1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408 |
- Sun Aug 18 20:43:52 2002 run on Windows
- % Test file for TrigSimp package
- %-------------------------TrigSimp--------------------------
- trigsimp(tan(x+y), keepalltrig);
- - (tan(x) + tan(y))
- ----------------------
- tan(x)*tan(y) - 1
- trigsimp(ws, keepalltrig, combine);
- tan(x + y)
- trigsimp(sin(5x-9y));
- 4 9 4 7
- - 4096*cos(x)*sin(x) *sin(y) + 9216*cos(x)*sin(x) *sin(y)
- 4 5 4 3
- - 6912*cos(x)*sin(x) *sin(y) + 1920*cos(x)*sin(x) *sin(y)
- 4 2 9
- - 144*cos(x)*sin(x) *sin(y) + 3072*cos(x)*sin(x) *sin(y)
- 2 7 2 5
- - 6912*cos(x)*sin(x) *sin(y) + 5184*cos(x)*sin(x) *sin(y)
- 2 3 2 9
- - 1440*cos(x)*sin(x) *sin(y) + 108*cos(x)*sin(x) *sin(y) - 256*cos(x)*sin(y)
- 7 5 3
- + 576*cos(x)*sin(y) - 432*cos(x)*sin(y) + 120*cos(x)*sin(y)
- 5 8 5 6
- - 9*cos(x)*sin(y) + 4096*cos(y)*sin(x) *sin(y) - 7168*cos(y)*sin(x) *sin(y)
- 5 4 5 2 5
- + 3840*cos(y)*sin(x) *sin(y) - 640*cos(y)*sin(x) *sin(y) + 16*cos(y)*sin(x)
- 3 8 3 6
- - 5120*cos(y)*sin(x) *sin(y) + 8960*cos(y)*sin(x) *sin(y)
- 3 4 3 2 3
- - 4800*cos(y)*sin(x) *sin(y) + 800*cos(y)*sin(x) *sin(y) - 20*cos(y)*sin(x)
- 8 6
- + 1280*cos(y)*sin(x)*sin(y) - 2240*cos(y)*sin(x)*sin(y)
- 4 2
- + 1200*cos(y)*sin(x)*sin(y) - 200*cos(y)*sin(x)*sin(y) + 5*cos(y)*sin(x)
- trigsimp(ws, combine);
- sin(5*x - 9*y)
- trigsimp(cos(10x), cos);
- 10 8 6 4 2
- 512*cos(x) - 1280*cos(x) + 1120*cos(x) - 400*cos(x) + 50*cos(x) - 1
- trigsimp(cos(10x), sin);
- 10 8 6 4 2
- - 512*sin(x) + 1280*sin(x) - 1120*sin(x) + 400*sin(x) - 50*sin(x) + 1
- trigsimp((sin(x-a)+sin(x+a))/(cos(x-a)+cos(x+a)));
- sin(x)
- --------
- cos(x)
- trigsimp(cos(6x+4y), sin);
- 5 3 5
- 256*cos(x)*cos(y)*sin(x) *sin(y) - 128*cos(x)*cos(y)*sin(x) *sin(y)
- 3 3 3
- - 256*cos(x)*cos(y)*sin(x) *sin(y) + 128*cos(x)*cos(y)*sin(x) *sin(y)
- 3
- + 48*cos(x)*cos(y)*sin(x)*sin(y) - 24*cos(x)*cos(y)*sin(x)*sin(y)
- 6 4 6 2 6 4 4
- - 256*sin(x) *sin(y) + 256*sin(x) *sin(y) - 32*sin(x) + 384*sin(x) *sin(y)
- 4 2 4 2 4 2 2
- - 384*sin(x) *sin(y) + 48*sin(x) - 144*sin(x) *sin(y) + 144*sin(x) *sin(y)
- 2 4 2
- - 18*sin(x) + 8*sin(y) - 8*sin(y) + 1
- trigsimp(ws, expon);
- 12*i*x + 8*i*y
- e + 1
- ---------------------
- 6*i*x + 4*i*y
- 2*e
- trigsimp(ws, hyp);
- 5 3
- 256*cosh(i*x)*cosh(i*y)*sinh(i*x) *sinh(i*y)
- 5
- + 128*cosh(i*x)*cosh(i*y)*sinh(i*x) *sinh(i*y)
- 3 3
- + 256*cosh(i*x)*cosh(i*y)*sinh(i*x) *sinh(i*y)
- 3
- + 128*cosh(i*x)*cosh(i*y)*sinh(i*x) *sinh(i*y)
- 3
- + 48*cosh(i*x)*cosh(i*y)*sinh(i*x)*sinh(i*y)
- 6 4
- + 24*cosh(i*x)*cosh(i*y)*sinh(i*x)*sinh(i*y) + 256*sinh(i*x) *sinh(i*y)
- 6 2 6 4 4
- + 256*sinh(i*x) *sinh(i*y) + 32*sinh(i*x) + 384*sinh(i*x) *sinh(i*y)
- 4 2 4 2 4
- + 384*sinh(i*x) *sinh(i*y) + 48*sinh(i*x) + 144*sinh(i*x) *sinh(i*y)
- 2 2 2 4 2
- + 144*sinh(i*x) *sinh(i*y) + 18*sinh(i*x) + 8*sinh(i*y) + 8*sinh(i*y) + 1
- trigsimp(ws, combine);
- cosh(6*i*x + 4*i*y)
- trigsimp(ws, trig, combine);
- cos(6*x + 4*y)
- trigsimp(sqrt(1-cos(2x)));
- sqrt(2)*abs(sin(x))
- trigsimp(sin(x)^20*cos(x)^20, sin);
- 20 20 18 16 14 12
- sin(x) *(sin(x) - 10*sin(x) + 45*sin(x) - 120*sin(x) + 210*sin(x)
- 10 8 6 4 2
- - 252*sin(x) + 210*sin(x) - 120*sin(x) + 45*sin(x) - 10*sin(x)
- + 1)
- trigsimp(sin(x)^20*cos(x)^20, cos);
- 20 20 18 16 14 12
- cos(x) *(cos(x) - 10*cos(x) + 45*cos(x) - 120*cos(x) + 210*cos(x)
- 10 8 6 4 2
- - 252*cos(x) + 210*cos(x) - 120*cos(x) + 45*cos(x) - 10*cos(x)
- + 1)
- trigsimp(sin(x)^20*cos(x)^20, compact);
- 20 20
- cos(x) *sin(x)
- trigsimp(sin(x)^10, combine);
- - cos(10*x) + 10*cos(8*x) - 45*cos(6*x) + 120*cos(4*x) - 210*cos(2*x) + 126
- ------------------------------------------------------------------------------
- 512
- trigsimp(ws, hyp);
- 10
- - sinh(i*x)
- trigsimp(ws, expon);
- 20*i*x 18*i*x 16*i*x 14*i*x 12*i*x 10*i*x
- ( - e + 10*e - 45*e + 120*e - 210*e + 252*e
- 8*i*x 6*i*x 4*i*x 2*i*x 10*i*x
- - 210*e + 120*e - 45*e + 10*e - 1)/(1024*e )
- trigsimp(ws, trig);
- 10
- sin(x)
- int(sin(x+y)*cos(x-y)*tan(x), x);
- int(cos(x - y)*sin(x + y)*tan(x),x)
- int(trigsimp(sin(x+y)*cos(x-y)*tan(x)), x);
- 2 2
- cos(x) *x - cos(x)*sin(x) - 2*cos(y)*log(cos(x))*sin(y) + sin(x) *x
- ---------------------------------------------------------------------
- 2
- % int(sin(x+y)*cos(x-y)/tan(x), x) hangs
- int(trigsimp(sin(x+y)*cos(x-y)/tan(x)), x);
- x 2
- (cos(x)*sin(x) - 2*cos(y)*log(tan(---) + 1)*sin(y)
- 2
- x
- + 2*cos(y)*log(tan(---))*sin(y) + x)/2
- 2
- trigsimp(2tan(x)*(sec(x)^2 - tan(x)^2 - 1));
- 0
- on rationalize;
- df(sqrt(1+cos(x)), x, 4);
- 4 2 2 2
- (sqrt(cos(x) + 1)*( - 4*cos(x) - 20*cos(x) *sin(x) + 12*cos(x)
- 2 4 2
- - 4*cos(x)*sin(x) + 8*cos(x) - 15*sin(x) + 16*sin(x) ))/(16
- 4 3 2
- *(cos(x) + 4*cos(x) + 6*cos(x) + 4*cos(x) + 1))
- off rationalize;
- trigsimp(ws);
- sqrt(cos(x) + 1)
- ------------------
- 16
- df(2cos((x+y)/2)*cos((x-y)/2), x);
- x - y x + y x + y x - y
- - (cos(-------)*sin(-------) + cos(-------)*sin(-------))
- 2 2 2 2
- trigsimp(ws, combine);
- - sin(x)
- df(int(1/cos(x), x), x);
- x 2
- - (tan(---) + 1)
- 2
- --------------------
- x 2
- tan(---) - 1
- 2
- trigsimp(ws, combine);
- 1
- --------
- cos(x)
- trigsimp(cos(100x));
- 100
- 633825300114114700748351602688*sin(x)
- 98
- - 15845632502852867518708790067200*sin(x)
- 96
- + 192128294097091018664344079564800*sin(x)
- 94
- - 1505335087771022414277335056384000*sin(x)
- 92
- + 8567473526884295537508113973248000*sin(x)
- 90
- - 37750993877408064336851542202122240*sin(x)
- 88
- + 134036108580690866727917044786790400*sin(x)
- 86
- - 394078512785625681900511864396185600*sin(x)
- 84
- + 978503372439851812055958467641344000*sin(x)
- 82
- - 2082455895192505138478065456775168000*sin(x)
- 80
- + 3842131126630171980492030767750184960*sin(x)
- 78
- - 6200783636440931286187342812099379200*sin(x)
- 76
- + 8816739233064449172547628060953804800*sin(x)
- 74
- - 11108623702136905456127648087408640000*sin(x)
- 72
- + 12460295938318846194767764735918080000*sin(x)
- 70
- - 12489614281703125832873100652943769600*sin(x)
- 68
- + 11221137831217652115471926367879168000*sin(x)
- 66
- - 9058026923994972189597820080095232000*sin(x)
- 64
- + 6581798018959761296303294062264320000*sin(x)
- 62
- - 4310885252184171141438414824407040000*sin(x)
- 60
- + 2547463753712583633893763260298035200*sin(x)
- 58
- - 1358954443662228159129584379363328000*sin(x)
- 56
- + 654531379770880870350000868032512000*sin(x)
- 54
- - 284578860769948204500000377405440000*sin(x)
- 52
- + 111631674825053695350740279623680000*sin(x)
- 50
- - 39472960218138986676021762874933248*sin(x)
- 48
- + 12566106098549963273941439584665600*sin(x)
- 46
- - 3595780740528756614156758967910400*sin(x)
- 44
- + 923024074019658505866132324352000*sin(x)
- 42
- - 212040013118649088525828358144000*sin(x)
- 40
- + 43468202689323063147794813419520*sin(x)
- 38
- - 7925478751208973645460484915200*sin(x)
- 36
- + 1280241627320751027747867852800*sin(x)
- 34
- - 182395347175955031090266112000*sin(x)
- 32
- + 22799418396994378886283264000*sin(x)
- 30 28
- - 2485387148331694929142087680*sin(x) + 234623135747458180159897600*sin(x)
- 26 24
- - 19023497493037149742694400*sin(x) + 1312104559685287280640000*sin(x)
- 22 20
- - 76111992112891822080000*sin(x) + 3662889620432918937600*sin(x)
- 18 16
- - 143850563845029888000*sin(x) + 4517474603507712000*sin(x)
- 14 12
- - 110586893598720000*sin(x) + 2042087523840000*sin(x)
- 10 8 6
- - 27227833651200*sin(x) + 246628928000*sin(x) - 1386112000*sin(x)
- 4 2
- + 4165000*sin(x) - 5000*sin(x) + 1
- trigsimp(ws, combine);
- cos(100*x)
- trigsimp(sinh(3a+4b-5c)*cosh(3a-5b-6c));
- 5 10
- 16384*cosh(a)*cosh(b)*cosh(c)*sinh(a) *sinh(c)
- 5 8
- + 36864*cosh(a)*cosh(b)*cosh(c)*sinh(a) *sinh(c)
- 5 6
- + 28672*cosh(a)*cosh(b)*cosh(c)*sinh(a) *sinh(c)
- 5 4
- + 8960*cosh(a)*cosh(b)*cosh(c)*sinh(a) *sinh(c)
- 5 2
- + 960*cosh(a)*cosh(b)*cosh(c)*sinh(a) *sinh(c)
- 5
- + 16*cosh(a)*cosh(b)*cosh(c)*sinh(a)
- 3 10
- + 16384*cosh(a)*cosh(b)*cosh(c)*sinh(a) *sinh(c)
- 3 8
- + 36864*cosh(a)*cosh(b)*cosh(c)*sinh(a) *sinh(c)
- 3 6
- + 28672*cosh(a)*cosh(b)*cosh(c)*sinh(a) *sinh(c)
- 3 4
- + 8960*cosh(a)*cosh(b)*cosh(c)*sinh(a) *sinh(c)
- 3 2
- + 960*cosh(a)*cosh(b)*cosh(c)*sinh(a) *sinh(c)
- 3
- + 16*cosh(a)*cosh(b)*cosh(c)*sinh(a)
- 10
- + 3072*cosh(a)*cosh(b)*cosh(c)*sinh(a)*sinh(c)
- 8
- + 6912*cosh(a)*cosh(b)*cosh(c)*sinh(a)*sinh(c)
- 6
- + 5376*cosh(a)*cosh(b)*cosh(c)*sinh(a)*sinh(c)
- 4
- + 1680*cosh(a)*cosh(b)*cosh(c)*sinh(a)*sinh(c)
- 2
- + 180*cosh(a)*cosh(b)*cosh(c)*sinh(a)*sinh(c)
- 5 11
- + 3*cosh(a)*cosh(b)*cosh(c)*sinh(a) + 16384*cosh(a)*sinh(a) *sinh(b)*sinh(c)
- 5 9
- + 45056*cosh(a)*sinh(a) *sinh(b)*sinh(c)
- 5 7
- + 45056*cosh(a)*sinh(a) *sinh(b)*sinh(c)
- 5 5
- + 19712*cosh(a)*sinh(a) *sinh(b)*sinh(c)
- 5 3 5
- + 3520*cosh(a)*sinh(a) *sinh(b)*sinh(c) + 176*cosh(a)*sinh(a) *sinh(b)*sinh(c)
- 3 11
- + 16384*cosh(a)*sinh(a) *sinh(b)*sinh(c)
- 3 9
- + 45056*cosh(a)*sinh(a) *sinh(b)*sinh(c)
- 3 7
- + 45056*cosh(a)*sinh(a) *sinh(b)*sinh(c)
- 3 5
- + 19712*cosh(a)*sinh(a) *sinh(b)*sinh(c)
- 3 3 3
- + 3520*cosh(a)*sinh(a) *sinh(b)*sinh(c) + 176*cosh(a)*sinh(a) *sinh(b)*sinh(c)
- 11
- + 3072*cosh(a)*sinh(a)*sinh(b)*sinh(c)
- 9 7
- + 8448*cosh(a)*sinh(a)*sinh(b)*sinh(c) + 8448*cosh(a)*sinh(a)*sinh(b)*sinh(c)
- 5 3
- + 3696*cosh(a)*sinh(a)*sinh(b)*sinh(c) + 660*cosh(a)*sinh(a)*sinh(b)*sinh(c)
- 6 11
- + 33*cosh(a)*sinh(a)*sinh(b)*sinh(c) - 16384*cosh(b)*sinh(a) *sinh(c)
- 6 9 6 7
- - 45056*cosh(b)*sinh(a) *sinh(c) - 45056*cosh(b)*sinh(a) *sinh(c)
- 6 5 6 3
- - 19712*cosh(b)*sinh(a) *sinh(c) - 3520*cosh(b)*sinh(a) *sinh(c)
- 6 4 11
- - 176*cosh(b)*sinh(a) *sinh(c) - 24576*cosh(b)*sinh(a) *sinh(c)
- 4 9 4 7
- - 67584*cosh(b)*sinh(a) *sinh(c) - 67584*cosh(b)*sinh(a) *sinh(c)
- 4 5 4 3
- - 29568*cosh(b)*sinh(a) *sinh(c) - 5280*cosh(b)*sinh(a) *sinh(c)
- 4 2 11
- - 264*cosh(b)*sinh(a) *sinh(c) - 9216*cosh(b)*sinh(a) *sinh(c)
- 2 9 2 7
- - 25344*cosh(b)*sinh(a) *sinh(c) - 25344*cosh(b)*sinh(a) *sinh(c)
- 2 5 2 3
- - 11088*cosh(b)*sinh(a) *sinh(c) - 1980*cosh(b)*sinh(a) *sinh(c)
- 2 8
- - 99*cosh(b)*sinh(a) *sinh(c) + 128*cosh(b)*sinh(b) *sinh(c)
- 6 4
- + 224*cosh(b)*sinh(b) *sinh(c) + 120*cosh(b)*sinh(b) *sinh(c)
- 2 11 9
- + 20*cosh(b)*sinh(b) *sinh(c) - 512*cosh(b)*sinh(c) - 1408*cosh(b)*sinh(c)
- 7 5 3
- - 1408*cosh(b)*sinh(c) - 616*cosh(b)*sinh(c) - 110*cosh(b)*sinh(c)
- 6 10
- - 5*cosh(b)*sinh(c) - 16384*cosh(c)*sinh(a) *sinh(b)*sinh(c)
- 6 8
- - 36864*cosh(c)*sinh(a) *sinh(b)*sinh(c)
- 6 6
- - 28672*cosh(c)*sinh(a) *sinh(b)*sinh(c)
- 6 4
- - 8960*cosh(c)*sinh(a) *sinh(b)*sinh(c)
- 6 2 6
- - 960*cosh(c)*sinh(a) *sinh(b)*sinh(c) - 16*cosh(c)*sinh(a) *sinh(b)
- 4 10
- - 24576*cosh(c)*sinh(a) *sinh(b)*sinh(c)
- 4 8
- - 55296*cosh(c)*sinh(a) *sinh(b)*sinh(c)
- 4 6
- - 43008*cosh(c)*sinh(a) *sinh(b)*sinh(c)
- 4 4
- - 13440*cosh(c)*sinh(a) *sinh(b)*sinh(c)
- 4 2 4
- - 1440*cosh(c)*sinh(a) *sinh(b)*sinh(c) - 24*cosh(c)*sinh(a) *sinh(b)
- 2 10
- - 9216*cosh(c)*sinh(a) *sinh(b)*sinh(c)
- 2 8
- - 20736*cosh(c)*sinh(a) *sinh(b)*sinh(c)
- 2 6
- - 16128*cosh(c)*sinh(a) *sinh(b)*sinh(c)
- 2 4
- - 5040*cosh(c)*sinh(a) *sinh(b)*sinh(c)
- 2 2 2
- - 540*cosh(c)*sinh(a) *sinh(b)*sinh(c) - 9*cosh(c)*sinh(a) *sinh(b)
- 9 7 5
- + 128*cosh(c)*sinh(b) + 288*cosh(c)*sinh(b) + 216*cosh(c)*sinh(b)
- 3 10
- + 60*cosh(c)*sinh(b) - 512*cosh(c)*sinh(b)*sinh(c)
- 8 6
- - 1152*cosh(c)*sinh(b)*sinh(c) - 896*cosh(c)*sinh(b)*sinh(c)
- 4 2
- - 280*cosh(c)*sinh(b)*sinh(c) - 30*cosh(c)*sinh(b)*sinh(c)
- + 4*cosh(c)*sinh(b)
- trigsimp(ws, combine);
- sinh(9*b + c) + sinh(6*a - b - 11*c)
- --------------------------------------
- 2
- trigsimp(sec(20x-y), keepalltrig);
- 20 20 20 19
- (csc(x) *csc(y)*sec(x) *sec(y))/(csc(x) *csc(y) + 20*csc(x) *sec(x)*sec(y)
- 18 2 17 3
- - 190*csc(x) *csc(y)*sec(x) - 1140*csc(x) *sec(x) *sec(y)
- 16 4 15 5
- + 4845*csc(x) *csc(y)*sec(x) + 15504*csc(x) *sec(x) *sec(y)
- 14 6 13 7
- - 38760*csc(x) *csc(y)*sec(x) - 77520*csc(x) *sec(x) *sec(y)
- 12 8 11 9
- + 125970*csc(x) *csc(y)*sec(x) + 167960*csc(x) *sec(x) *sec(y)
- 10 10 9 11
- - 184756*csc(x) *csc(y)*sec(x) - 167960*csc(x) *sec(x) *sec(y)
- 8 12 7 13
- + 125970*csc(x) *csc(y)*sec(x) + 77520*csc(x) *sec(x) *sec(y)
- 6 14 5 15
- - 38760*csc(x) *csc(y)*sec(x) - 15504*csc(x) *sec(x) *sec(y)
- 4 16 3 17
- + 4845*csc(x) *csc(y)*sec(x) + 1140*csc(x) *sec(x) *sec(y)
- 2 18 19 20
- - 190*csc(x) *csc(y)*sec(x) - 20*csc(x)*sec(x) *sec(y) + csc(y)*sec(x) )
- trigsimp(csc(10a-9b), keepalltrig);
- 10 9 10 9 10 8
- ( - csc(a) *csc(b) *sec(a) *sec(b) )/(9*csc(a) *csc(b) *sec(b)
- 10 6 3 10 4 5
- - 84*csc(a) *csc(b) *sec(b) + 126*csc(a) *csc(b) *sec(b)
- 10 2 7 10 9 9 9
- - 36*csc(a) *csc(b) *sec(b) + csc(a) *sec(b) - 10*csc(a) *csc(b) *sec(a)
- 9 7 2 9 5 4
- + 360*csc(a) *csc(b) *sec(a)*sec(b) - 1260*csc(a) *csc(b) *sec(a)*sec(b)
- 9 3 6 9 8
- + 840*csc(a) *csc(b) *sec(a)*sec(b) - 90*csc(a) *csc(b)*sec(a)*sec(b)
- 8 8 2 8 6 2 3
- - 405*csc(a) *csc(b) *sec(a) *sec(b) + 3780*csc(a) *csc(b) *sec(a) *sec(b)
- 8 4 2 5
- - 5670*csc(a) *csc(b) *sec(a) *sec(b)
- 8 2 2 7 8 2 9
- + 1620*csc(a) *csc(b) *sec(a) *sec(b) - 45*csc(a) *sec(a) *sec(b)
- 7 9 3 7 7 3 2
- + 120*csc(a) *csc(b) *sec(a) - 4320*csc(a) *csc(b) *sec(a) *sec(b)
- 7 5 3 4
- + 15120*csc(a) *csc(b) *sec(a) *sec(b)
- 7 3 3 6
- - 10080*csc(a) *csc(b) *sec(a) *sec(b)
- 7 3 8 6 8 4
- + 1080*csc(a) *csc(b)*sec(a) *sec(b) + 1890*csc(a) *csc(b) *sec(a) *sec(b)
- 6 6 4 3
- - 17640*csc(a) *csc(b) *sec(a) *sec(b)
- 6 4 4 5
- + 26460*csc(a) *csc(b) *sec(a) *sec(b)
- 6 2 4 7 6 4 9
- - 7560*csc(a) *csc(b) *sec(a) *sec(b) + 210*csc(a) *sec(a) *sec(b)
- 5 9 5 5 7 5 2
- - 252*csc(a) *csc(b) *sec(a) + 9072*csc(a) *csc(b) *sec(a) *sec(b)
- 5 5 5 4
- - 31752*csc(a) *csc(b) *sec(a) *sec(b)
- 5 3 5 6
- + 21168*csc(a) *csc(b) *sec(a) *sec(b)
- 5 5 8 4 8 6
- - 2268*csc(a) *csc(b)*sec(a) *sec(b) - 1890*csc(a) *csc(b) *sec(a) *sec(b)
- 4 6 6 3
- + 17640*csc(a) *csc(b) *sec(a) *sec(b)
- 4 4 6 5
- - 26460*csc(a) *csc(b) *sec(a) *sec(b)
- 4 2 6 7 4 6 9
- + 7560*csc(a) *csc(b) *sec(a) *sec(b) - 210*csc(a) *sec(a) *sec(b)
- 3 9 7 3 7 7 2
- + 120*csc(a) *csc(b) *sec(a) - 4320*csc(a) *csc(b) *sec(a) *sec(b)
- 3 5 7 4
- + 15120*csc(a) *csc(b) *sec(a) *sec(b)
- 3 3 7 6
- - 10080*csc(a) *csc(b) *sec(a) *sec(b)
- 3 7 8 2 8 8
- + 1080*csc(a) *csc(b)*sec(a) *sec(b) + 405*csc(a) *csc(b) *sec(a) *sec(b)
- 2 6 8 3
- - 3780*csc(a) *csc(b) *sec(a) *sec(b)
- 2 4 8 5
- + 5670*csc(a) *csc(b) *sec(a) *sec(b)
- 2 2 8 7 2 8 9
- - 1620*csc(a) *csc(b) *sec(a) *sec(b) + 45*csc(a) *sec(a) *sec(b)
- 9 9 7 9 2
- - 10*csc(a)*csc(b) *sec(a) + 360*csc(a)*csc(b) *sec(a) *sec(b)
- 5 9 4 3 9 6
- - 1260*csc(a)*csc(b) *sec(a) *sec(b) + 840*csc(a)*csc(b) *sec(a) *sec(b)
- 9 8 8 10
- - 90*csc(a)*csc(b)*sec(a) *sec(b) - 9*csc(b) *sec(a) *sec(b)
- 6 10 3 4 10 5
- + 84*csc(b) *sec(a) *sec(b) - 126*csc(b) *sec(a) *sec(b)
- 2 10 7 10 9
- + 36*csc(b) *sec(a) *sec(b) - sec(a) *sec(b) )
- trigsimp(ws, combine);
- 1
- -----------------
- sin(10*a - 9*b)
- trigsimp(cosh(50*acosh(x))-cos(50*acos(x)));
- 0
- trigsimp(cos(n*acos(x))-cosh(n*acosh(x)), trig);
- 0
- trigsimp((2tan(log(x))*(sec(log(x))^2 - tan(log(x))^2 - 1))/x);
- 0
- trigsimp(sech(10x), keepalltrig);
- 10 10 10 8 2 6 4
- (csch(x) *sech(x) )/(csch(x) + 45*csch(x) *sech(x) + 210*csch(x) *sech(x)
- 4 6 2 8 10
- + 210*csch(x) *sech(x) + 45*csch(x) *sech(x) + sech(x) )
- trigsimp(ws, combine);
- 1
- ------------
- cosh(10*x)
- trigsimp(csch(3x-5y), keepalltrig);
- 3 5 3 5 3 4
- ( - csch(x) *csch(y) *sech(x) *sech(y) )/(5*csch(x) *csch(y) *sech(y)
- 3 2 3 3 5
- + 10*csch(x) *csch(y) *sech(y) + csch(x) *sech(y)
- 2 5 2 3 2
- - 3*csch(x) *csch(y) *sech(x) - 30*csch(x) *csch(y) *sech(x)*sech(y)
- 2 4
- - 15*csch(x) *csch(y)*sech(x)*sech(y)
- 4 2
- + 15*csch(x)*csch(y) *sech(x) *sech(y)
- 2 2 3 2 5
- + 30*csch(x)*csch(y) *sech(x) *sech(y) + 3*csch(x)*sech(x) *sech(y)
- 5 3 3 3 2
- - csch(y) *sech(x) - 10*csch(y) *sech(x) *sech(y)
- 3 4
- - 5*csch(y)*sech(x) *sech(y) )
- trigsimp(ws, combine);
- 1
- -----------------
- sinh(3*x - 5*y)
- off precise;
- trigsimp((sinh(x)+cosh(x))^n+(cosh(x)-sinh(x))^n, expon);
- 2*n*x
- e + 1
- ------------
- n*x
- e
- on precise;
- trigsimp(ws, hyp);
- 2*cosh(n*x)
- load_package taylor;
- taylor(sin(x+a)*cos(x+b), x, 0, 4);
- cos(b)*sin(a) + (cos(a)*cos(b) - sin(a)*sin(b))*x
- 2
- - (cos(a)*sin(b) + cos(b)*sin(a))*x
- 2*( - cos(a)*cos(b) + sin(a)*sin(b)) 3
- + --------------------------------------*x
- 3
- cos(a)*sin(b) + cos(b)*sin(a) 4 5
- + -------------------------------*x + O(x )
- 3
- trigsimp(ws, combine);
- sin(a - b) + sin(a + b) 2 2*cos(a + b) 3
- ------------------------- + cos(a + b)*x - sin(a + b)*x - --------------*x
- 2 3
- sin(a + b) 4 5
- + ------------*x + O(x )
- 3
- %-----------------------TrigFactorize-----------------------
- on nopowers;
- % for comparison with version 2.0
- trigfactorize(sin(x)**2, x);
- {sin(x),sin(x)}
- trigfactorize(1+cos(x), x);
- {cos(x) + 1}
- trigfactorize(1+cos(x), x/2);
- x x
- {2,cos(---),cos(---)}
- 2 2
- trigfactorize(1+cos(x), x/6);
- {2,
- x 2
- - 4*sin(---) + 1,
- 6
- x 2
- - 4*sin(---) + 1,
- 6
- x
- cos(---),
- 6
- x
- cos(---)}
- 6
- trigfactorize(sin(x)*(1-cos(x)), x);
- {sin(x)*( - cos(x) + 1)}
- trigfactorize(sin(x)*(1-cos(x)), x/2);
- {4,
- x
- cos(---),
- 2
- x
- sin(---),
- 2
- x
- sin(---),
- 2
- x
- sin(---)}
- 2
- trigfactorize(tan(x), x);
- {tan(x)}
- trigfactorize(sin(x*3), x);
- 2
- { - 4*sin(x) + 3,sin(x)}
- trigfactorize(sin(4x)-1, x);
- {-1,
- 2
- 2*cos(x)*sin(x) + 2*sin(x) - 1,
- 2
- 2*cos(x)*sin(x) + 2*sin(x) - 1}
- trigfactorize(sin(x)**4-1, x);
- 2
- {-1,sin(x) + 1,cos(x),cos(x)}
- trigfactorize(cos(x)**4-1, x);
- 2
- {sin(x) - 2,sin(x),sin(x)}
- trigfactorize(sin(x)**10-cos(x)**6, x);
- {-1,
- 2 5
- cos(x)*sin(x) - cos(x) - sin(x) ,
- 2 5
- cos(x)*sin(x) - cos(x) + sin(x) }
- trigfactorize(sin(x)*cos(y), x);
- {cos(y),sin(x)}
- trigfactorize(sin(2x)*cos(y)**2, y/2);
- {2*cos(x)*sin(x),
- y y
- cos(---) + sin(---),
- 2 2
- y y
- cos(---) + sin(---),
- 2 2
- y y
- cos(---) - sin(---),
- 2 2
- y y
- cos(---) - sin(---)}
- 2 2
- trigfactorize(sin(y)**4-x**2, y);
- 2 2
- {sin(y) - x,sin(y) + x}
- trigfactorize(sin(x), x+1);
- ***** TrigGCD/Factorize error: last arg must be [number*]variable.
- trigfactorize(sin(x), 2x);
- ***** TrigGCD/Factorize error: basis not possible.
- trigfactorize(sin(x)*cosh(x), x/2);
- {2,
- x
- cos(---),
- 2
- x
- sin(---),
- 2
- x x
- cosh(---) - i*sinh(---),
- 2 2
- x x
- cosh(---) + i*sinh(---)}
- 2 2
- trigfactorize(1+cos(2x)+2cos(x)*cosh(x), x/2);
- {4,
- x x x x
- cos(---)*cosh(---) + i*sin(---)*sinh(---),
- 2 2 2 2
- x x x x
- cos(---)*cosh(---) - i*sin(---)*sinh(---),
- 2 2 2 2
- x x
- cos(---) + sin(---),
- 2 2
- x x
- cos(---) - sin(---)}
- 2 2
- %-------------------------TrigGCD---------------------------
- triggcd(sin(x), cos(x), x);
- 1
- triggcd(1-cos(x)^2, sin(x)^2, x);
- 2
- - sin(x)
- triggcd(sin(x)^4-1, cos(x)^2, x);
- 2
- - sin(x) + 1
- triggcd(sin(5x+1), cos(x), x);
- 1
- triggcd(1-cos(2x), sin(2x), x);
- sin(x)
- triggcd(-5+cos(2x)-6sin(x), -7+cos(2x)-8sin(x), x/2);
- x x
- 2*cos(---)*sin(---) + 1
- 2 2
- triggcd(1-2cosh(x)+cosh(2x), 1+2cosh(x)+cosh(2x), x/2);
- x 2
- 2*sinh(---) + 1
- 2
- triggcd(1+cos(2x)+2cos(x)*cosh(x), 1+2cos(x)*cosh(x)+cosh(2x), x/2);
- x 2 x 2
- - sin(---) + sinh(---) + 1
- 2 2
- triggcd(-1+2a*b+cos(2x)-2a*sin(x)+2b*sin(x),
- -1-2a*b+cos(2x)-2a*sin(x)-2b*sin(x), x/2);
- x x
- 2*cos(---)*sin(---) + a
- 2 2
- triggcd(sin(x)^10-1, cos(x), x);
- cos(x)
- triggcd(sin(5x)+sin(3x), cos(x), x);
- cos(x)
- triggcd(sin(3x)+sin(5x), sin(5x)+sin(7x), x);
- 2
- sin(x)*(sin(x) - 1)
- %-----------------------------------------------------------
- % New facilities in version 2
- %-----------------------------------------------------------
- % TrigSimp applied to non-scalars data structures:
- trigsimp( sin(2x) = cos(2x) );
- 2
- 2*cos(x)*sin(x)= - 2*sin(x) + 1
- trigsimp( { sin(2x), cos(2x) } );
- 2
- {2*cos(x)*sin(x), - 2*sin(x) + 1}
- trigsimp( { sin(2x) = cos(2x) } );
- 2
- {2*cos(x)*sin(x)= - 2*sin(x) + 1}
- trigsimp( mat((sin(2x),cos(2x)),
- (csc(2x),sec(2x))) );
- [ 2 ]
- [ 2*cos(x)*sin(x) - 2*sin(x) + 1]
- [ ]
- [ 1 - 1 ]
- [----------------- --------------- ]
- [ 2*cos(x)*sin(x) 2 ]
- [ 2*sin(x) - 1 ]
- % An amusing identify:
- trigsimp(csc x - cot x - tan(x/2));
- 0
- % which could be DERIVED like this:
- trigsimp(csc x - cot x, x/2, tan);
- x
- tan(---)
- 2
- % A silly illustration of multiple additional trig arguments:
- trigsimp(csc x - cot x, x/2, x/3);
- x 5 x 3 x
- 16*sin(---) - 24*sin(---) + 9*sin(---)
- 6 6 6
- ------------------------------------------------------------
- x x 4 x x 2 x
- 16*cos(---)*sin(---) - 16*cos(---)*sin(---) + 3*cos(---)
- 6 6 6 6 6
- % A more useful illustration of multiple additional trig arguments:
- trigsimp(csc x - cot x + csc y - cot y, x/2, y/2, tan);
- x y
- tan(---) + tan(---)
- 2 2
- %-----------------------------------------------------------
- % New TrigFactorize facility:
- off nopowers;
- % REDUCE 3.7 default, gives more compact output ...
- trigfactorize(sin(x)^2, x);
- {{sin(x),2}}
- trigfactorize(1+cos(x), x);
- {{cos(x) + 1,1}}
- trigfactorize(1+cos(x), x/2);
- x
- {{2,1},{cos(---),2}}
- 2
- trigfactorize(1+cos(x), x/6);
- x x 2
- {{2,1},{cos(---),2},{ - 4*sin(---) + 1,2}}
- 6 6
- trigfactorize(sin(x)*(1-cos(x)), x);
- {{sin(x)*( - cos(x) + 1),1}}
- trigfactorize(sin(x)*(1-cos(x)), x/2);
- x x
- {{4,1},{sin(---),3},{cos(---),1}}
- 2 2
- trigfactorize(tan(x), x);
- {{tan(x),1}}
- trigfactorize(sin(3x), x);
- 2
- {{sin(x),1},{ - 4*sin(x) + 3,1}}
- trigfactorize(sin(4x) - 1, x);
- 2
- {{-1,1},{2*cos(x)*sin(x) + 2*sin(x) - 1,2}}
- trigfactorize(sin(x)^4 - 1, x);
- 2
- {{-1,1},{cos(x),2},{sin(x) + 1,1}}
- trigfactorize(cos(x)^4 - 1, x);
- 2
- {{sin(x),2},{sin(x) - 2,1}}
- trigfactorize(sin(x)^10 - cos(x)^6, x);
- {{-1,1},
- 2 5
- {cos(x)*sin(x) - cos(x) + sin(x) ,1},
- 2 5
- {cos(x)*sin(x) - cos(x) - sin(x) ,1}}
- trigfactorize(sin(x)*cos(y), x);
- {{cos(y),1},{sin(x),1}}
- trigfactorize(sin(2x)*cos(y)^2, y/2);
- {{2*cos(x)*sin(x),1},
- y y
- {cos(---) - sin(---),2},
- 2 2
- y y
- {cos(---) + sin(---),2}}
- 2 2
- trigfactorize(sin(y)^4 - x^2, y);
- 2 2
- {{sin(y) + x,1},{sin(y) - x,1}}
- trigfactorize(sin(x), x+1);
- ***** TrigGCD/Factorize error: last arg must be [number*]variable.
- trigfactorize(sin(x), 2x);
- ***** TrigGCD/Factorize error: basis not possible.
- trigfactorize(sin(x)*cosh(x), x/2);
- {{2,1},
- x x
- {cosh(---) + i*sinh(---),1},
- 2 2
- x x
- {cosh(---) - i*sinh(---),1},
- 2 2
- x
- {sin(---),1},
- 2
- x
- {cos(---),1}}
- 2
- trigfactorize(1 + cos(2x) + 2cos(x)*cosh(x), x/2);
- {{4,1},
- x x
- {cos(---) - sin(---),1},
- 2 2
- x x
- {cos(---) + sin(---),1},
- 2 2
- x x x x
- {cos(---)*cosh(---) - i*sin(---)*sinh(---),
- 2 2 2 2
- 1},
- x x x x
- {cos(---)*cosh(---) + i*sin(---)*sinh(---),
- 2 2 2 2
- 1}}
- end;
- Time for test: 121198 ms, plus GC time: 2555 ms
|