonical(exp);
- exp := r(k,i,l,j)*as1(k,i)*as1(k,j)$
- canonical(exp);
- % Cleanup of the previousy declared dummy variables..
- clear_dummy_names; clear_dummy_base;
- exp := co1(dv3)$
- c_exp := canonical(exp);
- end;
|